Chapter 1

Evaluation of Semi-Automated
Ontology Instance Migration

Maxim Davidovsky, Vadim Ermolayev, Wolf-Ekkehard Matzke, and
Vyacheslav Tolok

Abstract Ontology instance migration is one of the challenges in knowl-
edge management. It becomes even more complex in distributed settings
when, for example, several autonomous agents use partial assertional knowl-
edge in a domain that is formalized by different though semantically overlap-
ping descriptive theories. Agents exchange instances of their ontologies when
cooperate. Such an exchange is essentially the migration of the assertional
part of an ontology to other ontologies owned by different agents. The paper
presents our method and tool support for migrating instances between differ-
ent semantically overlapping ontologies. The method is based on the use of
manually coded formal rules describing the changes between the input and
the output ontologies. The tool to support the process is implemented as a
plug-in to Cadence ProjectNavigator software. The main contribution of the
paper is in presenting the results of the evaluation of this tool. It reports
about the set-up for our evaluation experiments, the metrics used for mea-
suring the quality of instance migration, the ontologies that have been chosen
as the experimental data, and the evaluation results. Evaluation results are
satisfactory and suggest some directions for the future work.

1.1 Introduction

Instance migration is an important phase of ontology development and ontol-
ogy management activities. Until now a large number of ontologies describing

Maxim Davidovsky - Vadim Ermolayev - Vyacheslav Tolok
Zaporozhye National University, Zaporozhye, Ukraine
e-mail: m.davidovsky@gmail.com, vadim@ermolayev.com, vyacheslav-tolok@yandex.ru

Wolf-Ekkehard Matzke
Cadence Design Systems, GmbH, Feldkirchen, Germany
e-mail: wolf@cadence.com

2 M Davidovsky, V Ermolayev, W-E Matzke, V Tolok

similar domains from different viewpoints has been developed. Therefore an
effective re-use of their assertional knowledge is rational. Ontology instance
re-use is also essential in ontology evolution. When a new ontology version
is developed it is often necessary to transfer the instances of the previous
version(s) to the newer version. The development of a newer ontology version
starts with the implementation of the required changes in its TBox. There-
fore the reuse of the ABox could be ensured if the elements of the ABox are
accordingly transformed. Assertional parts of ontologies can contain a large
quantity of instances that in turn makes manual realization of such trans-
formations and instance transfer a laborous task. The paper briefly presents
our semi-automated approach to instance migration based on the use of the
formal rules describing transformations and transferring instances from a
source ontology to a target one. The approach is implemented in our soft-
ware prototype that has been developed as a plug-in for the Cadence Project
Navigator (CPN) Framework for carrying out instance migration between the
versions of PSI' ontologies [11], [12]. PSI project develops the methodology
and the toolset for assessing, predicting, and optimizing the performance of
engineering design systems in microelectronics and integrated circuits [10].
A multi-agent system (MAS) for holonic simulation of an engineering design
system in the field of microelectronics is developed [20] as a part of the CPN
Framework. The MAS assists in analyzing and assessing the performance of
a design system as a tool for simulation experiments.

The paper focuses on the evaluation of the approach to instance migra-
tion between evolving ontologies in a distributed environment and distributed
ontologies with overlapping domains. The scenario of evaluation experiment
was developed according to these two use cases. The first phase of the exper-
iment evaluates the quality of instance migration between the versions of PSI
ontologies. PSI ontologies are used by cooperating software agents that sim-
ulate planning and execution of dynamic engineering design processes [20] in
an industrial application domain of Microelectronics and Integrated Circuits.
This use case is tailored to support the evolution of the Suite of Ontologies
which assertional part is used as the common knowledge of a multi-agent sys-
tem of cooperative software agents — in distributed settings. The aim of the
evaluation based on the second use case is generating reproducible assessment
measurements based on the publicly available set of ontologies. For that the
benchmark set of ontologies of the Ontology Alignment Evaluation Initiative
— (OAEI) 2009 Campaign?® has been used. The majority of these ontologies
are artificially built using the common parent ontology by injecting differ-
ent sorts of changes. By that a distributed collection of similar ontologies
describing the same domain is modeled.

