
Preventing Under-Reporting in Social Task
Allocation

Mathijs de Weerdt and Yingqian Zhang

Delft University of Technology, {M.M.deWeerdt,Yingqian.Zhang}@tudelft.nl

Abstract. In games where agents are asked to declare their available
resources, they can also strategize over this declaration. Surprisingly,
not in all such games a VCG payment can be applied to construct a
truthful mechanism using an optimal algorithm, though such payments
can prevent under-reporting of resources. We show this for the problem
of allocating tasks in a social network (STAP).

Since STAP is NP-hard, we introduce an approximation algorithm as
well. However for such an approximation, a VCG payment cannot prevent
under-reporting anymore. Therefore we introduce an alternative payment
function that motivates agents to fully declare their resources. We also
demonstrate by experiments that the approximation algorithm works
well in different types of social networks.

1 Introduction

In combinatorial auctions (CAs) agents try to buy sets (or bundles) of resources
(or items) from an auctioneer preferably for less than what such a set is worth
to them [1]. The values for these sets come for example from tasks that require
these resources. In this paper we work towards a more general setting of such
a resource allocation problem where the available resources have not just been
trusted with a (central) auctioneer, but where these resources are owned by other
agents.

In such a general resource allocation setting there are two classes of strate-
gizing agents. On the one hand, there are agents that attach some value to
specific sets of resources and construct bids based on this value (we call these
the managers), and on the other hand there are agents that own resources and
can decide to offer these resources to the others (we call these the contractors).
In most current work on CAs [2] and resource allocation [3], agents are only al-
lowed to strategize over the value of each bundle of resources. Here we consider
the case where they may only strategize over the resources they have at their
disposal.

As an application of the general resource allocation problem, consider a set-
ting where a governmental institution would like to provide a platform to bring
both suppliers and consumers together to form new contracts. In general, not
all consumers (managers) want to buy services or resources from all suppliers
(contractors), and not all contractors want to sell their resources to all managers.

We therefore include such a setting of preferred partnerships in our model as a
graph where the agents are nodes, and an edge between two nodes indicates the
existence of a social relation between the agents concerned, meaning that these
agents are prepared to exchange resources. We call this problem, where the con-
tractor agents can strategize over the resources they declare to their neighboring
managers, the social task allocation problem (STAP) [4].

From the perspective of the general resource allocation problem introduced
above, this problem can be seen as a variant of reverse CAs where it is publicly
known how valuations depend on allocated resources, but the resources available
to each contractor are private. As we will see in Section 3, this means that
lying agents can incur infeasible solutions, and Vickrey-Clarke-Groves (VCG)
mechanisms [5–7] are no longer truthful.

In this paper we study the strategies of the contractors in STAP for two differ-
ent mechanisms: for an optimal algorithm with a VCG payment, and for a greedy
approximation with an alternative payment function. First we start with a formal
introduction of STAP and the mechanism design problem for STAP (Section 2).
There we distinguish between two types of strategic behavior for the contractor
agents: they can declare resources they do not have (over-reporting), or they can
omit resources they do have (under-reporting). Next we show in Section 3 that
even an optimal algorithm with a VCG payment cannot make truth-telling in-
centive compatible regarding both under- and over-reporting. Knowing that an
optimal algorithm cannot deal with larger instances since STAP is NP-complete,
we introduce an approximation and an alternative payment function in Section 4
with similar truth-telling properties as the VCG payment (i.e., only preventing
under-reporting). Finally, we analyze the quality of the heuristic experimentally,
and draw our conclusions in Sections 5 and 6, respectively.

2 Preliminaries

In STAP, we start from a social network SN of a set of agents A. This social
network SN = (A, AE) is an undirected graph where vertices A are agents and
each edge (i, j) ∈ AE indicates the existence of a social connection between
agents i and j. Some of the agents have a set of resources at their disposal.
These are the contractor agents. Resources come in different types. The set of l
resource types is R. The amount of resources of each type an agent i ∈ A has
available is defined by the function si : R → N.

Some agents, called managers, have tasks they can perform to get some
utility. The set of all n tasks is denoted by T = {t1, . . . , tn}. Each task t is
defined by a tuple 〈U(t), req(t), loc(t)〉, where U(t) is the utility gained if task t
is accomplished, req(t) : R → N is a function that specifies the resources required
for the accomplishment of task t, and loc(t) : A defines the manager of task t.

The exact assignment of how many resources of which type from which agent
are assigned to which tasks is defined by a task allocation, which is a mapping
o : T × A × R → N. A task allocation must obey the social relationships—
each agent’s resources can only be allocated to tasks that are (direct) neighbors

of this agent in the social network SN . A valid task allocation must also be:
(1) correct—each agent cannot use more than its available resources; and (2)
complete—each task is either not allocated or it receives all required resources.
The set of all valid task allocations for a specific problem setting is denoted by
O. We write To to represent the tasks allocated in o. The utility of o is the
sum of the utilities of each task in To, i.e., U(To) =

∑
t∈To

U(t). Note that we
do not include costs for resources; we assume they are already owned by the
contractor agents. The goal of the social task allocation problem (STAP) is to
find an optimal task allocation o∗, such that o∗ is valid and U(To∗) is maximal.
STAP is NP-complete [4].

