
Ordered Sets in the Calculus of Data Structures

Viktor Kuncak, Ruzica Piskac, and Philippe Suter ⋆

firstname.lastname@epfl.ch

Swiss Federal Institute of Technology Lausanne (EPFL)

Abstract. Our goal is to identify families of relations that are useful
for reasoning about software. We describe such families using decidable
quantifier-free classes of logical constraints with a rich set of operations.
A key challenge is to define such classes of constraints in a modular
way, by combining multiple decidable classes. Working with quantifier-
free combinations of constraints makes the combination agenda more
realistic and the resulting logics more likely to be tractable than in the
presence of quantifiers.
Our approach to combination is based on reducing decidable fragments to
a common class, Boolean Algebra with Presburger Arithmetic (BAPA).
This logic was introduced by Feferman and Vaught in 1959 and can ex-
press properties of uninterpreted sets of elements, with set algebra opera-
tions and equicardinality relation (consequently, it can also express Pres-
burger arithmetic constraints on cardinalities of sets). Combination by
reduction to BAPA allows us to obtain decidable quantifier-free combi-
nations of decidable logics that share BAPA operations. We use the term
Calculus of Data Structures to denote a family of decidable constraints
that reduce to BAPA. This class includes, for example, combinations
of formulas in BAPA, weak monadic second-order logic of k-successors,
two-variable logic with counting, and term algebras with certain homo-
morphisms. The approach of reduction to BAPA generalizes the Nelson-
Oppen combination that forms the foundation of constraint solvers used
in software verification. BAPA is convenient as a target for reductions
because it admits quantifier elimination and its quantifier-free fragment
is NP-complete.
We describe a new member of the Calculus of Data Structures: a
quantifier-free fragment that supports 1) boolean algebra of finite and
infinite sets of real numbers, 2) linear arithmetic over real numbers, 3)
formulas that can restrict chosen set or element variables to range over in-
tegers (providing, among others, the power of mixed integer arithmetic
and sets of integers), 4) the cardinality operators, stating whether a
given set has a given finite cardinality or is infinite, 5) infimum and
supremum operators on sets. Among the applications of this logic are
reasoning about the externally observable behavior of data structures
such as sorted lists and priority queues, and specifying witness functions
for the BAPA synthesis problem. We describe an abstract reduction to
BAPA for our logic, proving that the satisfiability of the logic is in NP
and that it can be combined with the other fragments of the Calculus of
Data Structures.

⋆ This research was supported in part by the Swiss NSF Grant #120433.

2 Kuncak, Piskac, Suter

1 Introduction

Many useful decidable constraints involve a notion of sets. To combine such
constraints, we need a method that in addition to equality and propositional
operations allows the constraints from different classes to have common opera-
tions on sets. Calculus of Data Structures [KPSW10] is an approach to combine
multiple classes of constraints that allow sharing of set operations, by reducing
each class to constraints of sets with a cardinality operation.

Constraints on sets arise in a variety of tasks, from software verification to
interactive theorem proving. In addition to operators that combine collections
into new ones (such as union or intersection), these formulas often involve the
cardinality operator computing the number of elements in collections. Several
decision procedures for sets and multisets with cardinality operator have been
described recently [KNR06,KR07,PK08c,PK08a,PK08b]. Among these results is
the NP-completeness of the theory of sets and multisets with the cardinality op-
erator [PK08c]. In addition to their use in verification, these decision procedures
can be used to synthesize code from specifications [KMPS10]. The applicability
of these decision procedures can be increased by combining them with other
decision procedures and theorem provers [KPSW10]. The existing decision pro-
cedures for collections with cardinality bounds do not consider operations that
couple the collection operations with the operations on the elements.

In terms of quantified constraints, weak second-order theory of sets of totally
ordered elements without cardinality operator is known to be decidable [Lae68],
also as a consequence of S2S decidability [Rab69]. The restriction to quantifica-
tion over finite sets is essential; the second-order theory of total order is undecid-
able, as is the theory with quantification over countable sets, or sets of rational
or real numbers [She75].

The logic we consider is quantifier free. It tightly interconnects cardinalities,
sets, and the underlying total order. Our operations of infimum and supremum
only make sense when the underlying theory contains a complete lattice and are
specific to theories that contain sets. Moreover, there is no natural way to e.g.
remove the cardinality operator from a theory of sets without eliminating the
notion of the set altogether. Therefore, previous general results on combinations
of theories [RRZ05, SS07, Ghi05] do not appear to simplify the proofs that we
present here, and have certainly not been used to show the present result.

We start from the NP-completeness result for sets with the cardinality op-
erator [PK08c] and extend it to collections of totally ordered elements. The key
challenge in considering such a logic is to avoid NEXPTIME hardness which
easily arises in the presence of sets (see e.g. the addition of relation images to
QFBAPA [YPK10]).

