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1. INTRODUCTION

Online auctions play an important role in electronic comreeras a method for allocating
goods or services between self-interested agents. Sitegieauctions have been studied
extensively in existing auction theory [Klemperer 1999jdaseveral auction formats are
known in which bidders can achieve their optimal utility Ising simple, dominant bidding
strategies. However, this property is generally true oatysingle-item, one-shot auction
mechanisms, whereas in reality many of the auctions obdemehe Internet today take
place independently and sequentially, in the sense thgtateerun by different sellers
and have different closing times. Furthermore, a buyeiqpating in a sequence of such
auctions may desire a combination of items, rather thanglesone. Whenever a buyer
can obtain a synergy valtibetween several goods sold sequentially, she faces anueepos
problem.

The exposure problem has been studied before [Boutiliet. éf989; Sandholm and
Lesser 2002; Osepayshvili et al. 2005; Wellman et al. 2008g@®wvald and Boyan 2004]
(among others). Informally, the problem occurs wheneveagent may buy a good at a
higher price than what that good, by itself, is worth to herthe hope of obtaining extra
value through synergy with another good, which is sold ldtewever, if she then fails to
buy this other good at a profitable price, she ends up withsa loghis paper, we call such
a global bidder aynergy buyét

The problem appears frequently on the Internet, underrdifteforms. In retail elec-
tronic commerce, many goods sold on large online auctiotigotas (e.g. eBay) have
complementary values to the bidders. For example, a bugdirig on an expensive mon-
itor may count on getting a corresponding configurationtiercomputer (and sound) sys-
tem in a later auction. In the travel reservations domaigetsineed to reserve their flight,
hotel and entertainment tickets as a package, and haeevétue for the different parts
taken individually (this also being the setting of the TraglAgents (TAC) Travel Compe-
tition). The exposure problem also appears in businesisdgselectronic commerce. For
example, in transportation logistics, online freight exebe companies such as Teleroute
(www.teleroute.com) list up to 150,000 transportatiordédaily for different destinations
across Europe, which are allocated on a competitive, autitie basig. However, the
value of bidding for a transportation load for a carrier nfteepends on the probability of
acquiring a return order, made available in a later auction.

Finally, another web domain where this problem appearsedimamic allocation of
web services, such as grid services, especially in domaeavsuch services can be
acquired from competing suppliers. A problem in this caskésco-location problem: two
web services need to be acquired simultaneously, in ordanfagent to extract value from
them [Czajkowski et al. 1999; Stein et al. 2009]. For examifla research lab secures
a time slot to obtain observation data from an expensivedejge or reactor, it needs to

5The value of a combination of goods is super-additive witipeesto the sum of the values of the goods, taken
individually.

6Note that, since in the auction settings we consider in thjsep we always model a set of buyers bidding to
acquire a good from a set of sellers (who conduct the augtiarescan use the terms “synergy buyer” or “synergy
bidder” interchangeably, without loss of generality.

7In practice, allocation mechanisms used in multi-party léggsare not always strictly auctions, as the agent
offering the order may decide which carrier bid to accept daseother criteria than just the lowest price offered
(e.g. trust in that carrier, previous business relatignsic.).
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ensure that the computing capacity required to procesdd#ies will be available at the
required time.

In this paper, we use the generic term “goods” for the set divigible items to be
allocated in a sequence of auctions. Without loss of geitgréiiese can be thought of
as either physical goods (such as computers or monitorsirtoalygoods (such as web
services, processing capacity, user attention space imeoadivertising etc.).

Some solutions for this problem have looked at designingottiding strategies of in-
dividual agents participating in such a sequential aucti@rket [Boutilier et al. 1999;
Greenwald and Boyan 2004; Reeves et al. 2005; Vetsikas amindgs 2008; Robu and
La Pouté 2007; 2010]. Different classes of the TAC competition [WMdeln et al. 2007]
also require, among other capabilities, efficient seqakbtdding from the participants.
However, an automated bidding strategy participating chsusequence of auctions faces
a high degree of uncertainty, as its final utility dependshendutcome not only of the cur-
rent, but also of future auctions. It is possible that bigdagents facing an exposure prob-
lem may choose not to participate in the market, becausedpgimal, decision-theoretic
bidding policy does not give them a positive expected ytiibm the auction sequence.
Furthermore, agents with an exposure problem may shadebitiej which reduces further
both auctioneer revenues and market allocative efficiency.

For this reason, another important line of work takes thehaeism design point of
view, and replaces sequential allocation with one-shotraeisms, such as combinatorial
auctions [Cramton et al. 2006; Sandholm 2002]. This apgroabile it has been shown
to be successful in theory and in practice for a range ofrggtfidoes have some important
disadvantages. It typically requires a central point ohatity, which receives the bids
and computes the optimal allocation and payments, a prodeiss can be computation-
ally expensive. However, even assuming that the computtgide of the combinatorial
allocation problem can be addressed (and considerablehesrkocused in this direction,
e.g. [Sandholm 2002]), many allocation problems occuriingractice are inherently de-
centralized and sequential, and cannot be mapped intolmieeentralized mechanisms.
Possible examples range from items sold on eBay by diffeseli¢rs in auctions with
different closing times, loads appearing over time fronfedént shippers in distributed
transportation logistics, to power allocation in dynamiiectricity grids with competing
suppliers.

In this paper, we consider a different approach, which pvesehe sequential nature of
the allocation problem, and propose a mechanism that iegawctioningptionsfor the
goods, instead of the goods themselves.

1.1 Options: basic definition

An option can be seen as a contract between the buyer andlégreat@ good, subject to
the following rules:

—The writer or seller of the option undertakes tiitdigationto sell the good for a pre-
agreeckxercise pricen the demand of the buyer.

—The holder or buyer of the option gets thight to buy the good for the agreexercise
price, but not the obligation to do so.

Since the buyer gains the right to choose in the future whetheot she wants to buy
the good, an option comes with aption price which she has to pay regardless of whether
she chooses to exercise the option or not.
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Options can thus help a synergy buyer reduce the exposupéeprshe faces. She still
has to pay the option price, but if she fails to complete heirdd bundle, then she does not
have to pay the exercise price as well and thus she limitoker 5o part of the uncertainty
of not winning subsequent auctions is transferred to thers@tho may now miss out on
the exercise price if the buyer fails to acquire the desingadbe. At the same time, the
seller can also benefit indirectly, from the participatiothie market by additional synergy
buyers, who would have otherwise stayed out, because they fahigh risk of exposure
to a potential loss.

1.2 Related work

In existing multi-agent literature, to our knowledge, théras been only limited work to
study the use of options to address the exposure problem.