In this paper, we study the social task allocation problem in a mechanism
design setting where the contractors can only strategize over the set of resources
they declare. We give a brief summary of relevant mechanism design concepts
below, but for a more elaborate introduction see e.g. [8]. In a mechanism design
setting, we provide a method that determines an outcome, i.e., a valid task allo-
cation o ∈ O, given the inputs (called strategies) from in this case the contractor
agents, and possibly some additional true (often public) information. In our case
this is the social network and a set of tasks. We use Z to denote the space for
this external information in STAP. Each z ∈ Z is a tuple (SN, T).

In the mechanism design setting we consider, each contractor is asked to
declare its available resources, i.e., si : R → N. The set of all such functions is
called its type space S. The type space of all m agents is defined by Sm. We use
s = (s1, . . . , sm) ∈ Sm to denote the type profile of the agents. We sometimes
denote s by (si, s−i), where s−i denotes the types of all agents except i. An agent
can decide to declare another set of resources other than its true type. The set
of all such choices is called its strategy space A. In our case A = S.

When the mechanism receives inputs a = (a1, . . . , am) ∈ Am (called a strat-
egy profile), it selects an allocation o = O(z,a) with some allocation algorithm
O. In addition, the mechanism computes payments (p1(z,a), . . . , pm(z,a)) for
all contractor agents. The result for agent i, called its utility, is the sum of
the valuation vi that i gets from the resulting allocation o with its type si

and the payment it receives from the mechanism: ui(a) = vi(si, o) + pi(z,a).
This utility model is called quasilinear. This utility ui is what agent i aims
to maximize. In STAP, we define the valuation of a contractor agent i as its
fair share of the utilities of the tasks it helped to fulfill. For this we define
the efficiency e of a task t by dividing the utility of t by the total number
of required resources for t: e(t) = U(t)P

r∈R req(t)(r) . An agent then receives for
each resource it is contributing the efficiency of the task it is allocated to, thus
vi(ai, o) =

∑
t∈To

∑
r∈R o(t, i, r) · e(t). However, agent i may not be able to fully

contribute to a given allocation o = O(z,a) because it is asked for resources it
does not own. Therefore we define the valuation vi(si, o) that agent i obtains
based on its true type si as

vi(si, o) =
∑

t∈T
′
o,i

∑
r∈R

o(t, i, r) · e(t), (1)

where T
′

o,i = {t ∈ To | ∀ro(t, i, r) ≤ si(r)} is the set of allocated tasks that are
feasible regarding agent i’s true type.

The social welfare W (o) of the system is the sum of the valuations of the
contractors in the allocation o, i.e., W (o) =

∑m
i=1 vi(si, o). We use this to define

the mechanism design problem for STAP formally.

Definition 1 (Mechanism design for STAP). Given the parameter space Z,
the type space S, and the strategy space A, the mechanism design problem for
STAP is to find a mechanism M = (O, p) that consists of an allocation function
O : Z × A → O, and a payment function p : Z × A → R such that the selected
output o ∈ O maximizes the total social welfare W (o).

One of the most desirable properties of a mechanism is truthfulness.

Definition 2 (Truthful). Given an output algorithm O, a mechanism is truth-
ful if A = S, and for any parameter z ∈ Z, for any strategy profile a−i ∈ Am−1,
for any agent i with type si ∈ S, and for any other type ai ∈ A, it holds that

ui(si,a−i) = vi(si, O(z, si,a−i)) + pi(z, si,a−i)
≥ ui(ai,a−i) = vi(si, O(z, ai,a−i)) + pi(z, ai,a−i).

Informally, under a truthful mechanism, an agent i is never worse off by revealing
its true private type si to the mechanism, no matter what strategies other agents
play. In this paper, we study two types of lying by contractor agent i: (1) under-
reporting its available resource types or amounts, i.e., ∃r∈Rai(r) < si(r), denoted
by ai < si, and (2) over-reporting its available resource types or amounts, i.e.,
∃r∈Rai(r) > si(r), denoted by ai > si.1 We define truthfulness with respect to
under-reporting and truthfulness with respect to over-reporting as follows.

Definition 3. Given an output algorithm O, a mechanism is truthful with re-
spect to under-reporting (or with respect to over-reporting) if A = S, and for
any parameter z ∈ Z, for any strategy profile a−i ∈ Am−1, for any agent i with
type si ∈ S and for any other type ai ∈ A and ai < si (or ai > si), it holds that

ui(si,a−i) = vi(si, O(z, si,a−i)) + pi(z, si,a−i)
≥ ui(ai,a−i) = vi(si, O(z, ai,a−i)) + pi(z, ai,a−i).