As a concrete and natural example of an ordered domain into which other
orders can be embedded, we consider the set of real numbers (we do prove
theorems that show that the automated reasoning can be performed in terms of
rational numbers that denote bounds of certain intervals). To support discrete
orders, we introduce the set of integers as a specific subset. Therefore, we can
specify that a given set contains only integers, whenever this is desirable. Given

Ordered Sets in the Calculus of Data Structures 3

a collection variable C, our formulas support computing the number of elements
|C|, but also the minimum min(C) and the maximum max(C) of all elements
of C (these operations are partial when the sets can be unbounded; our logic
support appropriate predicates to check boundedness and finiteness). We can also
define in our language the function take(k, C) that computes the least k elements
from the collection C, where k is an integer variable. More generally, one can
compute lrange(i, j, C) the collection of elements from position i to position j in
the ordered collection, counting from the minimum element. A special case of
this definable operation is extracting the ith smallest or ith biggest element of a
sorted collection.

There is a number of areas in which we believe our constraints are useful.

1. Our constraints can be used to model programs that manipulate data struc-
tures. Whereas previous decision procedures supported unsorted sets, our
result allows us to additionally consider ordered sets. The presence of order
means that we can define operations such as extracting the least element of
a set, which gives us complete algebraic laws for the external behavior of
priority queues and sorted lists or trees (without duplicates). Our language
supports not only operations of insertion and removal but also merging and
comparison of sets, as well as selecting subsets of given size and indexing
elements.

2. We can define in our language a natural relationship A<B on sets, denoting
∀x ∈ A.∀y ∈ B. x < y, simply by max(A) < min(B). This relationship is
useful in specifying e.g. invariants of binary search trees and can be used to
verify lookup operations on a binary search tree.

3. Using sets defined over total orders, we are able to remove non-determinism
in program synthesis. In [KMPS10] we have developed a synthesizer that
works for arbitrary QFBAPA formulas. The synthesizer invokes a quantifier
elimination procedure and uses the test terms from quantifier elimination as
the synthesized program. These test terms involve choosing k elements from
a Venn region, where the value k is computed in the synthesized program.
Despite many good closure properties of QFBAPA, we found no natural way
to introduce such test terms as part of QFBAPA itself. With the addition of
ordering, functions such as take(k, C) suffice to specify all test terms. The
presence of ordering in the specification language means that the user of
synthesis can write specifications that have a unique solution.

Our result is formulated as a BAPA reduction and can thus be combined with
other logics using the non-disjoint combination framework of [WPK09].

2 Examples

2.1 Using Ordered Sets in Verification

As an example of the application of our decision procedure to program verifica-
tion, consider first the program of Figure 1, which defines a functional binary

4 Kuncak, Piskac, Suter

search tree in the Scala programming language [OSV08] and introduces two
functions. content computes the elements stored in the tree (and is used only for
specification purposes). find checks whether a given element is contained in the
tree and is a key data structure operation.

object BSTSet
sealed abstract class Tree
private case class Leaf() extends Tree
private case class Node(left: Tree, value: Int, right: Tree) extends Tree
@invariant(max(content(left)) < value && value < min(content(right))

def content(t: Tree): Set[Int] = t match {
case Leaf() ⇒ ∅
case Node(l,e,r) ⇒ content(l) ∪ { e } ∪ content(r) }

def find(e: Int, t: Tree): Boolean = (t match

case Leaf() ⇒ false

case Node(l,v,r) ⇒
if (e < v) find(e, l)
else if (e == v) true

else find(e, r)
) ensuring (res ⇒ (res == (e ∈ content(t))))

Fig. 1. Looking up an element in a binary search tree.

Verifying the property specified for find requires taking into account the in-
variant on the sortedness of trees. The difficult case is showing that if the pro-
cedure does not find an element, then the element is indeed not in the tree. The
proof uses the fact that, for each node with value v, all elements L in the left
subtree are less than v, and all elements in the right subtree are larger than v.
We can express this condition as max(L) < v < min(R). By applying standard
techniques to reduce functional programs to formulas, we obtain verification
conditions for find such as the following:

(max(L) < v < min(R) ∧ e < v)→(e ∈ (L ∪ {v} ∪ R)↔ e ∈ L)

Such a formula belongs to our decidable class, and can be handled using the
decision procedure that we present in the sequel.

Figure 2 shows an example of lookup operation that finds the element of a
given rank in a binary search tree. The verification condition formulas for this
example can be expressed in our logic and proved using our decision procedure;
one example verification condition is

C = L∪{v}∪R∧max(L) < v < min(R) → lrange(C, card(L), card(L)+1) = {v}.

Figure 3 shows a partitioning function such as the one used as part of the
quicksort algorithm. The function splits an unordered collection into a collection

Ordered Sets in the Calculus of Data Structures 5

object BSTSet {
sealed abstract class Tree
private case class Leaf() extends Tree
private case class Node(left: Tree, value: Int, right: Tree, size : Int) extends Tree {

@invariant(content(this.left).max < this.value
&& this.value < content(this.right).min)
&& size = content(this).size }

def lookup(index : Int, t: Tree): Int =
require (0 <= index && index < t.size)

t match {
case Leaf() ⇒ error ”out of bounds”
case Node(l,v,r,) ⇒

if (index < l.size) lookup(index, l)
else if (index == l.size) v
else lookup(index − l.size − 1, r)

}
ensuring (v ⇒ (content(t).lrange(index,index+1))= {v}) }

Fig. 2. Finding an element of a given rank in a binary search tree.