The first work to introduce an explicit option-based mechanfor sequential-auction
allocation of goods to the multi-agent systems (MAS) comityunas by Juda & Parkes
[Juda and Parkes 2009]. They create a market design in winehigy buyers are awarded
free (i.e. zero-priced) options, in order to cover their@syre problem and, for this set-
ting, they show that truth-telling is a dominant strategytHis case model, the exposure
problem is entirely solved for the synergy buyers, becausgdo not even have a possible
loss consisting of the option price. Having a dominant biddstrategy for the buyers is
a crucial property from a game-theoretic perspective oalgin in practice most real-life
online markets do not exhibit this property.

However, the mechanism proposed by Juda & Parkes reliesroa assumptions that
could limit its applicability in some real-life markets. particular, market entry effects
may not always be sufficient to motivate the sellers of thengt¢o use options. Because
the options are designed to be offered freely (zero-pridbdfe are cases in which sellers
do not have a sulfficient incentive to offer free options, liseaof the risk of remaining
with their items unsold. The sellers could, however, denmapcemium (in the form of the
option price) to cover their risk. In such cases, only pesiyi-priced options can provide
sufficient incentive for both sides of the market (buyers seliers) to prefer an options
mechanism over direct auctions. Moreover, while their naedm guarantees that truth
telling is a dominant strategy for the buyers, this properly come at a loss of efficiency
for some settings, and sellers are assumed to be willing itméne market (and get their
payments marked downwards) until the buyers of their ogtleave.

Priced options have a long history of research in finance[k#e€2003] for an overview).
However, the underlying assumption for all financial optwiting models is their depen-
dence on an underlying asset, which has a current, publietabt moves independently
of the actions of individual agents (e.g. this motion is assd to be Brownian for Black-
Scholes models). This type of assumption does not hold &otitine, sequential auctions
setting we consider.

Another line of research in the business literature focaseseal options [Amram and
Kulatilaka 1998; Smith and McCardle 1999], which do not retythe price of an underly-
ing, publicly traded asset. Most of the literature on rediays we are aware of focuses on
modeling long-term business investment decisions.A aglework that studies the use of
options in online auctions is [Gopal et al. 2005]. They désctihe benefits of using options
to increase the expected revenue of a seller of multipleesopi the same good. In [Gopal
et al. 2005], however, it is the seller that fixes both theaptirice and the exercise price
when writing the option, which requires rather strong agstions on the knowledge of the
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seller and on the behaviour of the bidders.

There is also a connection between options and leveled conani mechanisms [Sand-
holm and Lesser 2002; 2001; 't Hoen et al. 2005]. In the leyelammitment mechanism
proposed by Sandholm and Lesser, both parties have théopibgsd decommit (i.e. uni-
laterally break a contract), against paying a pre-agreedrdmitment penalty. However,
as [Sandholm and Lesser 2002] show, setting the level oféberdmitment penalty can be
hard, due to the complex game-theoretic reasoning requiiteele are situations in which
both parties would find it beneficial to decommit but neitheesl hoping the other party
would do so first, in order to avoid paying the decommitmemtagity. This differs from
option contracts, where the right to exercise the optioraid py one party in advance. In
our model, this right is sold through an auction, thus théoopprice is established through
an open market.

An alternative direction of research that aims to tacklenailar challenge is online
mechanism design [Friedman and Parkes 2003; Parkes 200dinGet al. 2011; Robu
et al. 2011]. However, the online mechanism design liteeatve are aware of is mainly
concerned with the problem of declaring truthful entry aridttmes in a market, and does
not deal with complementary valuations or bidder exposurésk.

Finally, recent work by Robu, Vetsikas, Gerding & Jennirigelju et al. 2010a; 2010b]
(which appeared after the publication of our initial papdo[s et al. 2010]) starts from
the priced options mechanism developed in this work, anggees a more complex and
flexible model for pricing options. The starting assumpgi@onsidered by the two lines
of work are somewhat different, because this work considensodel with first priced
options and hidden reservation values (following the fpanistion logistics business case
that initially motivated the work), while Robu, Vetsikasefding & Jennings consider a
model with a sequence of complementary second-price augcéind no reservations. We
refer interested readers to [Robu et al. 2010a; 2010b] f@taildd comparison of the two
approaches.

1.3 Outline and contribution of our approach

The goal of this paper is to study the use of priced option®kzesthe exposure problem
and to identify the settings in which using priced optionsddés both the synergy buyer
and the seller.

An option contract specifies two prices, so an adjustmerds&ebe made to the stan-
dard auction with bids of a single price. In this study, in@rdo make the analysis
tractable, we have a fixed exercise price and a flexible oggiaze. The basic way our
mechanism works is that the seller determines the exerdise @f an option for the good
she has for sale and then sells this option through a firseriiction. Buyers bid for the
right to buy this option, i.e. they bid on the option price. We that this mechanism has
the attractive property that direct auctioning of the iteappears as a special case. If the
seller fixes the future exercise price for the option at z#éren a buyer actually bids for
the right to get the item for free. Since such an option is génexercised (assuming free
disposal), this is basically equivalent to direct auctngnof the item itself8

8An alternative would be to let the sellers fix the option psicand the exercise prices be determined by the
market. A potential downside of such a mechanism may be thdig ibption price is set too low, bidders could
hoard options without any intention of exercising them, jusblock other bidders from competing in future
auctions.
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Based on the above description, we provide both an andlgimhan experimental in-
vestigation of the setting. Our analysis of the problem carcharacterized as decision-
theoretic, meaning both buyer and seller reason with rédpeexpected future prices.
There are both advantages and disadvantages to a decismnetib approach. The dis-
advantage is that, unlike the existing game-theoreticagatr to options [Juda and Parkes
2009] or related online mechanism design approaches [P20&7], one cannot guaran-
tee that bidders have a dominant bidding strategy. On ther digind, using a mechanism
design approach often requires additional assumptio, @i the assumption in Juda &
Parkes that sellers would be interested to provide optiararder to keep buyers truthful.
Unlike such approaches, decision-theory tries to modektly the reasoning and bidding
behaviour of agents acting in real life markets (in most-tiéalsequential auction mar-
kets, no dominant bidding strategy exists anyway). Whilgdorg some of the strong,
game theoretic rationality concepts, this has the advarttea it makes the analysis com-
putationally tractable for larger settings.

To summarize, our contribution to the literature can be attarized as twofold:

First, we consider a setting in whieh goods (or options for them) are auctioned se-
quentially. In our setting, there is one synergy bidder witomplementary valuation over
these goods, the rest of the competition being formed byl ludaers desiring only one
good. For this setting, we show analytically (under somemggions) when using priced
options can increase the expected profit for both the syrieuggr and the sellers, com-
pared to the case when the goods are auctioned directly. der ¢o provide a rigorous
formal characterization of these settings, we derive theaggns that provide minimum
and maximum bounds between which the bids of the synergyrtaugeexpected to fall, in
order for both sides to have an incentive to use options.