Proposition 1. If a mechanism for STAP is truthful then it is both truthful with
respect to under-reporting as well as truthful with respect to over-reporting.

Proof. This follows immediately from Definition 2 and Definition 3.

A mechanism is individually rational (IR) when an agent never receives neg-
ative utility by declaring its true type. We are looking for a mechanism that is
IR, because otherwise agents have no incentive to take part at all.

It is well known that truthful mechanisms can be achieved with carefully
designed payment functions, such as VCG payments [5–7]. Nisan et al. [9] also

1 Note that agents can in principle also under-report some and over-report some other
resources. We will discuss this mixed lying type at the end of Section 3.

showed that truthfulness is guaranteed by a VCG payment if the mechanism
outputs the optimal solution. However, in the next section, we show that VCG
mechanisms with an optimal algorithm can only achieve truthfulness with re-
spect to under-reporting, but not with respect to over-reporting. Consequently,
it is impossible to have a truthful VCG mechanism for STAP.

3 An Exact VCG mechanism for STAP

In this section, we first introduce an optimal allocation algorithm for STAP, and
then a VCG mechanism to incentivize agents to report their true types with
respect to under-reporting.

The optimal task allocation algorithm should deal with the restrictions posed
by the social network. We translate this NP-complete problem to an integer linear
programming (ILP) problem and use the GNU Linear Programming Kit [10] to
solve this problem. For the ILP formulation we introduce two types of variables:
the binary variables yj ∈ {0, 1} for 1 ≤ j ≤ n describe whether or not task j is
allocated, and the integer variables ∀1≤j≤n,1≤i≤m,1≤k≤l xijk denote the amount
of resources of type k agent i supplies to task j. The ILP formulation then looks
as follows: maxmize

∑n
j=1 yj · U(tj), subject to having sufficient resources of

each type for each chosen task from the neighboring agents, and not using more
resources than there are available, i.e.

∀1≤j≤n∀1≤k≤l

∑
{i∈[1,m]|(i,loc(tj))∈AE} xijk ≥ yj · req(tj)(rk), and

∀1≤i≤m∀1≤k≤l

∑n
j=1 xijk ≤ rsc(i)(rk).

This optimal algorithm (OPT) is in the worst case exponential in the number of
variables, i.e., the number of tasks, agents, and resource types.

Our mechanism is then developed using OPT and a VCG payment scheme
as follows.

Definition 4 (MOPT for STAP). Let z = (SN, T) be given. The task alloca-
tion mechanism MOPT is then defined as follows. First the mechanism center
announces the set of tasks T that need to be allocated to all contractor agents.
Next the contractors declare their types a to the center. The center then finds
the efficient allocation o = OPT(z,a) using the ILP translation.

For the VCG payment function pOPT we follow Clarke’s rule, taking an
agent’s marginal contribution to the society [8]: pOPT

i (z, ai,a−i) = −vi(ai, o) +
W (o)−W (o−i), where o−i = OPT(z,a−i) is the efficient allocation computed by
OPT without i’s participation.

Proposition 2. The mechanism MOPT = (OPT, pOPT) is individually rational.

Proof. When agent i is truthful, its utility is computed by ui(si,a−i) = vi(si, o)+
pOPT

i (z, si,a−i) = W (o)−W (o−i). With agent i, the resulting allocation is never
worse than that without i’s participation, because of the additional resources i
brings in. Therefore, W (o) ≥ W (o−i) and thus ui(si,a−i) ≥ 0, so i is guaranteed
to receive non-negative utility when declaring its true type. ut

It seems that MOPT is both efficient and truthful, as its payment is VCG
based and it uses an optimal allocation algorithm. Unfortunately, this is not
always true. Before we show this, we discuss the relationship between the value
U(To) of the allocation o computed by any allocation algorithm O and the gained
social welfare W (o), since this relationship is important for the properties of the
mechanism explained later. Consider the value of such an allocation o:

U(To) =
∑
t∈To

U(t) =
∑
t∈To

∑
r∈R

req(t)(r) · e(t) =
∑
i∈A

∑
t∈To

∑
r∈R

o(t, i, r) · e(t)

We distinguish two cases of a lying agent i: under-reporting and over-reporting.
– In the case of under-reporting (ai < si), for each resource type r ∈ R,

o(t, i, r) ≤ si(r), since the algorithm will not assign more resources than what
i declares. Therefore, by Eq. 1, we have vi(si, o) =

∑
t∈To

∑
r∈R o(t, i, r)e(t)

since T ′
o,i = To. Hence, U(To) =

∑m
i=1 vi(si, o) = W (o), i.e., the utility of

the allocation is equal to the social welfare.
– In the case of over-reporting (ai > si), the algorithm may use i’s non-existing

but declared resources to allocate tasks. If so, the resulting allocation is
infeasible, since agent i cannot actually deliver these resources. Furthermore,
since there exist a resource r such that o(t, i, r) > si(r), so by Eq. 1, we have
T ′

o,i ⊂ To. It follows that U(To) 6= W (o), i.e. the utility of the allocation
computed by the algorithm is not exactly the social welfare.