def partition(s: Set, pivot: Int): (Set,Set) =
var remaining = s
var below = {}
var above = {}
while (invariant below ∪ above ∪ remaining = s ∧

below = {} ∨ max(below) ≤ pivot ∧
above = {} ∨ pivot < min(above))

(remaining != {}) {
var e = chooseOne(remaining)
remaining = remaining \ {e}
if (e ≤ pivot)

below = below ∪ {e}
else

above = above ∪ {e}
}

}) ensuring ((below,above) ⇒ below ∪ above = s ∧
below = {} ∨ max(below) ≤ pivot ∧
above = {} ∨ pivot < min(above))

Fig. 3. Partitioning an unordered collection

of those elements that are less than equal to a given pivot element, and those
elements that are greater than the pivot. Given the appropriate loop invariant
(Figure 3), the following verification conditions can also be proved using our

6 Kuncak, Piskac, Suter

decision procedure:

(above = ∅ ∨ pivot < min(above)) ∧ ¬(e ≤ pivot) ∧ above
′ = above ∪ {e}

→ pivot < min(above′).

2.2 Using Ordered Sets in Program Synthesis

Synthesizing software from given specifications [MW80] should increase the pro-
ductivity of a programmer and the chances of obtaining error-free software that
entirely corresponds to its specification. The concept of ordering immediately
yields a much larger number of definable functions, such as take and lrange.
These functions are sufficient to express within the logic the Skolem functions
of quantified formulas of BAPA. Consider, for example, the formula

∀S.∀k. ∃A.∃B. (|S| = 2k → S = A ∪ B ∧ A ∩ B = ∅ ∧ |A| = |B|)

This formula has a witness function f(S, k) computing the sets (A, B) by
f(S, k) = (take(k/2, S), S \ take(k/2, S)), where k/2 denotes integer division
by 2, which is definable in integer linear arithmetic. Using ordering on sets,
we can define such a computable witness function for every valid BAPA for-
mula with a ∀⋆∃⋆ prefix, thus ensuring a stronger form of quantifier elimination.
We have used such witness functions as an output of a synthesis procedure for
BAPA [KMPS10]; there the underlying programming language implementation
used an implicit ordering on elements to compute f . Without an ordering on ele-
ments in the logic it was not clear how to specify a particular subset of a set of a
given size. Using the ordering of elements (and the induced partial order on the
sets) make the specification more precise and thus improves the predictability
of the synthesized code.

3 Unordered, Possibly Infinite Sets with Cardinalities

As a background for our main result on sets of ordered elements, we establish
the complexity for the satisfiability problem for a logic of unordered sets, shown
in Figure 4. (Therefore, in this section, the elements should not be assumed to
range over real numbers or integers, but over some arbitrary infinite set.) The
grammar symbol F ranges over formulas, T over terms denoting real numbers,
and S over terms denoting sets. Note that we allow mixed linear constraints on
the cardinalities of sets, but the cardinalities of sets themselves are integers or
infinite (unlike [PK08b] where cardinalities could be fractional).

The decidability of a quantified version of the logic in Figure 4, based on
quantifier elimination and without fractional constraints on cardinalities, goes
back to [FV59]. The elementary complexity for the quantified case was shown
in [KNR06] (see Section 8.1 for the case of possibly infinite sets). Using quantifier
elimination for mixed linear arithmetic [Wei99], we can also obtain the decid-
ability of the quantified language in Figure 4. In this paper, we are interested in
efficient bounds for the quantifier-free fragment.

Ordered Sets in the Calculus of Data Structures 7

F ::= F ∧ F | ¬F | S = S | T ≤ T | card(S)=T | card(S)≥ℵ0 | T ∈ Z

T ::= k | C | T + T | C ∗ T

S ::= x | ∅ | S ∩ S | S
c

Fig. 4. The logic QFBAPA∞ of sets with cardinalities. Here C denotes rational
constants.

Using a sparse solution theorem for integer linear arithmetic [ES06] the NP
membership (and, trivially, NP-hardness) for a simpler version of this logic was
shown in [KR07]. However, previous statements of this complexity result con-
sidered interpretation where all sets are finite. The main claim of this section is
that the NP membership remains even if we allow sets to be infinite, introduce
a predicate to check finiteness, and allow the constraints on cardinalities to be
embedded into constraints on linear real arithmetic.

As usual, by a Venn region over variables x1, . . . , xn we mean an intersection
containing for each set xi either xi or its complement xc

i . There are exactly 2n

Venn regions over n set variables.

Theorem 1. Let F be a QFBAPA∞ formula (Figure 4) with free set variables
x1, . . . , xn containing at most d atomic formulas (d ≥ 2). Then F is satisfiable
iff there exist

– at most O(d log(d)) Venn regions r1, . . . , rN over variables x1, . . . , xn and
– non-negative integers k1, . . . , kN and a1, . . . , aN ∈ {0, 1} whose number of

bits is polynomial in the size of formula F

such that F is true in some valuation in which for each i where 1 ≤ i ≤ N either
ai = 0 and card(ri)=ki, or ai = 1 and card(ri)≥ℵ0, and such that the valuation
of all Venn regions other than r1, . . . , rN is the empty set.