The paper is organized as follows. Section 2 gives a brief overview of the
related work. Section 3 describes typical structural change patterns. These

I Performance Simulation Initiative (PSI) is an R&D project of Cadence Design Systems
GmbH.

2 nttp://oaei.ontologymatching.org/2009/benchmarks/bench.zip

1 Evaluation of Semi-Automated Ontology Instance Migration 3

patterns have been derived from the analysis of the changes in the versions of
PSI ontologies and remain valid for the second use case. Change patterns are
used in the presented approach for the specification of instance transforma-
tion rules. It is explained how instance transformation rules are designed and
used for migrating ABox elements. Section 4 presents and discusses the set-
up for and the results of the evaluation of the quality of instance migration.
Section 5 discusses problems that has been investigated in ontology instance
migration and outlines future work.

1.2 Related Work

When an ontology evolves the structural changes are reflected in the con-
trolled vocabulary. A new TBox version is developed by applying these
changes. As a rule TBox development is carried out manually using vari-
ous ontology engineering methodologies and tools ([3], [4], [13]). The next
step of the development of the newer ontology version is transferring the in-
stances from the older ABox to the newer one. Doing this manually proves
being very laborious. The effort to be spent appreciably increases with the
number of transferable entities. Furthermore it can be error prone.

Very similarly, if distributed ontologies are populated based on the as-
sertional parts of the other ontologies in the same domain?®, the patterns
apply for transforming the instances according to the structural differences.
However in this case manual transformation is not appropriate as it has to
happen at run time. Luckily, different distributed variants of a knowledge
representation for the domain may be regarded as different versions of the
same ontology that differ by the set of structural changes in the TBox.

The main objective of the approach under evaluation is to develop the
tool for semi-automated instance migration from an older version to a newer
version of the same ontology. The process of ontology instance migration
starts with the analysis of the changes in the TBoxes of the ontology versions.
Such an analysis is usually made manually, however there are some software
tools that can help in this (e.g. [2]). As a result the rules for transforming
the instances based on the patterns for the discovered structural changes are
written down by the ontology engineer. These rules are coded in an XML-
based? language and are further used for guiding the automated transfer of
the instances from the older ABox to the newer one. It should be mentioned
that the process of making the rules is supported by transformation rules
editor that is the part of the developed plugin (Fig. 1.1). Similar approach
is presented in [21]. As opposed to the presented approach, it is based on
the use of the ontology instance migration scenario driving the migration

3 For example when cooperating software agents communicate their partial knowledge to
their peers in a multi-agent system

4 Extensible Markup Language, http://www.w3.org/XML/

4 M Davidovsky, V Ermolayev, W-E Matzke, V Tolok

process and encoded as Python scripts. A more detailed problem statement
for ontology instance migration and a survey of alternative approaches are
given in [5].

A good survey of the related work is [19]. In addition, more frameworks for
ontology evolution and ontology versioning need to be mentioned ([16], [15])°
as they provide some extra bits of the required functionality for ontology
instance migration.

Ontology instance migration is the problem that has not been fully re-
searched so far. To the best of our knowledge, the literature reporting the
results in this sub-field of ontology management is limited. However, looking
at a broader knowledge and data change and transformation landscape is
helpful. For instance it is useful taking a look at ontology translation and
database transformation fields of research ([14], [1], [7]). Ontology transla-
tion approaches can be classified as: ontology extension generation; datasets
translation and querying through different ontologies. Dataset translation is
of particular relevance to our work.

To the best of our knowledge currently there is no a software tool allowing
for effectively carrying out instance migration in a fully automated mode. The
analysis of the available literature on the tool support reveals that ontology
instance migration is often carried out manually, using a tool for defining the
differences between the TBoxes of the source and the target ontologies (e.g.
PromptDiff [18]).