These results are used to show MOPT is only efficient and truthful with respect
to under-reporting, but not with respect to over-reporting.

Theorem 1. MOPT = (OPT, pOPT) is efficient and truthful with respect to
under-reporting.
Proof. Let si be the true type of agent i and ai be any other type such that ai <
si. Given a problem instance z, let the resulting allocations be denoted by o =
OPT(z, si,a−i), and ô = OPT(z, ai,a−i), respectively, and let o−i = OPT(z,a−i)
be the efficient allocation without i’s participation. We have shown that when
ai < si, W (o) = U(To). Since U(To) is maximal, then W (o) is maximal. That
is, the mechanism is efficient.

We now prove that agent i never receives less utility by declaring its true
type si instead of ai. The difference δ is calculated as follows:

δ = ui(si,a−i)− ui(ai,a−i)
= vi(si, o) + pOPT

i (z, si,a−i)− vi(ai, ô)− pOPT
i (z, ai,a−i)

= W (o)−W (o−i)− (W (ô)−W (o−i)) = W (o)−W (ô).

Since the optimal allocation will not get worse by adding more resources in the
system, U(To)− U(Tô) ≥ 0, thus, W (o)−W (ô) ≥ 0 and then δ ≥ 0. ut

Unfortunately, with MOPT, agents do have an incentive to declare more re-
sources than they actually have available.

Theorem 2. MOPT = (OPT, pOPT) is not efficient and not truthful with respect
to over-reporting.

i : {r1, r3}

t2 : {r3, r4}
U(t2) = 10

j : {r4,r5}

t1 : {r1, r2,r5}
U(t1) = 12

Fig. 1. Agent i is better off by over-reporting when a VCG payment is used.

Proof. Consider the problem instance z with tasks t1 and t2 with U(t1) = 12,
U(t2) = 10 (see Figure 1). Task t1 requires resources {r1, r2, r5}; task t2 requires
{r3, r4}. Both tasks are connected to contractor agents i and j, where i has got
resources r1 and r3, and j owns r4, r5.

Suppose that agent j is truthfully reporting its resource r4. If i also declares
its type {r1, r3} truthfully to the mechanism, the resulting optimal allocation
o1 = OPT(z, sj , si) allocates To1 = {t2}. So in this case, the utility that i receives
by declaring truthfully is: ui(sj , si) = vi(si, o1) + pOPT

i (z, sj , si) = W (o1) =
U(t2) = 10. Consider now the case where i over-reports its resources, i.e., ai =
{r1, r2, r3}. Then, both t1 and t2 are allocated, i.e. To2 = {t1, t2}. The utility of
i then becomes: ui(sj , ai) = vi(si, o2) + pOPT

i (z, sj , ai) = vi(si, o2)− vi(ai, o2) +
W (o2) = 10

2 − (12
3 · 2 + 10

2) + 22 = 14. Since ui(sj , ai) > ui(sj , si), agent i is
better off by over-reporting its resources.

When i over-declares, the output of OPT is not exactly maximizing the social
welfare. It is not efficient with respect to over-reporting. ut

The above example shows that MOPT is not truthful because an agent may
declare a non-existing resource r2 to improve its utility. In the example this
results in an infeasible allocation, since t1 cannot be executed successfully.2 In
general, it follows from Theorem 2 that no VCG mechanism for STAP can make
the optimal algorithm truthful.

Corollary 1. No VCG mechanism for STAP can make the optimal allocation
algorithm OPT truthful.

Proof. Consider the general description of a VCG payment for an agent i:

pi(z,a) = −vi(ai,OPT(z,a)) + W (O(z,a)) + ha−i , (2)

where ha−i is an arbitrary function that does not depend on i’s truthfulness. We
can therefore assume that ha−i = 0. Repeat the example in Theorem 2, we get
the same result, i.e., agent i is better off by over-reporting its available type. ut

The results of [5–7, 9] show that VCG mechanisms are truthful if the mech-
anism selects the optimal one among all allowable (or feasible) outputs. The
private information of a player in [9] is a set of values of its types. Therefore
given the type space of the players, the set of feasible outputs is known to the

2 Because this can be detected after the tasks have been executed, we may avoid
over-reporting in some applications by transferring part of the payments afterwards.

mechanism. Here the private information of a contractor is its available resources.
As a consequence, over-reporting may lead to an infeasible allocation. In other
words, the mechanism has no knowledge about the set of feasible outputs. Thus,
the “optimal” output is not optimizing the true social welfare. This is exactly
why the VCG mechanism cannot guarantee truthfulness in STAP.