The idea of the proof is to encode cardinalities of possibly infinite set with pairs
of integer variables. We represent a finite set of size p by (0, p). We represent an
infinite set by pairs of the form (1, p) where p is arbitrary. We then perform a
similar but slightly more involved construction to the one in [KR07].

Proof of Theorem 1 Note that all set algebra equations can be encoded
using cardinalities using the fact that A = B iff card((A ∩ Bc) ∪ (Ac ∩ B))=0.
We can thus assume that set variables occur only in atomic formulas of the
form card(s)=t and card(s)≥ℵ0. For each set expression si in F introduce fresh
variables pi and qi. Consider the formula

∧

i

(

(qi = 0 ∧ card(si)=pi) ∨ (qi = 1 ∧ card(si)≥ℵ0)
)

(∗∗)

Replace each card(si)=t in F with (qi = 0∧pi = t) and replace each card(si)≥ℵ0

with qi = 1. Then conjoin the result with (∗∗); we obtain a formula of the

8 Kuncak, Piskac, Suter

form P ∧ (∗∗) where P is a mixed linear arithmetic formula. The original input
formula is equivalent to ∃(pi)i(qi)i(P ∧ (∗∗)). Indeed, given the values of sets in
the original formula, we assign qi = 0 if si is finite and qi = 1 if it is infinite. If
si is finite, we assign pi to its size, otherwise we assign pi to 0. Then card(si)=t
and (qi = 0 ∧ pi = t) evaluate to the same truth value, and so do card(si)≥ℵ0

and qi = 1. Conversely, if (∗∗) holds then qi = 0 if si is finite and qi = 1 if si

is infinite, so the original and new atomic formulas again evaluate to the same
truth values. Note that for si infinite, both card(si)=pi and (qi = 0∧ pi = t) are
false, regardless of the value of pi. Thus, given an assignment for which qi = 1,
if we change the value of pi the truth value of (∗∗) or P remains the same.

We next observe that (∗∗) is equisatisfiable with a formula in quantifier-
free Presburger arithmetic, extending the construction for finite cardinalities
of [KR07]. For each Venn region ri over the set variables occurring in (∗∗), we
introduce two fresh non-negative integer variables ai and ki, analogously to qi

and pi. The intended interpretation is again

∧

j

(

(aj = 0 ∧ card(rj)=kj) ∨ (aj = 1 ∧ card(rj)≥ℵ0)
)

(V)

We next use the property that the cardinality of a finite union of disjoint sets
is the sum of the cardinalities of sets. We obtain the following linear integer
constraint

∧

i

(

∑

j

γijaj ≥ qi ∧
∑

j

γijkj = pi

)

(I)

where γi,j equals 1 if rj ⊆ si is valid and 0 otherwise.
We claim that (∗∗) and (I) have equivalent sets of solution vectors for vari-

ables qj , pj . Two solutions (qj , pj)j and (q′j , p
′
j)j are equivalent if qj = q′j and if

qj = 0 then pj = p′j.
(⇒): In one direction, given the values of set variables such that (∗∗) holds,

define aj and kj according to (V). Consider an arbitrary conjunct number i in
the conjunction (I). Consider first the case when si is a finite set. Then all Venn
regions contained in si are finite, so for all j for which γij = 1 we have aj = 0
and pj denotes the size of the finite Venn region rj . We also have qi = 0 so
∑

j γijaj ≥ qi reduces to 0 ≥ 0. The condition γijkj = pi holds because the size
of a union of disjoint sets is equal to sums of the sizes of the sets. In the second
case, si is infinite. Then qi = 1. Because si is a finite union of Venn regions,
there must be a Venn region rj that is infinite. Therefore, there exists j such
that γij = 1 and aj = 1. This ensures that

∑

j γijaj ≥ qi holds. Given that
qi = 1, we can find an equivalent solution with arbitrary values of p′j , so we can
make

∑

j γijkj = pi hold as well.
(⇐): In the other direction, suppose we have the values of variables ai and

ki. We then define as Venn regions disjoint sets such that (V) holds. The proof
that (∗∗) holds is straightforward.

This completes the proof of equisatisfiability of (∗∗) and (I). We are left with
checking the satisfiability of P ∧ (I). Transform P into disjunctive normal form
∨

j Dj ·(k, a, v) ≥ ej, where each disjunct is a mixed linear programming problem

Ordered Sets in the Calculus of Data Structures 9

and all coefficients in Dj are integers. The formula is satisfiable iff one of the
disjuncts is satisfiable, so consider one disjunct Dj ·(k, a, v) ≥ ej . As in [PK08b],
let v = l+f where l are fresh integer variables, and f are real variables restricted
to [0, 1). Splitting Dj into two groups of columns [D′

j, D
′′
j] we obtain a problem

of the form D′′
j f ≥ b−D′

j · (k, a)−D′′
j l. Note that the right-hand side is integer

so we can replace the left-hand side with g where g = ⌊D′′
j f⌋. Because f has

components from [0, 1), the vector g is bounded by the norm of the matrix D′′
j ,

and the values of g are representable by polynomially many bits. For each value
of g, the original problem decomposes into one polynomial sized mixed linear
programming problem D′′

j f ≥ g, and one integer linear programming problem

(I) ∧ (g ≥ b − D′
j · (k, a) − D′′

j l) (K)