In the second part of the paper, we consider market settmgsich multiple synergy
buyers (global bidders) are active simultaneously, andysituthrough experimental sim-
ulations. In such settings, we show that, while some synbuyers loose because of the
extra competition, other synergy buyers may actually bereftause sellers are forced to
fix exercise prices for options at levels which encouragesgyaation of all buyers.

We note also that, while both parts of the paper study detigieoretic bidding be-
haviour, we consider different levels of information abthe future available to the syn-
ergy bidder. In the analytical case, the exact order of tliti@ns is assumed to be known,
and we consider a bidder that wants a bundle of all the itenhe tauctioned. In the ex-
perimental part, where the synergy bidder wants only a sutcHe of the goods from a
potentially large sequence, we assume that bidding agants &nly the number of future
buying opportunities for an item of each type, not their éxader. This is actually more
realistic for the application scenarios we consider. Fangxe, when bidding to acquire a
part-truck order in transportation logistics, it is moraligtic to assume that a carrier can
approximate the number of future opportunities to buy a dempntary load, but not the
exact auction order in which future loads will be offered &oiction.

The structure for the rest of this paper is as follows. Sacfidays the foundation for
further analysis by deriving the expected profits of syndragyers and sellers for both the
direct sale, respectively for a sale with options and cksiiome of the assumptions used
in our model. Section 3 provides the analytical results aondfs of the paper, for a market
of sequential auctions with one synergy buyer. Sectionsd45apresent the results from
our experimental study, while Section 6 concludes with audision.
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2. EXPECTED PROFIT FOR A SEQUENCE OF N AUCTIONS AND 1 SYN-
ERGY BUYER

In Section 3 of this paper, we show analytically that opticas be profitable to both
synergy buyer and seller. This section provides a basitéset proofs, by first deriving the
expected profit functions (which depend on the bids of thegynbuyer) for the synergy
buyer and the seller. Throughout this study it is assumethibit sellers and buyers are
risk neutral and that they want to maximize their expectelityuor, in this case, their
expected profit.

2.1 The market setting

We consider a market set-up in whighunique, complementary goods, are sold individu-
ally in auctions with sequential closing times.

Formally, letG be the set ofi goods for sale in a temporal sequence of auctions and
vsyn (Gsup) be the valuation the synergy buyer has y,, C G. In this section, we
further assume that,,,,(G) > 0 andVGsu, C G, vsyn(Gsup) = 0. In other words, to
somewhat simplify the theoretical analysis, we consideyreegy buyer that desires the
bundle of all the goods considered in the modgl.(, = G).

The goodsGGy..G,, € G are sold individually through sequential, first-price, lsda
bid auctions. The main reason for this choice is that, in msetings where sequential
auctions occur in practice, such as request-for-quote®jREctions in logistics or supply
chains, a model close to first-price auctioning is often used

Moreover, in a setting with sequentially closing auctiamslike in single-shot auctions),
the usual reason for preferring second-price auctionsgbiice ones (i.e. that bidding
one’s value is a dominant strategy) does not apply. In sd@lertting with valuation
complementarities of the agents, second-price auctionsotibave the dominant strate-
gies properties described by Vickrey for a single auctiae (glso [Boutilier et al. 1999;
Greenwald and Boyan 2004] for a discussion of this issue).

The time these auctions take place irtis 1...n, such that at time goodG; € G
is auctioned. The above assumptions mean that if the syrergsr has failed to obtain
G, then she cannot achieve a bundle, for which she has a gogitivation. So it7;, 1 is
auctioned with a positive reserve price, then obtairtiag, would cost the synergy buyer
money. If the synergy buyer fails to obtaify, then it is rational for her to not place bids
in subsequent auctions.

Therefore, in this paper, we consider a model in which thebmmof future opportuni-
ties to buy the good (i.e. auctions) is known, but there issuiainty over the outcome of
these auctions. This models well decentralized settimgahich sellers are independent
and/or the items are auctioned off as they arrive. One suattipal example [Robu et al.
2008; Robu et al. 2011] is decentralized transportatiorstms, where transportation or-
ders are auctioned off by different sellers (called shigpat different points of arrival in
the market, as they become availdble

The bids of the synergy buyer are = (b1,...,bn), whereb, is the bid the synergy
buyer will place for good~,, conditional on having won the previous auctions. Because

9In future work, we plan to look at extending this model to deéhwncertainty about theumberof future
auctions, as well as their outcomes. However, this wouldirequfurther approximation in the way that future
uncertainty in completing the desired bundle is computedclviiould make getting clear analytical results
difficult.
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of the first-price auction format,; is also the price the synergy buyer has to pay if she
wins the auction. Throughout this analysis, we assume thwpettion the synergy buyer
faces for each goodr; (sold at timet) is formed by local bidders that desire only the
goodG,. We further assume that these local bidders do not condigebitls placed by
the synergy buyer in their bidding. Therefore, from the pecsive of the synergy bidder,
the competition can be modeled as a distribution over the@rp closing prices at each
time pointt, more precisely as a distribution over a valyg,q,:, which is the maximal
bid placed by the competition not countihg

An important part of the reasoning of the synergy buyeratefyy, in our model, is the
availability, for each auction held at timeof a probability distributior¥} (b, ), which gives
the buyer her probability of winning the item sold at timey placing bidb, in that auction.
There are several ways in which, in arealistic scenariosyhergy buyer could acquire this
information. First, it may be that the synergy buyer knoves,dach auction, the number
of local bidders she is competing against, and has a distribover their valuations. In
such a case, it would be easy to aggregate this local conopetit a single probability
distribution function, that returns the probability of wing, given a bid. More generally,
however, this distribution could be learned from repeatgeractions/participation in the
market, and may not necessarily require knowledge aboutdih@ber of competitors in
each auction.

We can exemplify this type of probabilistic reasoning in alistic application scenario,
which initially motivated this theoretical work - distrited transportation logistics [Robu
et al. 2008; Robu et al. 2011]. In such a market, carriers¢benpanies owning the actual
trucks) have to bid in request for quotes aucti@nsA logistic planner (representing a
carrier), knows what an order from Amsterdam to London ctsisxecute, on average,
given the market conditions on a given day. If she bids an atigushe can estimate the
probability of being awarded that order. Note that, in tldse; she may not know exactly
which other carrier companies are present in the markefrtuot her experience she can
estimate her chances of winning the order by placing a celidi

2.2 Hidden reservation values

For each good+,, there exists a strictly positive reservation valuéof., which is the
seller's own valuation for that good, or, alternatively¢éin be seen as a resale value if she
fails to sell the good in the current auction. To explain, iany real sequential auction
markets where options can be applied, sellers have thenogtimying to resell their goods
later, even if the expected revenue of selling later is lbas the expected revenue from
selling now. For instance, someone who can't sell his/haermder monitor or bike frame
on Ebay today will try again in the future, although there isost involved in waiting.
While we do not model resale explicitly in our model, it is istit to allow the goods to
have a residual resale for sellers, because a seller wotiard to sell her good now if
the maximum offer received would be less than what she coetithy waiting to sell in a
future auction.