In principle, an agent can have a mixed type of lying, i.e., under-reporting
some resources and over-reporting some others. However, if VCG mechanisms are
not able to prevent “pure” over-reporting as shown in Theorem 2, they cannot
prevent the mixed type of lying either. Therefore, in the remainder of this paper,
we only study the case of under-reporting.

One of the disadvantages of VCG mechanisms is that they are not budget-
balanced (BB), i.e.

∑m
i=1 pi = 0. However, it is still interesting to study the total

payment of the mechanism MOPT.

Proposition 3. The total payment of the mechanism MOPT = (OPT, pOPT) to
the contractors is: −W (o) ≤

∑m
i=1 pOPT

i ≤ (m − 1)W (o), where W (o) is the
optimal social welfare and m is the number of contractor agents.

4 A Greedy Mechanism for STAP

Often, we desire a polynomial-time mechanism where the allocation and the
payments can both be computed in polynomial time. However, computing the
efficient task allocation in a social network is NP-complete. Furthermore, when
the number of neighbors of each agent is bounded by ∆ for ∆ ≥ 3, it is not
approximable within ∆ε for some ε > 0 (unless P = NP) [4]. This indicates
that finding an approximation algorithm which has a non-trivial approximation
ratio is difficult. Moreover, developing a payment function that makes such an
approximation truthful is even more challenging. Still in this section, we work
towards this by first introducing a greedy allocation approximation algorithm
GTA. We show that VCG mechanisms for GTA cannot even make agents truthful
with respect to under-reporting. We therefore propose a non-VCG mechanism
that is truthful with respect to under-reporting.

4.1 A greedy allocation algorithm

The idea for the greedy allocation algorithm is based on a greedy approximation
for 0-1 knapsack [11]: first sort all items on their relative value, and then try to
insert them in this order. If an item is inserted, it is never removed again.

In the greedy allocation algorithm (GTA) for STAP we consider the tasks in
order of efficiency (the ratio between utility and required resources). If a task is
feasible, it is inserted, if not, it is removed from the current selection of tasks.
Feasibility of a selection of tasks is checked by translating the problem to a
(polynomially solvable) network flow instance (see Algorithm 1).

Proposition 4. The greedy allocation algorithm (GTA) is a K|R|-approximation
algorithm for STAP, where K is the maximum number of resources of one type
a task can require. The run time of GTA is O(|R|n2m).

Algorithm 1 Greedy centralized allocation algorithm (GTA).
1. Sort all tasks from all managers in descending order of their efficiencies e(t). Denote

the sorted tasks by t′1, t
′
2, . . . , t

′
n, and the current selection of tasks by T ′ = ∅.

2. For i = 1, . . . , n do:
(a) Test if the selection of tasks T ′ ← T ′ ∪ {t′i} is feasible:
(b) Create a network flow problem for each resource type r ∈ R (separately):

i. Create a source s and a sink s′.
ii. For each agent j ∈ A, if r ∈ aj create an agent node and an edge from s

to this node with capacity aj(r).
iii. For each task t ∈ T ′, if r ∈ req(t) create a task node and an edge from

this node to s′ with capacity req(t)(r).
iv. For each agent j ∈ A connect its node to all nodes of neighboring tasks,

i.e., {t ∈ T ′ | (j, loc(t)) ∈ AE}. Give this connection unlimited capacity.
(c) Solve the maximum flow problem for the created flow networks. If the total

maximum flow in all networks is equal to
P

t∈T ′
P

r∈R req(t)(r), the current
combination of tasks is feasible. Otherwise remove task t′i from T ′.

3. Output the task set T ′ and the current allocation.

So, in the worst case, GTA may return quite bad solutions. Therefore, in Section 5
we study the average performance of GTA by a set of experiments.

Unfortunately, GTA cannot be made truthful even with respect to under-
reporting by using a VCG payment function, in contrast to OPT.

Proposition 5. No VCG payment function can make the greedy task allocation
algorithm GTA a truthful mechanism with respect to under-reporting.

Proof. In this proof we show that for a specific instance the VCG payment
cannot incentivize a contractor to declare all its available resources truthfully.
First consider the general description of a VCG payment for any agent i (see
Equation 2), where without loss of generality we assume that ha−i = 0. Thus,
pi(z,a) = −vi(ai,GTA(z,a)) + W (GTA(z,a)).