Note that (I) is an integer linear programming problem with exponentially many
variables (aj , kj). However, there are only polynomially many constraints in (I)
(two for each expression si in the input formula) and therefore polynomially
many in (K). Moreover, also the coefficients γij are bounded. After introducing
polynomially many slack variables for the inequations in (I), we obtain (K ′)
that has the form arising in [KR07] from constraints over finite sets, and has
sparse solutions with only O(d log d) variables ai and ki non-empty. The non-
empty Venn regions r1, . . . , rN are precisely those Venn regions ri for which
ai 6= 0 ∨ ki 6= 0. ⊓⊔

If we know that sparse solutions exist, it is not necessary to generate an expo-
nentially large integer linear programming problem; we can encode in quantifier-
free Presburger arithmetic both the guessing of which regions are non-zero, and
checking whether the constraints on sets are satisfiable for this guess. We there-
fore obtain the extension of the result in [KR07] to infinite sets and to mixed
linear constraints on cardinalities.

Corollary 1. Satisfiability for QFBAPA∞ (Figure 4) is NP-complete.

4 Ordered, Possibly Infinite Sets with Cardinalities

F ::= F ∧ F | ¬F | S = S | T ≤ T | S < S | T ∈ S | S ⊆ Z | T ∈ Z

card(S)≥ℵ0 | card(S)=T | inf(S)=−∞ | inf(S)=T | sup(S)=∞ | sup(S)=T

T ::= k | C | T + T | C ∗ T

S ::= x | ∅ | S ∩ S | S
c | take(T, S) | lrange(T, T, S)

Fig. 5. The logic QFBAPA<
∞ of ordered sets with cardinalities, infima and

suprema. Here C denotes rational constants.

Figure 5 shows the syntax of QFBAPA<
∞, our quantifier-free logic of sets of real

numbers supporting integer sets and variables, linear arithmetic, the cardinality

10 Kuncak, Piskac, Suter

operator, infimum, and supremum. In this section we show our main result,
which is a reduction of QFBAPA<

∞ to QFBAPA∞.
The predicates T ∈ Z and A ⊆ Z denote that T is an integer term and that

A is a set containing only integers, respectively. card(A)≥ℵ0 means that A is an
infinite set. The predicate card(A)=T means that A is finite and its cardinal-
ity is the non-negative integer term T . The predicate inf(A)=−∞ means that
A has no lower bound, whereas inf(A)=T means that the infimum of A is T .
Analogously, sup(A)=∞ means that A has no upper bound, whereas sup(A)=T
means that the supremum of A is T . As a special case, for finite non-empty
sets the operations card, inf, sup correspond, respectively, to: the number of ele-
ments, the least element, and the greatest element. For the empty set, we define
the infimum and supremum predicates to be false: we assume ¬(inf(∅)=−∞)
and ¬(sup(∅)=∞), as well as ¬(inf(∅)=v) and ¬(sup(∅)=T) for every term T .
Note that the logic can define arbitrary propositional operations, the subset re-
lation (A ⊆ B is A ∩ B = A), and all set algebra operations (using ∩ and the
complement Sc). We define the partial order on finite sets, denoted A< B by
sup(A)=kA ∧kA <kB ∧ inf(B)=kB , where kA and kB are fresh integer variables.
Define take(T, S) = A as card(A)=T∧A<(S\A). We define lrange(T1, T2, S) = B
as a shorthand for B = A2 \A1 ∧A2 = take(T2, S)∧A1 = take(T1 − 1, S), where
A1, A2 are fresh set variables.

4.1 A Decision Procedure for QFBAPA<

∞

We next describe our procedure for reducing QFBAPA<
∞ to BAPA. When we

reduce fresh variables we assume that they are existentially quantified at the top
level. The satisfiability of the resulting formula will thus reduce to satisfiability
of a quantifier-free formula.

Rewritings. If kf and Af are fresh variables we replace T ∈ S with

kf = T ∧ card(Af)=1 ∧ inf(Af)=kf ∧ sup(Af)=kf ∧ Af ⊆ S.

We also replace negative occurrences of the predicates card(S)≥ℵ0, card(S)=T ,
inf(S)=−∞, inf(S)=T , sup(S)=∞, sup(S)=T with positive occurrences by intro-
ducing fresh variables and disjunctions. For example, we replace ¬(inf(S)=−∞)
with (S = ∅ ∨ inf(S)=k) for k fresh.

In the sequel we present an algorithm for conjunctions F of literals; formulas
of arbitrary boolean structure can be handled by e.g. rewriting them into dis-
junctive normal form or using an approach analogous to DPLL(T) [GHN+04].
Some of the transformations below introduce new disjunctions by “guessing”;
we assume that the process of selecting one disjunct is applied implicitly.

Decomposition into integers and non-integers sets. For each set variable
A, we introduce two fresh variables AZ and AR\Z, and add the constraints that
A = AZ ∪ AR\Z ∧ AZ ∩ AR\Z = ∅. If the constraint A ⊆ Z appears in F , we
replace it with AR\Z = ∅. This step effectively partitions every set variable into
an integer and a non-integer part. In our reduction to QFBAPA∞, we will use
this partitioning to encode the constraints on the integer and real parts of sets

Ordered Sets in the Calculus of Data Structures 11

separately. In the following when we refer to “any set variable A”, we refer to
all set variables, including the ones introduced at this step.