In order to model this formally, we allow sellers of each g@gado set a hidden reserve
valueb, ..., not visible to the bidders before the auction starts. Thesuah a model with
hidden reserves works is that, after all the bids have beszived, a seller can keep the

10Note that, while in this paper, for simplicity, we consideredit, not reverse auctions in which the lowest bid
wins, the exposure problem over bundles of orders is idaintic
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goods if the maximal bid received falls under her hiddenmasgalue. Having a secret
(as opposed to a public) reservation value ifirst price auction motivates sellers to be
truthful in setting their reserves - see [Bajari and Hortis2803; Elyakime et al. 1994] for
a discussion of this poiht.

Note that, while hidden reservation values ensure seltersa@t forced to sell their items
unless they want to, they also have the advantage of pregethie “hold up” effects, that
would appear with publicly posted reservation values. Fangle, the seller in the last
auction in the sequence could post such a high reservatioa gs to extract the entire
valuation from the synergy bidder. However, with a hiddesergation value, the game is
two-stage: the seller decides on whether to accept or reffecsafter the bids are received
(i.e. she cannot pre-commit to a reservation price), whielelpdes this undesired effétt

In order to model the reasoning of the synergy bidder in tresgmce of the hidden
reservation value, we introduce an additional joint vdaaim, defined as:

bmy = max{bt,mamh bt,res} (1)

whereb; .1 denotes the maximum bid by one of the local bidders in thei@uet time

t, while b ... is the reservation price of the seller. Thtsy; can be seen as tmeaximum
alternative bidin the auction at time, which can come either from one of local bidders
or the seller (representing its hidden reserve value, belbigh the item won’t get sold).
Using a decision theoretic approach, we can model the giratethe synergy bidder with
respect to only a single probability over varialble,, which is essentially a probability
over the maximum of variables ,,.,; andb; ,.s. This can be easily computed if the
probabilities oveb; ,.., andbm, are available separately, or it could be learnt directlyrove
time, from repeated participation in the market.

2.3 Synergy buyer’s profit with n unique goods, without options

Formally, we denote by (b;) the probability that the synergy buyer wins goGd with

bid b, - where F;(b;) depends on whethéy can outbid the maximal biéim; of by the
competition, excluding, (as defined in Equation 1 above).To deal with ties, we assume
the synergy buyer wins oni¢, if b; > bm, and not if the bids are equal. Thémn(b;) can

be defined as follows:

Ft(bt) - P’/’Ob(bt > bmt) (2)

The synergy buyer has only a strictly positive valuatiortf@rbundle of good&', which
includes all the good&';, sold at timeg = 1..n. Therefore, in a market without options,
the a-priori expected profit?" of the synergy buyer is:

syn

B(xdin) = [vsym)f{ﬂ(bi)} ¥ [fj(—m]ﬁﬂ(bk)} @)

Jj=1

The synergy buyer wants to maximize her expected profit. $@pmal bidsB* =

1 Note, however, that, as shown in [Elyakime et al. 1994], hgwampublicly posted reserve value may actually

bring sellers more revenue, but in our model we don't allow. tfiilse reason is that this would not keep sellers
truthful, and place an additional computation burden on ildeldss, due to the presence of the public reserve
price parameter.

12|n addition, in practical settings it would be hard for théeseto know its exact place in the auction sequence
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(b7,...,b:) maximize equation 3:

B* = argmax g. B(rdir) 4)

syn

Note that, with a decision theoretic model, the synergy diddkes into account the
reservation values, ,..; as part of the expectation probabilify(b;) (recall thatF'(b;) is
defined as the probability of winning by placing Big.

2.4 Seller’s expected profit and strategy assumptions

Next, the profit of the sellers are examined. We assume thaekérs have their own
valuation for the good that they sell and that they set tresierve price ob, ,..s equal to
this private valuation. So when the good is soldifgrthe seller ofG; has a profitri” of
b: — bt res. As previously shown, the synergy buyer participates orthemvshe has won
the previous auctions; otherwige:, is the maximal placed bid (or, #fm; = b .5, the
seller keeps the item).

Additionally, we also need an assumption on the seller'sepae, because when an
option is sold to a synergy buyer, that buyer must be able ¢addenvhether to exercise
it or not after all the other auctions of interest finish. Taiavsuch timing issues, in our
model we explicitly assume that theauctions that a synergy buyer can participate in are
conducted by sellers with longer deadlines than the buyers.

Given the above modeling assumptions, the expected prdfiedfeller of the goodr,
sold at timet can be written as:

B(w™) = (B(bme) = brres) (1 = [T Fi00) + (Fulbe) b = bires)

t—1
+ (1= Fi(b) (Emulbm = b) = bires)) [T Fibi) 5)
=1
Intuitively explained, the equation defines the expectéiyubver 3 disjoint cases: one
in which the optimal bid$; of the synergy bidder were not sufficient to win all auctiops u
to timet, in which case the expected profit of the seller is the higaegected bid of the
local bidders, captured h¥ (bm,), minus its own reservation valde .., (or, in the case
bmy = by res, POSSible according to Equation 1, this term becomes z#re)second case
in which the synergy bidder wins all previous auctions, udahg the current one (i.e. the
one at time), in which case the expected profit is this bid minus resemat — b, ..., and
the third in which the synergy buyer won all previous audibnt fails to win the current
one, in which case still the highest bid by the local biddsftsiken.

2.5 Synergy buyer and seller profits in a model with options

Previous sections derived the expected profit functionthsynergy buyer and the sellers
in a market without options. The next step is to do the sama foarket with options. This
section has the same setting as the general modelnwgthods being sold, only now an
option onG;, is auctioned at timeé. Therefore, all the sellers in the market will sell options
for their goods, instead of directly the goods themselvdterAhen auctions have taken
place, the buyers need to determine whether or not they wéltaise their option. It is
assumed that an option is exercised only if a buyer has @gtdiar entire, desired bundle.
The local bidders are only interestedaf, so they will always exercise an option 6

ACM Journal Name, Vol. V, No. N, August 2012.



11

should they have one. The synergy buyer is only interestadimdle of all goods, so she
will only exercise an option (and pay the corresponding @gerprice) if she has options
on all the goods required.

The option consists of a fixed exercise pricg and the synergy buyer’s bids on the
option price areOP = (op1, - -.,0p,). The maximal bid without the synergy buyer was
bm, but nowopm; is the maximal placed option price.