Consider a problem instance with tasks t1, t2 and t3. Task t1 requires re-
sources {r1, r2, r3}; task t2 requires {r2, r4}; and t3 requires {r3, r5}. All three
tasks are connected to contractors i and j, where i has resources {r1, r4, r5},
and j owns {r2, r3}. Let the utilities of the tasks be U(t1) = 15, U(t2) = 8, and
U(t3) = 8. Thus the efficiencies are 5, 4, and 4, respectively. Suppose that agent
j is truthfully reporting its resources {r2, r3}. We now compare two situations.
When i also declares its type truthfully to the mechanism, i.e. {r1, r4, r5}, then
according to the greedy algorithm, the resulting allocation is o1 = GTA(z, sj , si)
with To1 = {t1}, because t1 has the highest efficiency. The payment then is
pi(z, sj , si) = −vi(si, o1) + W (o1). So in this case, the utility that i receives by
declaring truthfully is ui(sj , si) = vi(si, o1) + pi(z, sj , si) = W (o1) = 15.

Consider now a case where i under-reports (ai < si) its resources, i.e.,
{r4, r5}. In this case t1 cannot be allocated. The greedy algorithm then out-
puts the allocation o2 = GTA(z, sj , ai) and To2 = {t2, t3}. The utility of i then
becomes ui(sj , ai) = vi(si, o2) − vi(ai, o2) + W (o2) = (4 + 4) − (4 + 4) + 16.

Algorithm 2 Greedy payment pGTA.
Inputs: a problem instance z, and the declared types a.
For each agent i, let bi = 0, and do

1. For each resource type r declared by agent i in ai, do
(a) Sort tasks in T r

i in descending order of their efficiencies e(t). Let L denote this
list of sorted tasks. Store the currently available resources of type r of agent
i: ki,r = ai(r), and initialize the set of assigned tasks: Ti,r = ∅.

(b) For each task t ∈ L, if ki,r ≥ req(t)(r), then
i. assign the amount req(t)(r) of agent i’s resource r to t,
ii. update i’s available resource r: ki,r = ki,r− req(t)(r); update the assigned

task set: Ti,r = Ti,r ∪ {t}.
(c) For each task t ∈ Ti,r, if there exists no other agent j such that t ∈ T r

j and
aj(r) > 0, update bi = bi + e(t) · req(t)(r).

2. The payment to agent i is calculated by: pGTA
i (z, ai,a−i) = −vi(ai, o) + bi.

Since ui(sj , ai) > ui(sj , si), agent i is better off by under-reporting its available
resources. This mechanism is not truthful with respect to under-reporting. ut

4.2 A mechanism that is truthful with respect to under-reporting

Since we cannot make GTA truthful by a VCG payment, we propose a non-VCG
payment function that pays agents for each resource that no other agent can
provide. Consequently, agents will not benefit anymore from keeping essential
resources from the mechanism to influence the selection of allocated tasks.

For this we introduce some notation and definitions. Given a strategy profile
a and a set of tasks T , let Ti denote the set of agent i’s neighboring tasks to
which it can contribute, and let T r

i denote the set of tasks of i’s neighbors to
which agent i can contribute a resource r, i.e., req(t)(r) > 0 and ai(r) > 0.
Clearly,

⋃
r∈R T r

i = Ti. The payment is based on the allocation of each resource
r of agent i to the most efficient task t such that the agent i’s valuation for such
an allocation is as high as possible. However, we pay agent i its contribution of
resource r to t only if r is unique for t, that is, no other agent j connected to t
has declared r. This greedy payment is described in Algorithm 2.

We now define the greedy mechanism MGTA = (GTA, pGTA) which uses the
greedy allocation algorithm GTA to determine the task allocation, and uses the
greedy payment function pGTA defined above (in Algorithm 2) to calculate the
payments to each participating agent.

We first show in the following lemma that given an outcome o based on an
agent i’s declared type ai (ai ≤ si), i’s valuation based on its true type si is
equal to its valuation based on its declared type ai.

Lemma 1. Given any problem instance z ∈ Z, any algorithm O, strategy profile
a−i ∈ Am−1, and for any agent i its declared type ai, if ai ≤ si, it holds that
vi(ai, o) = vi(si, o) where o = O(z,a).

Theorem 3. The greedy mechanism MGTA = (GTA, pGTA) is truthful with re-
spect to under-reporting, individually rational, and runs in polynomial-time.

Proof. Let a problem instance z, the declared types of others a−i, and the dec-
laration ai ≤ si be given. From this, the outcome o = GTA(z, ai,a−i) can
be calculated. The utility of an agent i is then determined by ui(ai,a−i) =
vi(si, o) + pGTA

i (z, ai,a−i) = vi(si, o)− vi(ai, o) + bi, where bi is computed based
on the greedy payment given in Algorithm 2. We know from Lemma 1 that
vi(si, o) = vi(ai, o) for ai ≤ si. Thus the utility of i completely depends on the
value of bi, i.e. ui(ai,a−i) = bi. According to the computation of bi in Algorithm
2, for each resource type r, the value that i can get from the allocated tasks
Ti,r is maximal when i declares its full amount of resources, because in this way,
more highly efficient tasks can be allocated, no matter whether its resource r is
unique to tasks in Ti,r. Moreover, bi is maximized when i declares every resource
type r that it has. In other words, each agent’s utility is monotonically increasing
with its declared resources.