Finally, the evaluation of the quality of the results of instance migration
and, hence, of the efficiency of the used methods is essential. For quality
measurements it is possible to adapt the metrics used in data migration
[8] and schema matching [6]. These metrics originate from the information
retrieval [17] domain. Our approach to evaluation is based on the use of these
adapted metrics.

1.3 Instance Transformation Patterns and Rules

For correctly migrating instances between a source and target ontology the
transfer process has to be explicitly and formally specified. The specification
implies an (implicit) declaration of the set of transferable individuals that is
achieved by the explicit indication of the set of classes which instances have
to be migrated. Also it is necessary to specify the set of required transforma-
tions over the migrating individuals. Having done that, we obtain the set of
transformation rules for instance migration.

The process of the creation of a new ontology version starts with applying
changes to the TBox. Thus comparing TBoxes of respective ontology versions
we can identify a certain set of structural changes conditioning differences

5 Also the Karlsruhe Ontology and the Semantic Web tool suite, http://kaon.
semanticweb.org/

1 Evaluation of Semi-Automated Ontology Instance Migration 5

between the versions. In the case of ontologies having overlapping domains we
first have to determine the correspondences between the entities forming the
terminological parts of these ontologies. Then using the obtained mappings
we can similarly determine structural changes between the ontologies.

Considering in such a way all possible kinds of changes the set of change
patterns that underlie the differences between ABoxes can be defined — in
particular such types of changes as the presence or absence of some prop-
erty, the occurrence of a new relation or the removal of any old relation, etc.
Furthermore, based on the set of such change specifications it is possible to
define the set of typical transformation operations over the individuals liable
to migration. By applying these to concrete ontologies and performing re-
quired operations on the instances of the source ontology the target ontology
ABox can be obtained.

The analysis of the differences between various versions of PSI ontologies
has been done as a part of the presented work. The analysis was carried out as
follows. We compared UML diagrams of the ontological contexts [9] of the cor-
responding concepts and documented the differences. Discovered differences
were further cross-checked in the owl® files of the ontologies. For realization
of the respective changes between the versions the following transformation
patterns have been defined: rename a concept; add a property; remove a
property; add a relation; remove a relation; change the cardinality of a re-
lation; change an ancestor; (subsumption); and move a concept to another
package (ontology module). It should be noted that the operations of moving
a concept to another package and subsumption relationship changes do not
transform migrated instances. Obviously, referencing of some concept to an-
other package in itself does not entail additional changes and hence will not be
reflected in the instances of a concept. Similarly, the fact of referencing some
concept as a subclass to another class also does not matter. Probable changes
(e.g. inheritance of additional properties) these operations could entail can
be described by a combination of the operations and should be discovered
when determining differences between ontologies. Therefore the patterns for
moving to a different package and changing an ancestor may be not consid-
ered. Instance transformation rule patterns can be of two kinds. The first is
for the declaration of the set of classes which instances are liable to migra-
tion. The second represents typical transformation operations. The patterns
are further instantiated in the rule sets for the particular ontologies. These
transformation rules are specified by combining appropriate transformation
patterns and filling in the pattern slots with concrete values.

Transformation patterns are defined by means of XMLSchema’. The use
of the patterns provides decoupling from particular ontology contexts and al-
lows producing a set of specific transformation operations for the specific pair
of ontologies. In our approach transformation rules are serialized in XML. It

6 nttp://www.w3.org/2004/0WL/ - Web Ontology Language
7 http://www.w3.org/XML/Schema - XML Schema

6 M Davidovsky, V Ermolayev, W-E Matzke, V Tolok

allows building convenient and yet computationally efficient formal descrip-
tions for the transformations.