Recall that we assume that the competition is formed by loicklers, who cannot rea-
son about the presence in the market or the bids placed byteegy buyer. Moreover,
all local bidders in an auction only want the one good soldhat iuction, hence they do
not benefit from having an option and they will always exer@sy option they acquire.
Because of these assumptions, it follows that the compeill keep bidding the same
total price, which is the bid without options minus the exsg@rice. Thus the distribution
of the competition is only shifted horizontally to the ldfty the reduction of the exercise
price: opm; = bm; — K, (since the seller can séf; < b, ,., this ensures that always
bmy > Ky, c.f. Equation 1). Thus, if the synergy buyer bids the sarted fwice (option +
exercise), then she has the same probability of winningtleéan in both models.

Let F?(op;) be the probability thabp, wins the auction for the option of;. So if
opt + Kt = bt, thenFtO(opt) = Fto(bt — Kt) = Ft(bt)

The synergy buyer’s expected profit with options then is:

n

P2 = [oan@ ~ 3o ] T n) + 32 [(com) [ Feom)] - ©
h=1 =1 k=1

j=1
So her optimal bidO P = (op3, ..., op:) maximize the profit equation 6:
or" = argmazsp+ E(mh,) (7)

The main difference for the seller 6f;, is that if the synergy buyer wins, then she earns
op; immediately when the options is sold, and an additiddal- b, ,..s when (and if) the
option is exercised. The probability of exercise is the piulity that the synergy buyer
wins all the subsequent auctions. As in the model withouibopt the seller of good,
can set a hidden reservation value for her ghod,. As before, this represents a potential
resale value for her, in case the item remains unsold, orge tze option for the item is
sold, but it is not exercised. Basically, the way the mecsranivorks is that each seller
announces the exercise price levelgf, and receives a number of option price bids. After
all these option price bids are received, the seller hasikieroto cancel the auction and
keep the good if the maximal bid received falls unbgr.s — K.

Given this model, the total expected profit of the seller ad@)&'; sold at timet is:

t—1

E(r{") = (E(opms) + K¢ = bires) (1 = [ ¥ (op2))

i=1

+ (F2(ope) [ope + (K = buyes) [T Filom)]
h=t+1

t—1
+ (1 = FY(ope)) (E(opmy|opmy = opy) + Ky — bt,res)) 1172 p) 8
i=1
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Briefly explained, this equation has the same 3-case steietsiEq. 5 above. In two
cases: when the synergy buyer loses an auction for one theré@ms in the sequence
(before the items sold at tim#, or when she wins all the earlier auctions, but not the auc-
tion at timet, the expected payoffs are equivalent to the direct auctgpnase, although
this time expressed slightly differently, based on bothekercise and option price. How-
ever in one case, when the synergy buyer acquires all théopieitems and the current
one (middle line in Eqg. 8), the payoff is composed of two antsuithe option pricep;
will be gained for sure, in this case. However, the diffeeebetween the exercise and
reserve prices; — b; s (Which signifies the item actually changes hands) is acdwirdy
if the synergy bidder also wins all the subsequent auctiotimash =t + 1..n.

This is an important difference, since in one important cpset of the amount she is
about to receive depends on the outcome of future auctidresk&y, however, rests in the
key observation that the synergy buyer should be willingdmfore in total (i.e.K; +op;)
than in the direct auctions case. This will be analyzed imi section.

Note that the order in the auction sequence is importantsaters placed towards the
end of the auction sequence are likely to benefit more fronfatiethat a synergy bidder
is present in the auction. In practice, it would be desirablestablish the agenda such
that the most valuable items are sold first - see Fatima [Ba#0606] for a discussion.
The theoretical analysis provided in the next section, wewestarts from very general
framework, and would allow us to model any auction order.

Before presenting our analytical and experimental studysummarize for clarity the
assumptions used in the model in the form of Table I.

3. ANALYTICAL STUDY OF THE CASES IN WHICH OPTIONS CAN BENEFIT
BOTH SYNERGY BUYER AND SELLER

In Section 2, we derive the a-priori, expected profit for theesgy buyer and the sellers as
a function of the synergy buyer’s bids for a market with anthetit options. In this section,
we use these functions to determine the difference in prefiveéen the two markets, which
is 75; andmss,,, for the seller of good+; and the synergy buyer respectively, where:

Definition 3.1.

__ _op dir
st = T — Ty

__ op _ _dir
77652/” - 7Tsyn 7Tsyn

So if ms; andns sy, are positive, then both agents are better off with options.

3.1 Bidding strategies which ensure that both parties benefit from using options

Let B* denote the synergy buyer’s optimal bidding policy in a magkbere goods are
sold directly (without options). We assume for the rest oftlea 3 that forl < ¢ <

n, Fy(by) > 0 andF;(b;) < 1. So she may complete her bundle, but may also end up
paying for a worthless subset of goods. Thus she faces arsesg@roblem. For the

market with options, we define a benchmark strat@&y/ for the synergy buyer, so that
the two markets can easily be compared.

Definition 3.2. Letb; be the optimal bid that the synergy buyer would place in the
auction at time if no options are offered, anfl; the exercise price of the option sold at
timet (pre-set by the seller of god@l,). Under the assumptions thgt > K, and that local

ACM Journal Name, Vol. V, No. N, August 2012.



13

Synergy buyer Requires all the goodS;, sold at timeg = 1..n (full complementarity)
Decision-theoretic reasoning w.r.t. two distributions:

Fi(b:) in the direct auctions model

FP(op:) = Fy(bs — K) in the model with options

Local bidders Only want good, auctioned at time

Do not reason about bids placed by the synergy bidder

Maximal bid placed by local bidders modeledias; ;4

Behaviour can be captured by joint stochastic varidbte = max{b; maui, bt res

Only sell one good-; sold at timet through a closed, first price auction

Sellers Are patient (stay in the market longer) than synergy bidders
Have a residual (resale) valtig,., in case the good is unsold
Reservation Hidden: Seller cannot pre-commit and announce reservation value
values Seller may keep the good if maximal bid received under itesmegion
In first price auctions, seller will use its residual value. truthfully
Option Each seller sets and announces exercise pfges
model In the analysis, all bids} > K, otherwise bidder drops out.
Sellers’ prior Analytical part: Sellers know their position in auction sequence
knowledge ExperimentsSellers may not know their exact position in advance

Any type of distributions can be handled by the bound formglaown.

Type of distribution | For some distributions, the bids can only be determined mnicaily.
considered To give a closed form expression for optimal synergy bids,

uniform distribution are used (but in Section 3.2 only).

Table I. Summary of assumptions underlying the model.

bidders in the auction at timtedo not reason about the bids of the synergy bidder, we define

the benchmark strategy for the synergy buyer’s bids Witﬁwpto?/ = (opl,...,opl)
forl1 <t <nas:
op, = b, — K
The benchmark strategy implies that the synergy buyer wdlithe same total amount
for the good, as if she used her optimal bidding policy in aclisale market. Clearly this
does not have to be her profit-maximizing bid in a market wipeieed options are used.