An agent i’s utility for declaring its true type si is ui(si,a−i) = bi ≥ 0. So,
it is rational for agent i to participate.

In the greedy payment pGTA, sorting the tasks takes O(n log(n)), and deter-
mining the value and checking the unique for the resource of each contractor
takes O(|R|nm). Hence the total payment computation is O(n log(n)+ |R|m2n).
Since both GTA and pGTA can be computed in polynomial time, the mechanism
is a polynomial-time mechanism. ut

This result (and its proof) can be generalized for any mechanism for STAP as
long as we can make the agent’s utility function monotonically increasing with
the declared resources.

Theorem 4. Given any problem instance z ∈ Z, any allocation algorithm O,
for any agent i with type si ∈ S and for any other type ai ∈ A and ai ≤ si, a
mechanism for STAP is truthful with respect to under-reporting if the payment to
any agent i is of the form pMON

i = −vi(ai, O(z,a)) + h(ai), where h(ai) is any
function which is monotonically increasing with the declaration ai.

Proposition 6. The total payment of the mechanism MGTA = (GTA, pGTA) to
the contractors is: −W (o) ≤

∑m
i=1 pGTA

i ≤ U(T), where W (o) is the social wel-
fare and U(T) is the total utility of all tasks.

5 Experiments

The worst-case performance guarantee for the greedy heuristic presented in the
previous section is based on a specific case where one task with a high efficiency
blocks all other tasks. In practice, not all tasks are connected to the same agents
and the average performance will be much better. To see how much better, we
investigated the performance of this mechanism experimentally.

A problem instance in these experiments is defined by the number of agents,
tasks, and resource types; the requirements, the utility and the location of each
task; the available resources at each agent and the relations between the agents.
In our case these relations are defined by the type of social network. The types we

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 40 50 60 70 80 90 100

re
la

tiv
e

so
ci

al
 w

el
fa

re

number of tasks

scale-free
small-world

random
 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 5 10 15 20 25 30 35 40

re
la

tiv
e

so
ci

al
 w

el
fa

re

average agent degree

scale-free
small-world

random

Fig. 2. These graphs show the relative social welfare of the greedy mechanism related
to the number of tasks (left), and the degree of the networks (right), respectively.

consider in our experiments are: (i) random networks, where agents are connected
completely at random until the desired degree has been reached, (ii) small-world
networks [12], where most agents are connected locally (to the neighbors of their
neighbors), but have a fixed “rewiring” probability of 0.05 to connected to any
other agent, and (iii) scale-free networks, where agents have a higher probability
to get connected to agents with more neighbors [13].

First we investigated each parameter separately using default settings for the
other parameters such that the optimal solution can still be calculated in at most
10 minutes. These defaults were: 200 contractors, 100 tasks, 20 resource types,
20 resources per task on average, 10 resources on average per agent, a uniformly
random distribution of resources and tasks to agents, and the value of a task
drawn from a normal distribution around two times the number of resources
with a standard deviation of one time this number (with a minimal value of
1). We kept the total number of resources required by the tasks and the total
available resources in the network the same, and equal to each other. In a fully
connected network this would mean that all tasks can be allocated. However,
in the networks we consider they generally cannot. For each experiment with
the parameter settings described above, we generated 20 instances of each of
the three types of networks. In the plots we only showed the average and the
standard deviation over these 20 instances for each setting.

When we varied the problem size by increasing the number of tasks from 40 to
100, we noticed (see the first graph in Figure 2) an increase of the quality of the
greedy mechanism from about 0.55 up to about 0.8 in the small-world network
setting, and about 0.9 in the random and scale-free setting. Interestingly, it seems
that the greedy algorithm works better on structures like scale-free networks
where some tasks (managers) are very well connected, while some others are
(almost) not connected at all, than on more uniform structures like small-world
networks, where each task has about the same number of connections.

Next we show the results for problem instances with a degree of the social
network varying from 4 to 40. The greedy mechanism performed extremely well
for networks with a large degree showing a relative social welfare of about 0.99.
In such a setting most tasks can be allocated, because they end up in very
well-connected nodes, having many alternative contractor agents.

A more important observation is that the performance over all these instances
(about 200 per figure) was between 0.55 and 0.99, and on average around 0.85 of
the optimal outcome. This is a much better result than the worst-case theoretical
bound of K|R| (in this case K was 8) presented in Section 4.1.