At the step of formulating the transformation rules for a particular migra-
tion case the names of the particular classes and the set of transformation
operations that should be executed over their individuals are specified in the
corresponding xml file. A root element “concepts” in the xml schema file is
defined for that. This root element contains the descriptions of the classes
and operations for the particular pair of ontologies. It is formalized as a set of
“concept” elements with respective properties that contain as their values the
names of classes which instances are liable to migration. The tag <concept>
contains the embedded tags that correspond to operations which may also
have attributes (for example “add property” tag has “data type” attribute
for the added property and “value” attribute that contains the value of the
property). The following types of transformation operation patterns are de-
fined: “Add relation” (with optional indication of the domain and range of
the corresponding object property); “Remove relation” (also with an option
of indicating the respective domain and range); “Change cardinality” (with
the indication of a property which cardinality should be changed), “Add
property” (with the indication of the data type and value of the added prop-
erty), “Remove property” and “Rename”. The software prototype provides
the transformation rule editor (Fig. 1.1).

4| Multi Plug-in Frame
-

i Fle Project Edit Tools Help cadence
$= = [Tnstance Migration ... [Rl | @4 8 | [= X [kad|)
F [Plug-in List Instance Migration |
=
[Plug-ns Knowledge Base
| [ontology Visualizer
2| | L[} knowledge Base Edior Scope: | htip:/jpsi.vcad-viab.netfinst/kb/ds_cdns |
3 —
= | [0 Team Editor Target fles result_kb.owl B orowse)
2 [Product Editor
Gl - Mock Plug-Ti
-1 B 3 MockPlg-In Transformation rules
E D e
S &= Project zembesi File: TransformationRules - PSLxml Bl | Bowse
=
F
I <addRelation domain="ACEVIEY " range = Dedsion > ACavity -chosenDUE-Dedsion < /addRelation >
| Editing Transformation Rules o=l | </concept>
<concept concept_name ="Actor ">
fo =) <removeRelation domain="Actor” range="Task">Actor manages-Task <fremoveRelation
e d L) <removeRelation domain="Actor" range =Role">Actor-ableToPerform-Role < fremoveRelation >
o <removeRelation dom: ¥ enericTask”>Actor Task i
Action: | Remove relation B (add) <removeRelation dom: enericActivity >Actor-ableToExecute-GenericActivity </removeRelation >
= 5 <removeRelation dom: tvity">Actor-executes-Activity < removeRelation
Value: Actor-manages-Task \Add) Accept] <addRelation domain="Actar" range="Dedision">Actor-takes-Dedision </addRelation:>
</Jeoncept>
<concept concept_name ="DAState">
£ gk Sy RN WS - N SN i
i
Domain: | Actor A
Execute migration]
Range: Task
f.ck) Log 8] x
Vigrating instances of dass: Actor
instances of class Actor;
Edit Actar_1
e Actor_2
Gk) [Remove) (Undo) [Redo Actor_BBFA4C12358367425
Add Property operations have been finished successfuly
Find: Remove Praperty operations have been finished successfully
Operation <add relation > domain: Actor range: Decision failed. Concrete range value is unknown.
S aentel Jattane Fndprev L Find next Remove Relation operations have been finished successfully
= = —— | Rename operations have been finished successfully
Change Cardinality operations have been finished successfuly
— — | Save |\ Cear)
_| Editable L Nevi)i Gave I Clear) .

”r?

Fig. 1.1 Instance Migration Plugin user interface.

1 Evaluation of Semi-Automated Ontology Instance Migration 7

Let us assume for an example that we do the migration of instances of
the concept “Actor” (PSI Actor ontology versions). First, we locate its con-
text in the documentation of changes and identify the following changes in
comparison to the previous version of the ontology: (i) the relations with
“Task”, “Role”, “GenericTask”, “GenericActivity” and “Activity” concepts
are removed; and (ii) the relation with concept “Decision” is added. Hence,
the following operations on the instances have to be performed: “Remove a
relation” and “Add a relation”. Therefore these operations are created in the
editor and written down to the transformation rules file as follows (see also
Fig. 1.1):