In fact, it is almost always the case that the synergy buy#rbid a different value in a
market with priced options. This deviation from the benchms denoted by;:

Definition 3.3. Let); denote the deviation in the bid of the synergy buyer on thma ite
G, sold at timet, in a model with options, with respect to her profit-maximgbidb; in
a model without options. So her bid on an optionarwill be op} + ;.

| | | | |
Res op” op’+A op'+A* op’+As

Fig. 1. A possible situation in which options are desirable.

These definitions enable us to define the bounds within whieluse of options (with a
given exercise price) are desirable for both the synerggbagd the seller, for each good
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in the auction sequence (except the last one, for which tkere uncertainty, so the use
of options is indifferent). Fig. 1 gives the visual desdoptof a generic setting in which
options are beneficial for both sides. It shows the possiiole & synergy buyer can place
for an option. First, bids have to be bigger than the reseriee es, for each good in the
sequence. The poinp’ is where the synergy buyer keeps bidding the same total psce
in a market without options, c.f. Def. 3.2.

The deviations, in an option model, from the benchmarkdpidis measured by three
levels, all denoted by:

— )2 The minimal premium the seller requires to benefit from ggiptions ovenp’ (due
to the risk of remaining with the item unsold)

— \n: The maximal additional amount the synergy buyer is willioagpay for an option,
over his bid in an auction without optiong’, such that her expected profit is at least as
high as in the no-options case.

— \* = op* — op/, whereop* is the synergy buyer’s profit-maximizing bid in the market
with options.

Given these definitions, if it is rational for the synergy buyo bid an additional quantity
between\; and \,, (as shown in Fig. 1), then both she and the seller are beftevithf
options.

Inthe rest of Sect. 3, we derive the analytical expressidrisiwcan be used to determine
the values for\;, A\, and A\* and compare them. Before this, however, we describe an
important assumption behind the proofs in the remaindehnisfdection.

3.1.1 Overview of our proof techniqudn order to derive the. bounds defined above,
we use a recursive argument structure. First, we look at Wwhppens when we intro-
duce an option for just the first good, leaving the remainingds to be allocated using
the benchmark strategy, which mirrors the allocation ofradiauctions. Given the as-
sumptions defined above regarding the bidding behaviounefdcal bidders, the use of
a benchmark strategy by the synergy buyer would provide dhgesoutcomes as that of
a direct auction, without options. The availability of apis in the remaining auctions at
timest = 2..n would only increase her chances of winning the rest of thastaeeded to
complete her bundle which, in turn, will only increase wheg synergy bidder is willing
to bid in the first auction.

Formally, we only consider one of theparameters: the one corresponding to the first
good. Recall that, for this good, the buyer’s probabilityhof completing her desired bun-
dle, hence her exposure problem, is the greatest. Our ptroetsre could be generalized
as a recursive procedure: if one shows that options are bedédi use for the first item in
a sequence, given a remaining [non-empty] sequence obag¢this can be generalized to
all remaining sub-sequences (except for the very last itenwhich the analysis is trivial,
as options cannot bring a benefit by comparison to direci@nsjt

In order to analytically examine the benefits of deviatimmnirthe benchmark strategy
op} in the first auction, the proofs will use the supposition that synergy buyer will use
the benchmark strategy from Def. 3.2 for the remaining gandke sequence. The use
of the benchmark bidding strategy for the remaining itenmstzaseen as giving an “upper
bound” for the lower lambda value expected by the seller ¢;¢ and a lower bound for
the highest value that can be offered by the buyer §i;9. We can see this by examining
the effect of this assumption on each of the parties:
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—For thesynergy buyerBeing offered the opportunity to use options also in futawe-
tions can only increase her expected profit from future auwsti(sinceA* > 0 and
op* > op’). Otherwise, the synergy buyer will revert to using her thenark strategy
op’, which brings the same expected profit as the direct sale ¢$eseexpected profit
is at least as large in the options case as in the direct saei@m E(r), ,.,) >

E(Trgyn,t22)'

—For theseller of the first itemBecause for each of the following itemg* > op/, the
probability that the agent will get all the future items caryoincrease, for each of the
items in the sequence. Formally:’(op;) > FP(op),) = Fy(b}),Vh = 2..n. This
implies that[ ], _ 2 Fy(op}) = [T, _s Fu(b}), therefore the probability that the option
for the first item is exercised can only increase. Therefibiig,benchmark case acts as
a lower bound for the expected profit of the seller, and as aemipound on the,.

In future auctions the synergy seller and buyer can use rmtiout this will not nega-
tively affect the initial decisions, i.e. at the beginninfgttee auction sequence. Therefore,
the lambda values referred to in the equations in the foligvgiections could be formally
denoted ag\j** and\}:*, where in the general case it holds tHag, A, such that\; < Aj®
and), > A¢®. To avoid overloading the notation, we still useand A, but the reader
should be aware these refer to the tightest bounds on thedmltavalues, under the as-
sumption that the benchmark bidding strategy is used inwdtiens subsequent to the
current one.

3.1.2 When synergy buyer is better off with optiofis part of Section 3.1 examines
for which bids the synergy buyer is better off with optiondhidTis done by determining
the maximal amount she is willing to pay for options.

LEMMA 3.4. Let B* =< by > for 1 <t < n be the vector of optimal bids of the
synergy buyer in the model without options, and + \; be the bids in a model with
options. Then the expected gain (i.e. difference in exgaotefit) from using options
E(mssyn) €an be written as:

B(wssyn) = [0 @[] £:65 + 0 = [T B:00)]

[ZKH P+ ) - TR0+ 20)]
By f[ Fbi + 2)

Jj=1

E H (57 + ) - ﬁ&(b;;))}

j=1 k=1 k=1

PrROOFE We compute the difference in profit between a model withargiand a model
without options, using expected profit equations (6) and &3)defined in the previous
section. In a model without options, the optimal bids of theesgy buyer at each time step
t are given byb;. In a model with options, we express the bidding policy as\aatien
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with respect to the benchmark strategy with options gpe+ \;. This gives the difference:

E(msan) = { Vo (G {Z Kh] H F?(op} + \) }

n J
+{Z opj+/\ HF opk—l-)\k}
j=1 k=1
n n J
_ {usyn(G)HFi(bi)} [Z H }
=1 j=1 k=1
We can now replacep; with the definition of the benchmark strategy (i.e. sameltota
bid amount, as in the case without options), using the ptgserop, = by — K; and
FP(op, + At) = Fy(b; + At). This gives:

E(T"t?syn)

Il
| — |
—
S
w
<
3
—
Q
S—
|
L—
T I
=
| I
N>
—
o
—
o>
EEES
_|_
3/
N
| I

n

+[;(—b;+f(j HFk +/\k:|

n

_ [Usyn(a) 1T Fi(bi)] LG:l ﬁ }

=1

This formula is now re-grouped, separating the terms (G), >-7_, Kj, 37—, (=)
andZ;.‘:1 (—b3), each with its corresponding probabilities to completeptwof the proof:

n n

Bmseye) = [trn (@) [T 107 + 20 = [T 0)
4 [in(gle(b;; + k) — f[lF (07 + A ))}

i Zn;(_Aj)IHFk(bk + i)

+ [é(b;)(kﬁl Fr(b 4 M) — k]_[le(b}Z))}

O

To explain intuitively Lemma 3.4, the difference in expetrofits between the two
models is formed of 4 parts (corresponding to the 4 linegstFin an options model, the
synergy bidder has a higher probability of getting the akbundle and extract its value,
since she bids more in total (line 1). Furthermore, in anamstimodel, the bidder does
not have to pay exercise prices unless she acquiresitdms in the desired bundle (line
2). On the minus side, she does have to pay a set of additiomal@ats (line 3) for all
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items she bids on until one is lost (line 3) and, for these stethe chance of acquiring
them increases slightly, which also increases the chanlesibids (line 4).