6 Discussion and Conclusions

This paper started with a very general resource allocation problem where both
the agents providing the resources (contractors) as well as the agents having some
utility for bundles of resources (managers) can be strategizing. When the con-
tractors are trusted, and only the managers are allowed to strategize over their
value for each bundle, we end up with the well-studied CA problem. However, in
this paper we consider a mechanism design setting which differs in an important
way from most of the studied situations, such as CAs [2], single-parameter and
single-value domains [14, 15], because the contractors are not strategizing about
the valuation they declare, but about the resources they have available. When
agents lie about their valuation, the output of a mechanism can be inefficient, but
is always feasible. However, when agents lie about such things as their available
resources, the mechanism can come up with an infeasible outcome.

We showed that in such a setting a VCG payment with an optimal algorithm
cannot guarantee a truthful mechanism, but it can realize a mechanism that
is truthful with respect to under-reporting. Moreover, since the problem is NP-
hard, we can only expect to find optimal algorithms that run in time exponential
in the size of the input.

In this paper we therefore proposed a polynomial-time approximation. We
first showed that using this approximation, VCG mechanisms cannot be used to
create similar truth-telling properties as for the optimal mechanism. However,
we then proposed another payment function that actually could realize these
properties. In general, we showed that this is because the utility of agents is
monotonically increasing in the number of declared resources. Our experimental
results show that the overall quality of the solutions using this mechanism is
quite good. Since STAP is NP-complete, we conclude that this heuristic is more
useful than the optimal mechanism in many practical situations with a moderate
or larger problem size.

The fact that agents have an incentive to over-report is very severe, because it
could lead to infeasible solutions. However, we believe that this consequence may
also imply a solution, because lying agents can thus be detected and punished.
This is an important topic in our current work.

Furthermore, we will consider the general resource allocation problem where
not only the contractor agents, but also the managers can strategize. Our goal is
to also incentivize the managers to truthfully declare their tasks and the attached
utilities. It is relatively straightforward to see that a VCG payment can achieve
this if an optimal algorithm is used. How to achieve this using an approximation
algorithm is still an open question.

With the proposed greedy payment algorithm an agent may receive zero
utility if its contribution (i.e. resource) is not unique to the task. Moreover, ad-
ditional funding is required to incentivize the agents. To avoid these undesirable
situations, we are interested in developing a dynamic payment scheme which
adapts the payments based on (i) the specific instance, e.g. the resource distri-
bution, and (ii) the generated social welfare, while maintaining the truthfulness
property.

As a final remark, we believe that the results in this paper generalize to
other (NP-hard) problem domains where a wrong input to the mechanism by
the agents can lead to infeasible outcomes, such as in multiagent planning. We
intend to show in the future that alternative payment functions such as the one
proposed here can be applied to those settings as well.

Acknowledgments

This work is partially supported by the Technology Foundation STW, applied
science division of NWO, and the Ministry of Economic Affairs of the Nether-
lands.

References

1. de Vries, S., Vohra, R.: Combinatorial Auctions: A Survey. INFORMS Journal on
Computing 15(3) (2003) 284–309

2. Blumrosen, L., Nisan, N.: Combinatorial auctions. In: Algorithmic Game Theory.
Cambridge University Press (2007) 209–242

3. Chevaleyre, Y., Dunne, P.E., Endriss, U., Lang, J., Lemaitre, M., Maudet, N.,
Padget, J., Phelps, S., Rodriguez-Aguilar, J.A., Sousa, P.: Issues in multiagent
resource allocation. Informatica 30 (2006) 3–31

4. de Weerdt, M., Zhang, Y., Klos, T.B.: Distributed task allocation in social net-
works. In: Proc. of 6th Int. Conf. on AAMAS, ACM (2007) 17–24

5. Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. The
Journal of Finance 16(1) (1961) 8–37

6. Clarke, E.H.: Multipart pricing of public goods. Public Choice 11(1) (1971)
7. Groves, T.: Incentives in teams. Econometrica 41(4) (1973) 617–31
8. Nisan, N.: Introduction to mechanism design (for computer scientists). In: Algo-

rithmic Game Theory. Cambridge University Press (2007) 209–242
9. Nisan, N., Ronen, A.: Algorithmic mechanism design (extended abstract). In:

Proc. of 31th ACM Symposium on Theory of Computing, ACM (1999) 129–140
10. Makhorin, A.: GLPK. GNU Linear Programming Kit (2004)
11. Dantzig, G.: Discrete variable problems. Operations Research 5 (1957) 266–277
12. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small world’ networks. Nature

393 (1998) 440–442
13. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science

286(5439) (1999) 509–512
14. Archer, A., Tardos, E.: Truthful mechanisms for one-parameter agents. In: Proc.

of 42nd IEEE Symposium on FOCS. (2001) 482–491
15. Babaioff, M., Lavi, R., Pavlov, E.: Mechanism design for single-value domains. In:

Proc. of 20th Nat. Conf. on Artificial intelligence, AAAI (2005) 241–247