<concept concept_name="Actor">
<removeRelation domain="Actor" range="Task">
Actor-manages-Task</removeRelation>
<removeRelation domain="Actor" range="Role">
Actor-ableToPerform-Role</removeRelation>
<removeRelation domain="Actor" range="GenericTask">
Actor-ableToManage-GenericTask</removeRelation>
<removeRelation domain="Actor" range="GenericActivity">
Actor-ableToExecute-GenericActivity</removeRelation>
<removeRelation domain="Actor" range="Activity">
Actor-executes-Activity</removeRelation>
<addRelation domain="Actor" range="Decision">
Actor-takes-Decision</addRelation>
</concept>

1.4 Evaluation

The implemented software prototype has been evaluated with respect to the
quality and completeness of the executed instance migration. Schematically
the experimental set-up is represented in Fig. 1.2). The results of the mi-
gration have been compared to the available target ABoxes for quality and
completeness measurement.

The experiment has been run in two phases. Within the first phase the
evaluation has been done using the excerpt of the PSI Suite of Ontologies
v.2.0 [11] and v.2.2 [12]. The objective of this phase was revealing possible
errors at migration run time. The objective of the second phase was to obtain
statistically representative and reproducible results. Therefore a broader set
of publicly available test case ontologies has been used. The bigger quan-
tity of used ontologies allowed receiving statistically more precise evaluation
measurements using various metrics.

Precision and Recall metrics have been adopted from Information Re-
trieval [17] and further adapted for measuring the quality and completeness
of ontology instance migration. In our case Precision (P) is the fraction of mi-

8 M Davidovsky, V Ermolayev, W-E Matzke, V Tolok

Source ; : Target
ontology ' H ontology
version ; Manual H version
comparison H
Source : and ghange H Target
TBox detection i TBox
Instance
transformation
rules H
e
1 i1 Target
N '
Source Automated . ‘_°‘_BE”§ - - . = Evaluation
ABox ' instance H and
migration Existing Analysis
Target
ABox

Fig. 1.2 The set-up of the evaluation experiments

grated individuals that are relevant. Recall(R) is the fraction of relevant indi-
viduals that are migrated. Let’s examine the respective contingency Table 1.1.
In the terms of this contingency table P = tp/(tp+ fp), R = tp/(tp+ fn). The
effectiveness of the migration tool can also be measured using the Accuracy
metric. In our case Accuracy (A) is defined as A = (tp+tn)/(tp+ fp+ fn+tn).
An ideal migration outcome is when Precision=Recall=1. However neither

Table 1.1 Instance migration contingency table.

relevant nonrelevant
migrated true positives (tp) false positives (fp)
not migrated false negatives (fn) true negatives (tn)

Precision nor Recall separately does not provide a complete picture of the
correctness of the obtained results. For that the F' measure could be of inter-
est as it brings Precision into correlation with Recall as a weighted harmonic
mean of both: F = 1/(a(1/R) + (1 — a)(1/R)) = (8> + 1)PR/(B*P + R)),
where 82 = (1 — a)/a, a € [0,1]. If both precision and recall are of equal
importance they can be equally weighted in F by having o = 1/2 orf = 1.
This case is the one of a balanced F' measure Fg—1 = 2PR/(P + R).

Within the first evaluation phase (the excerpt of the PSI Suite of Ontolo-
gies) the total number of instances was 1890. The source for the second phase
of the evaluation was the set of the test ontologies of the OAEI 2009. The
choice was motivated by the public accessibility of the test set that allows
cross-evaluation. 40 ontologies have been chosen which in our opinion were the
most appropriable for the instance migration evaluation. The total number
of instances was 2060. The contingencies for both evaluation phases are given
in Table 1.2 and the results of the evaluation experiments are summarized in
Table 1.3.

1 Evaluation of Semi-Automated Ontology Instance Migration 9

Table 1.2 The contingency table for different ontology sets.

Relevance
Test case relevant nonrelevant
PSI ontologies migrated 360 2
not migrated 48 1480
OAEI ontologies migrated 1475 7
not migrated 309 269

Table 1.3 The summary of the results of the evaluation experiments.