Purification. We flatten all arguments to the predicates card(S)≥ℵ0,
card(S)=T , inf(S)=−∞, inf(S)=T , sup(S)=∞, sup(S)=T , A ⊆ Z and T ∈ Z by
introducing fresh variables and new equalities when an argument is not already
a variable. Then, for each set variable A such that inf(A)=−∞ or sup(A)=∞
appears in the formula, we add the constraint card(A)≥ℵ0.

Guessing the empty and the infinite sets. For each set variable A, we
guess whether A is empty, non-empty finite, or infinite. In each case, we add a
constraint to F : If it is empty, we add the constraint card(A)=0. If it is infinite,
we add the constraint card(A)≥ℵ0. If is it finite but non-empty, we add the
constraint card(A)=kf ∧ kf ≥ 1, where kf is fresh.

Guessing the unbounded sets. For each set that we guessed was infinite,
we now guess whether it admits an infimum and a supremum. Similarly to the
previous step, we add the constraints inf(A)=−∞, sup(A)=∞, inf(A)=kf and
sup(A)=kf to F as needed. We note that at the end of this step, there is a
variable for the cardinality of each finite set appearing in the formula, as well as
a variable for each bounded infimum and supremum, when they exist.

Guessing an ordering on bounds. We consider the set B of all numeric
variables appearing in the predicates inf and sup as well as all integer and rational
constants appearing in F . We guess an arrangement into (equality) equivalence
classes of all variables and constants in B. We then guess a total ordering between
these equality classes. We number the classes in increasing order from 1 to n. We
add to F equality constraints between members of the same equivalence class.
For convenience, we also introduce a fresh variable bi in each class. We finally
add to F all constraints bi < bi+1.

Segmentation of the domain. For each of the equivalence classes, we

create two fresh set variables CZ

i and C
R\Z

i . We then guess whether bi is
an integer or a non-integer value. In the first case, we add the constraint

bi ∈ Z ∧ card(CZ

i)=1 ∧ card(C
R\Z

i)=0 to F . Otherwise, we add the constraint

card(CZ

i)=0 ∧ card(C
R\Z

i)=1. We then create 2 · (n + 1) more fresh set variables

CZ
n+1 to CZ

2n+1 and C
R\Z

n+1 to C
R\Z

2n+1. We make all the fresh set variables disjoint
by adding to F the constraints card(C⋆1

i ∩ C⋆2

j)=0 for 0 ≤ i < j ≤ 2n + 1 and
⋆1, ⋆2 ∈ {Z, R \ Z}. In the following we interpret the fresh sets as points (C⋆

0 to
C⋆

n) and intervals (C⋆
n+1 to C⋆

2n+1) on R (see Figure 6). As for our set variables
previously, the points and intervals are split between integer and non-integer val-
ues. Note that in our interpretation, the introduced sets are all infinite, except
for the sets of integers CZ

n+2 to CZ
2n. We therefore add to F the constraints

card(CZ

i)=ki
f
∧ ki

f
= ⌈bi − bi−1⌉ − 1 for n + 2 ≤ i ≤ 2n

card(CZ

i)≥ℵ0 for other values of i

card(C
R\Z

i)≥ℵ0 for all values of i

12 Kuncak, Piskac, Suter

Fig. 6. Segmentation of R. We use Ci here to denote CZ

i ∪ C
R\Z

i .

where ki
f

are fresh integer variables. (Note that we can encode the first equality
without ⌈ ⌉ by using inequalities.) Following our interpretation, we express the
set variables of F using the point and interval sets. For each non-empty set
A⋆ (⋆ ∈ {Z, Z \ R}), we introduce 2n + 1 fresh variables A⋆

i representing the
intersection of A⋆ with C⋆

i . A⋆ can then be expressed as the (disjoint) union of
all variables A⋆

i :

∧

0<i≤2n+1

A⋆
i = A⋆ ∩ C⋆

i ∧ A⋆ =
⋃

0<i≤2n+1

A⋆
i

We now need to express that some of these intersections are empty. If we guessed
that A⋆ admitted an infimum in the equivalence class p we add the constraints
∧

n+1≤i≤n+p A⋆
i ∩ C⋆

i = ∅, and similarly for sets that admit a supremum.

Solution of the QFBAPA∞ constraints. As a final step, we remove from
F all occurrences of the predicates inf and sup. We observe that the resulting
formula is in QFBAPA∞. We can use the results from Section 3 to determine its
satisfiability. Our original formula is satisfiable if and only if F is satisfiable.

Theorem 2. The decision procedure described above is sound and complete.