In the following, we turn our attention to providing equatsothat allow us to deduce
the \ parameters that give the synergy buyer an incentive to usensp As previously
explained in Sect. 3.1.1 above, we simplify the proof stiteetoy only focusing on the
most important option for the synergy buyer: the one on ttet fiood (when bidding for
this good, the probability of not completing her entire blend the greatest). This is done
under the assumption that for the goods in the sequence sumaghe benchmark strategy
is used (i.e.\; = 0 for ¢ > 1). For the rest of the items in the sequence, the same proof
technique can be applied recursively.

THEOREM 3.5. Let\; be the deviation in the bidding strategy, compared to theben
mark strategyop’, as defined in Def. 3.2. I, = 0 for 1 < ¢ < n, then by definition,
E(m5syn) >= 01if 0 < A\ < A\j. The value of\;, (corresponding taF(mss,») = 0) can
be solved as the numerical solution to the following equmtio

Fi(b + M) = Fi(b] + M) | 32 KT e = [T Face))]
j=1 k=2 i=2

n

+ (B + M) = Fu(0) [0sn(G) [T 067 = S0 TT Fei)]

i=2 j=1 k=2

PROOFE The proof is based on the difference in profit function dedivn Lemma 3.4,
using the assumption that = 0 for 1 < ¢t < n. As the expectation function of the synergy
bidder is descending in the value bfwe determine whe® (7s4y,) = 0.

n

(00 (G)(E1 (b5 + M) = Fu(67) [T F:67))
=2

n

+ {ZKJ Fi (b7 + An) HFk (b3,)) — (F1(b] +Ah)HFi(b§))}
j=1 k=2 1=2

+ (= An)EF1 (DY + Ap)

+[i —b)(Fy (6 + An) — HFkbk]:

<.
—

Isolating the values o, yields the formula in Th. 3.5.

Fy (b5 + M) = (L7 + M) — Fa(60)[000n(@) [ ] Fi07)]

n

+ (b +Ah>[ZKj(H Fe(vp) - [T 6]

n J
R+ ) — (D) {Z b;>HFk<bz>}
j=1 k=2
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Which give the following equation for determining, :

Fi(b + M) = Fi(b] + M) | 32 KT v = [T Face)]
j=1 k=2 i=2

n

R0+ M)~ F0i) [0 (@) [T £ — 305 TT B 00)]
1=2 k=2

j=1
O

3.1.3 When the first seller is better off with optiond/e now determine the minimum
or lower bound); (the level of A that, according to Def. 3.3, keeps the seller(sf
indifferent about options). In order to compare this bidhailhe \;, from the previous
section, it is again assumed that= 0 for 1 < t < n.

THEOREM 3.6. If without options the synergy buyer bifs and with optionsp/, + A,
for Gy andop) for 1 < ¢t < n, thenE(ws;) for the seller ofG, is:

Blms1) = FL(b) (M + (e — K) [1 = T] F53)])
h=2
+ (F1(b] + A1) — F1(b7))(b7 + A1 — E(bmy|b] + Ay > bmy > b7)
+ (bares = K) [1 = [T Fa6i))
h=2

By definition, \; is the lower bound for\; that guarantees that the expected profit of
the sellerE(ws1) > 0. The value of\; can be obtained as the solution to the equation
E(ws1) = 0, which using the equation above gives:

(b + A)(=A) = By (b + 20)(br,res — K0 [1 = T Fu0)])
h=2

+ (F1(b + A1) — Fi(b7)) (b1 — E(bma[b] + A1 > bmy > b1))

PrROOF The difference in profit is equation (8) minus equation (5):
B(x?) — B(xi"") = (F7 (op1) [ops + (K1 = bu.res) ] Fi(omn)]
h=2

+ (1= F{ (op))(E(opmufopmi = op1) + K1 = b1 vcs))
— (FL®) (05 = bares) + (1 = Fy(b1) (B(bmalbm > b;) = br,ves) )
Recall that the the pricep; bid in an options model can be expressed in terms of the

benchmark strategyp; and the deviation; .

B(mo1) = F(oph + M)(oph + M + [ (K1 = bives) [T Fi(0n})])
h=2

+ (1 - Flo(opll + Al))(E(OpmﬂOpml 2 Opll + >\1) + Kl - bl,res)
— FL(B) (] — bures) — (1= Fy(6) (BB bmy > B) — by res)
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Furthermore, we can make the substitution to replagewith its definition, as follows:
op1 = opy + A1 =bf — Ky + Ay andFy (op1) = FY(oph + A1) = Fi (b + \1):

E(ms1) = F1(b] + A1) (0] — K1 4+ A1+ | (K7 — D1 res) H Foh(op;L):|)
h=2

-+ (F&(b;< —+ )\1) — Fl(bf))(fE(bmﬂb’{ —+ )\1 2 bm1 > bT) —+ bl,res)
— F1(07)(b1 — b1,res)
Split Fy (b5 + A1) into Fy (b7) and Fy (b5 + A1) — F1(b}) and combine som&; andby ...

n

B(ms1) = Fi (1) (— K1 + bipes + M1 + | (K1 = bires) [T Fi(on})])
h=2

RV M) — Fi G0 — K+ M+ (51— b o) T F2(orh)]
h=2
— E(bm1|b’{ + A > bmy > b’{) + eres)

Thus:
B(rs1) = Fr(00) O + (brres — K1) [1 = [T Fulei)])
h=2
F(FL (BT + A1) — FL (OB + M — E(bma|bt + Ay > by > bY)

(1o — K1) 1= H Fu(57))
h=2

Since, by definition,E(7s1) = 0 gives the value of\;, this value can be solved via the
equation in Th. 3.6.

Fi(b; + M)(=N) = Fu(bf + M) (bres = Kn) [1 = [T Fa6i)])
h=2

+(F1(b] + ) — F1(b7)) (0] — E(bmy|b] + A > bmy > bY))

O

Intuitively, the difference in profit has two parts: the cagéere the synergy buyer wins
the auction in both markets and the ones where she only witsoptions. With the first,
the synergy buyer pays more than she used to and with thedelbaersynergy buyer pays
more than the local bidders, who used to winif< );. But both cases have the downside
for the seller that the synergy buyer may now not exercisepton.