Measures
Test case Precision Recall Accuracy Balanced
F-measure
PSI ontologies 0.994475138 0.881632653 0.973373303 0.93466032
OAEI ontologies |0.995276653 0.826793722 0.846601942 0.90324556

1.5 Discussion, Conclusions and Future Work

A number of problems caused by various reasons have been faced in the re-
ported research and implementation work that could be generally described
as the lack of the necessary information for transforming all the relevant in-
stances in a correct way. Instance migration problem is therefore substantially
under-defined.

The provision of an explicit, correct and complete mapping of a source
TBox to a target TBox is inevitably not sufficient for devising the complete
and correct transformation of the corresponding assertional parts. A char-
acteristic example is the addition of a new relation to a concept in a target
ontology. The values of the respective object property shall be added to the
instances of the respective class. However we can not know the exact set of
individuals that have to be related. Therefore such a property is not added
to all instances in our approach.

A similar collision arises when the cardinality of a relation is changed. We
cannot know which particular instances have to be related to the individual
having the property with the changed cardinality. However it is known and
could be specified in advance that the set of particular instances of a given
class has to have the relation to another specific individual. Our approach
allows specifying such an a priori knowledge explicitly in the transformation
rules. Moreover, at migration run time the log of the migration problems is
collected and recorded.

Another sort of migration problems arises because not all required OWL
constructs are considered at proper time. A good example case is when the
two classes (A and B) in the source ontology are defined as equivalent but
they are not equivalent in the target ontology. Based on the equivalence, if
the instances of A have been migrated then the instances of B have to be
migrated as well. However, non-equivalence in the target ontology may cause

10 M Davidovsky, V Ermolayev, W-E Matzke, V Tolok

collisions at particular individuals. Our approach assumes that all collisions
of these sorts have to be explicitly resolved when the changes are discovered
and the transformation rules are specified.

Despite that our evaluation experiments proved that the software proto-
type performs migration correctly and completely if the problems mentioned
above are absent or the corresponding collisions are correctly resolved in the
transformation rules.

Yet another kind of problems is caused by the imperfection of the trans-
formation procedure, especially at manual steps. If a mistake is made at
the step of structural change discovery it will propagate to the transforma-
tion rules and further to the automated migration. Moreover, the evaluation
metrics for correctness and completeness of the automated migration done
by the software are not fully accurate. Fortunately, they can only lower the
measures. Our experiments show that even if there were mistakes at manual
steps, the results are still quite good. More to mention, the chosen metrics
are not invariant to the nature of the test data. For example, Accuracy in-
creases if the number of the individuals liable to migration is considerably
less than the total number of instances which however does not testify the
accuracy of the method. Precision and Recall do not provide exact reflection
on migration quality. High Precision can be obtained at the expense of Recall
by migrating only proper individuals but minimizing the number of migrated
instances. Similarly, high Recall can be achieved by transferring all relevant
instances that inevitably minimize Precision.

In a summary it may be stated that the software prototype carries out
instance migration correctly on the test cases used in the evaluation experi-
ments and demonstrates sufficiently good results in terms of correctness and
completeness. Simplicity, transparency, and validity may be mentioned as the
highlights of the developed approach. The method and the prototype software
tool allow conveniently creating, editing, and processing instance migration
rules. It also reduces the probability of errors at automated processing steps,
which is proven by the high value of Precision measurements. The lowlights
are insufficient flexibility and strong correlation with the correctness of man-
ual specification of transformation rules. The lowlights can be mitigated by
offering a refined tool support for manual steps. For instance providing the
means for semi-automated structural change detection in the pair of ontolo-
gies may lower the chance for manual mistakes at the preparatory steps.
Subsequently, automated generation of transformation rules will increase the
quality of the proposed approach. Both refinements of the current release of
the software prototype are planned for the future work.