Proof. Soundness. We first show that each of our reasoning steps results in
a logically sound conclusion. The rewritings are correct by definition. Splitting
each set into a partition is sound and the added constraints on the partition
are consequences. The purification process introduces fresh variables that are
constrained to be equal to the term they represent, so any model for the formula
without the fresh variables can trivially be extended to the original variables.
The constraints that we add after guesses are immediate consequences of these.
It remains to show that when we introduce the fresh variables C⋆

i and A⋆
i and the

constraints on them, we do not exclude any solution for the existing variables. To
show this, consider a model for all non-fresh variables, and consider the ordering
of equivalence classes following from the values of the infima and suprema of
these sets. For any set A⋆, we can build the sets A⋆

i as in the construction by
splitting A⋆ into subsets with bounds defined by the values in the equivalence
classes. We can then construct the sets C⋆

i by taking the union of all sets A⋆
i

(each time for a fixed i). Note that all the sets C⋆
i are disjoint.

Completeness. To show completeness, we need to show that we can build a
model for the original formula from a model for our formula in QFBAPA∞. The
model for the reduced formula will contain values for all the bounds bi as well
as the cardinality of each set (and more generally of each Venn region), and we

Ordered Sets in the Calculus of Data Structures 13

need to extend this model by populating the sets with elements from R. We
start by populating the singleton sets C⋆

i , for 0 < i ≤ n. If the value for bi is

an integer, we set in the extended model CZ

i = {bi}, C
R\Z

i = ∅, and the model
for the case where bi is not an integer is built similarly (note that the decision
procedure will always return values that are in Q). We then proceed to populate
the sets Cn+i, for 0 < i ≤ n+1. We know the cardinality of each Venn region of
such a set, and these regions are by definition disjoint. In the case of the integer
sets CZ

n+i, we simply pick distinct integers for each Venn region. We know this is
always possible because we encoded all the relevant cardinality constraints in the
QFBAPA∞ formula. We can pick integers in any order, because our construction
ensures that no ordering constraints concern elements within a set CZ

n+i. As a
result, CZ

n+i will always contain all integers from bi−1 to bi. For the Venn regions

of the non-integer sets C
R\Z

n+i , the construction is slightly more involved. Because

C
R\Z

n+i is infinite, we know that at least one of its Venn regions is infinite as well,
and the model for the QFBAPA∞ formula will encode this. We name this region

VI . For a set C
R\Z

n+i with m distinct Venn regions, infimum bi−1 and supremum

bi, we can populate the jth Venn region Vj (with Vj 6= VI) as follows. If Vj has
finite cardinality k, we then define

Vj =
⋃

1≤l≤⌈ k

2
⌉

{

bi +
ε

m · l + j

}

∪
⋃

1≤l≤k−⌈ k

2
⌉

{

bi+1 −
ε

m · l + j

}

If the cardinality of Vj is required to be infinite, we define Vj as the corresponding

countable set Vj =
⋃

l∈N

{

bi + ε
m·l+j

}

∪
⋃

l∈N

{

bi+1 −
ε

m·l+j

}

. In both cases, we

define ε as 1

2
· min(1, min0<i<n(bi+1, bi)) (ε is half the width of the smallest

interval). Note that this generates distinct non-integer values for all the Venn
regions because m · l + j 6= m · l′ + j′ whenever 0 ≤ j < j′ < m. For infinite

sets, these values will converge to both ends of the interval represented by C
R\Z

i .
This means that constraints on infima and suprema outside of particular set will
always be satisfied. We define the identified infinite region VI to be (bi−1, bi) \
⋃

0<j≤k,j 6=I Vj (i.e. the open interval corresponding to C
R\Z

n+i minus all other Venn
regions). This set has uncountably many elements and is also dense towards its
extreme points. The construction for the four intervals that are open either to
the left or to the right is similar. This concludes the construction of the elements
of the C⋆

i sets. The construction for all the other sets follows then from their
definitions in terms of the C⋆

i sets.

Complexity. QFBAPA∞ is NP-hard because it subsumes propositional logic.
The above reduction to QFBAPA∞ runs in NP-time. By Corollary 1, the satisfi-
ability problem for QFBAPA<

∞ is NP-complete.

5 An Extension of the Calculus of Data Structures

We can now state an extension of Theorem 5 from [KPSW10] with the result on
ordered collections.

14 Kuncak, Piskac, Suter

Theorem 3. There exist BAPA reductions for the following logics 1) WS2S
[TW68], 2) two-variable logic with counting over finite models (C2) [PH05,
PST00], 3) Bernays-Schönfinkel-Ramsey over finite models [Ram30], 4)
quantifier-free multisets with cardinality constraints [PK08a], 5) term algebras
with the content function [SDK10], 6) the logic QFBAPA<

∞ in Figure 5. Thus,
quantifier-free set-sharing combination of all these logics is decidable.

6 Conclusions

We had previously identified a number of uses for constraints on sets and cardi-
nality bounds and established their optimal complexity. In this paper we general-
ized these results to: a) infinite sets b) the case of a total, possibly dense, ordering
relation on collection elements. In particular, we have looked at collections of
numerical elements: in this context, constraints on cardinalities are naturally
combined with constraints on minimal and maximal elements. In each case, we
have shown that the NP-completeness complexity of the decision problem was
preserved in the extension.

We have shown that these steps beyond uninterpreted elements provide im-
portant benefits: using this new expressive power, we were able to precisely spec-
ify the contracts of functions manipulating ordered data structures. We have also
shown that the added expressiveness promises to make synthesis specifications
more precise and the synthesized code more predictable. Finally, in addition to
the uses of the presented decision procedure alone, the fact that the decision
procedure works as a reduction to BAPA [WPK09] means that they can be
naturally combined with a number of other logics such as WS1S [TW68] two-
variable logic with counting [PST00], BAPA extensions [YPK10], and certain
recursive functions over algebraic data types [SDK10]. Therefore, it presents
another building block towards a rich decidable language useful in verification,
synthesis, and automated reasoning.