Finally it has to be stated that, given the limits of the currently avail-
able technologies, it is impossible to completely automate the whole process
of ontology instance migration. Therefore, the reduction of the proportion
of the manual work is the only feasible way of increasing the performance
and quality of results in this important activity of ontology engineering. This
observation becomes even more valid in distributed settings. The develop-

1 Evaluation of Semi-Automated Ontology Instance Migration 11

ment of a collaborative platform for ontology engineering teams working on
distributed ontologies is one more planned activity for the future work.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. Chalupsky, H.: Ontomorph: A translation system for symbolic logic. In: In Proc. Int’l.

Con. on Principles of Knowledge Representation and Reasoning, pp. 471-482 (2000)
Copylov, A., Ermolayev, V., et al: Ontology revision visual analysis. Tech. rep., VCAD
EMEA Cadence Design Systems, GmbH (2009)

Corcho, O., et al: Methodologies, tools and languages for building ontologies: where is
their meeting point? Data & Knowledge Engineering 46(1), 41-64 (2003)

Corcho, O., et al: Ontological Engineering: Principles, Methods, Tools and Languages.
Ontologies for Software Engineering and Software Technology. Springer Berlin Heidel-
berg (2006)

Davidovsky, M., Ermolayev, V.: Ontology instance migration. psi. Tech. rep., VCAD
EMEA Cadence Design Systems, GmbH (2009)

Do, H., et al: Comparison of schema matching evaluations. LNCS 2593 (2009)

Dou, D., et al: Ontology translation on the semantic web. The Journal on Data
Semantics pp. 35-57 (2005)

Drumm, C., et al: Quickmig - automatic schema matching for data migration projects.
In: CIKM (2007)

Ermolayev, V., et al: A strategy for automated meaning negotiation in distributed
information retrieval. In: 4th Int. Semantic Web Conference ISWC’05 (2005)
Ermolayev, V., et al: An upper level ontological model for engineering design per-
formance domain. In: ER ’08: Proc. of the 27th International Conf. on Conceptual
Modeling, pp. 98-113. Springer-Verlag, Berlin, Heidelberg (2008)

Ermolayev, V., et al: Performance simulation initiative. the suite of ontologies v.2.0.
reference specification. Tech. rep., VCAD EMEA Cadence Design Systems, GmbH
(2009)

Ermolayev, V., et al: Performance simulation initiative. the suite of ontologies v.2.2.
reference specification. Tech. rep., VCAD EMEA Cadence Design Systems, GmbH
(2009)

Fernandez-Lopez, M., et al: A survey on methodologies for developing, maintaining,
evaluating and reengineering ontologies. Tech. Rep. D1.4, OntoWeb Project (2002)
Gruber, T.: Ontolingua: A translation approach to providing portable ontology specif-
cations. Knowledge Acquisition 5, 199-220 (1993)

Klein, M., et al: Ontology versioning and change detection on the web. In: EKAW-
2002, pp. 197-212 (2002)

Maedche, A., et al: Managing multiple and distributed ontologies on the semanticweb.
VLDB 12, 286-302 (2003)

Manning ChD, e.a.: Introduction to Information Retrieval. Cambridge University
Press, NY (2008)

Noy, N.F., Musen, M.: Promptdiff: A fixed-point algorithm for comparing ontology
versions. In: AAAI/TAAI, pp. 744-750 (2002)

Serafini, L., Tamilin, A.: Instance migration in heterogeneous ontology environments.
LNCS 4825 (2007)

Sohnius, R., Jentzsch, E., Matzke, W.: Holonic simulation of a design system for per-
formance analysis. In: HoloMAS ’07: Proc. of the 3rd international conference on
Industrial Applications of Holonic and Multi-Agent Systems, pp. 447-454. Springer-
Verlag, Berlin, Heidelberg (2007)

Vladimirov, V., Ermolayev, V., et al: Automated instance migration between evolving
ontologies. Tech. rep., VCAD EMEA Cadence Design Systems, GmbH (2007)