Acknowledgements. We thank Yuri Gurevich for providing in 2008 helpful
references on the decidability of the theories of total orders as well as the IJCAR
and CSL reviewers for their feedback. We thank Robin Steiger and Utkarsh
Upadhyay who have, in the meantime, implemented a decision procedure for
finite sets of integers with the cardinality operator and made it more efficient.

References

ES06. Friedrich Eisenbrand and Gennady Shmonin. Carathéodory bounds for
integer cones. Operations Research Letters, 34(5):564–568, September
2006. http://dx.doi.org/10.1016/j.orl.2005.09.008 .

FV59. S. Feferman and R. L. Vaught. The first order properties of products of
algebraic systems. Fundamenta Mathematicae, 47:57–103, 1959.

Ghi05. Silvio Ghilardi. Model theoretic methods in combined constraint
satisfiability. Journal of Automated Reasoning, 33(3-4):221–249, 2005.

http://dx.doi.org/10.1016/j.orl.2005.09.008

Ordered Sets in the Calculus of Data Structures 15

GHN+04. Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras,
and Cesare Tinelli. DPLL(T): Fast decision procedures. In CAV, 2004.

KMPS10. Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, and Philippe Suter.
Complete functional synthesis. In PLDI, 2010.

KNR06. Viktor Kuncak, Hai Huu Nguyen, and Martin Rinard. Deciding Boolean
Algebra with Presburger Arithmetic. J. of Automated Reasoning, 2006.

KPSW10. Viktor Kuncak, Ruzica Piskac, Philippe Suter, and Thomas Wies.
Building a calculus of data structures. In Verification, Model Checking,
and Abstract Interpretation (VMCAI), 2010.

KR07. Viktor Kuncak and Martin Rinard. Towards efficient satisfiability checking
for Boolean Algebra with Presburger Arithmetic. In CADE-21, 2007.

Lae68. H. Laeuchli. A decision procedure for the weak second order theory of
linear order. Studies in Logic and the Foundat. of Math., 50:189–197, 1968.

MW80. Zohar Manna and Richard Waldinger. A deductive approach to program
synthesis. ACM Trans. Program. Lang. Syst., 2(1):90–121, 1980.

OSV08. Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala: a
comprehensive step-by-step guide. Artima Press, 2008.

PH05. Ian Pratt-Hartmann. Complexity of the two-variable fragment with
counting quantifiers. Journal of Logic, Language and Information,
14(3):369–395, 2005.

PK08a. Ruzica Piskac and Viktor Kuncak. Decision procedures for multisets with
cardinality constraints. In VMCAI, number 4905 in LNCS, 2008.

PK08b. Ruzica Piskac and Viktor Kuncak. Fractional collections with cardinality
bounds. In Computer Science Logic (CSL), 2008.

PK08c. Ruzica Piskac and Viktor Kuncak. Linear arithmetic with stars. In CAV,
2008.

PST00. Leszek Pacholski, Wieslaw Szwast, and Lidia Tendera. Complexity results
for first-order two-variable logic with counting. SIAM J. on Computing,
29(4):1083–1117, 2000.

Rab69. Michael O. Rabin. Decidability of second-order theories and automata on
infinite trees. Trans. Amer. Math. Soc., 141:1–35, 1969.

Ram30. F. P. Ramsey. On a problem of formal logic. Proc. London Math. Soc.,
s2-30:264–286, 1930. doi:10.1112/plms/s2-30.1.264.

RRZ05. Silvio Ranise, Christophe Ringeissen, and Calogero G. Zarba. Combining
data structures with nonstably infinite theories using many-sorted logic. In
FroCoS, 2005.

SDK10. Philippe Suter, Mirco Dotta, and Viktor Kuncak. Decision procedures for
algebraic data types with abstractions. In POPL, 2010.

She75. Saharon Shelah. The monadic theory of order. The Annals of Mathematics
of Mathematics, 102(3):379–419, Nov 1975.

SS07. Viorica Sofronie-Stokkermans. Hierarchical and modular reasoning in
complex theories: The case of local theory extensions. In FroCoS ’07, 2007.

TW68. J. W. Thatcher and J. B. Wright. Generalized finite automata theory with
an application to a decision problem of second-order logic. Mathematical
Systems Theory, 2(1):57–81, August 1968.

Wei99. Volker Weispfenning. Mixed real-integer linear quantifier elimination. In
ISSAC, pages 129–136, 1999.

WPK09. Thomas Wies, Ruzica Piskac, and Viktor Kuncak. Combining theories
with shared set operations. In Frontiers in Combining Systems, 2009.

YPK10. Kuat Yessenov, Ruzica Piskac, and Viktor Kuncak. Collections,
cardinalities, and relations. In VMCAI, 2010.

	Ordered Sets in the Calculus of Data Structures
	Viktor Kuncak, Ruzica Piskac, and Philippe Suter