3.1.4 Condition for both synergy buyer and seller to be better affiwptions. The
previous parts of Section 3.1 give the equations for thescagen the individual agents
are better off with options. These results will now be corebito give the formal condi-
tion for when they are both better off. Intuitively, this abtion is equivalent to stating that
the minimum bid the seller af; requires should be below the maximal value the synergy
buyer is willing to pay. As shown the beginning of Section.,1he equations fak; and
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A, that are derived in Theorems 3.5 and 3.6 above are the natpassible interval val-
ues, under the assumption that all remaining auctions egetdiuctions. Let the solutions
to the equations in Theorems 3.5 and 3.6 be denotedband\{*. We show thad\;, Ay,
such that\; < A?¢ andA, > A%¢. Next, we summarize the results in a final theorem:

CoRoOLLARY 3.7. Under the condition that the optimal decision of the syndrgyer
is to bid A, additionally for an option oty (WhereA;® < X\, < Aj®), then both the seller
of G, and the synergy buyer have a higher expected profit in a mavitetonly options
compared to one without options.

PrROOF This corollary follows from the results of previous themse Say that the syn-
ergy buyer bidsp] + A, for the first good in the sequence, whefé < A\, < A¢® andop;
for the other goods. Then the synergy buyer bids more #paw A* > op’ + \; (because
A < Af%), so according to Theorem 3.6 the selleif has a higher expected profit with
options. Also, the synergy buyer bids betweer A, < A$® < \j, extra (as\, > A}*),
so according to Theorem 3.5 she too has a higher expectetlitbfioptions with these
bids. Thereforél a non-empty interval\;, A ] for which both parties prefer using options,
rather than a direct sale[]

3.2 Synergy buyer’s profit-maximizing bid with uniform distributions

In the previous sections, we focused our attention on degieguations for the bounds
and )\, between which the additional bids of the synergy buyer havialt in order for
both parties to be incentivised to use options. Note thatehwevious results are quite
general and hold for any type of distribution that the madibid from the other agents in
the first auction#b7) might follow.

While these bounds were defined in relation to the expectefit-praximizing bidb* in
a modelwithoutoptions, the optimal (i.e. expected profit maximizing) bjd in a model
with options have yet to be defined. The reason for this isdkaving this is much more
involved than the optimal policy in a model without optionis. this section, we look at
the synergy buyer’s profit-maximizing bidg™*, but with the additional assumption that
Fy(by) follows a uniform distribution in the range of the possiblds Note that, while
the analytical result provided here is for a uniform digitibn, the same effects hold for
Gaussian distributions. In fact, the optimal bids can bévddrfor Gaussian distributions,
but just not in a closed analytical form, as is done in thigisador uniform distributions.

In order to derive the optimal*, we do this by use the same framework introduced
in Def. 3.3 and Fig. 1 above. That means, we compute the daviat between the
optimal bid in a model with options and the optimal bid in a mbdithout options, i.e.
the difference\* = (K7 + op}) — b} (the reason to do this will become apparent in the
proof, but, basically, by taking the difference, severafm® drop out). Note that in this
section, we still apply the above results and assumptioardégg bidding the benchmark
strategy in future auctions, but to simplify the notatiorg still use\; and ), instead of
APS andAge.

If the profit-maximizing bidop; > op}] + A;, then according to Theorem 3.6 the seller
of G is better off with options. Therefore, it is in the rationatérest of the seller to set
the exercise price for selling her good such that the exgesgtémal bid of her buyers, in a
model with options, will provide sufficient incentive fordlseller to also use options, and
thus the following condition holdsip; > op} + A;. Note that in order to use Theorem 3.6,
the bids for the other goods are fixedbat. Firstop; and),; are derived.
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LEMMA 3.8. If Fy(by) follows a uniform distribution betweew andub, thenop; +
Ky — by = \*, where:

0.5(K1 (1 = [Ty Fo(b7)) + 327 K (TTh—y Fi(0}) — [Tig Fi(6))),
A =2 ifua < E(ﬂg‘%’kzﬁ < ub+ (ub — ua)
0, otherwise

PrRoOFE With a uniform bid distribution betweem: andub, the probability of winning
with bid b; has the following shape:

0, if by <wua
Fi(by) =< (b1 —ua)/(ub—ua) = a(by — ua), if ua <by < ub 9)
1, if b1 > ub

(10)

fulb) = 1/(ub —ua) = a, if ua < bl <ub
Y0, otherwise

For FY the variablesy,, ua, andub, are used, wherea, = ua — K7 andub, = ub— K,
SO thatF1 (bl) = Flo(Opl) Whenb1 - K| = op1.

First, we determine, for this type of distribution, the etprafor the optimal bich in a
model without options. To do this, we start from the expegedit equation (3):

n

E(ng%) = F1(b1) [vsyn(G) HFi(bi)] + Fi(b1)(=b1) + Fl(bl)[zn:(—bj) H F(by,)]
k=2

=2 j=2

n n 7

B(xti) = P = b1+ [0n(@) [T E0)] + [ D (=) [T Feo0)] |

i=2 j=2 k=2

So the derivative with respect tg:

Mg;)) = fulba) [~ b+ [vsyn<G>f[2Fi<bi>]
+ [Zn;(—bj) kfIQFk(bk)H LR (b)(~1) =0
Filling in the equationsj ;opfl andF_1 leads to:
@ [T 0] [3) H Fulb)] +ua = 2

Nevertheless, thé} obtained through this formula still has to satisfy the inédrcon-
straintsua < b7 < ub. This means:

[vsyn(G) l_gzz Fi(b;)] . [Z?—z(bj)QHi—g Fy(br)] N % b
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Which yields:

n

ua < [vsyn(G) H Z H bk < 2ub — ua

=2

Note that the middle expression is, in fact, the expressioritfe expected profit of a
direct synergy bidder, from the second auction onwards faek > 2), discounting the
bid to be paid for the first item. Therefore, we can rewrits ttondition as:

ua < E(wg%_’kzz) < ub+ (ub—ua)

From this form, it is easier to explain why outside this intdr \* = 0. If the expected
profit of the future sequendg(n(. ,-,) < ua, there is no point in the buyer to continue
bidding (either direct or with options), as she cannot affber desired bundle anyway.
Therefore, bothh* and \* should be zero. If the expected profit of the future sequence
exceeds the value ab with a whole intervakb — ua (i.e. E(w§;;7k>2) > ub+ (ub—ua),
then the direct bid assures the bidder of winning the itemugaform distributions are
bounded). But this means that options are also not usefidgam\* = 0 (there is no
point of bidding more than in a direct model).

To get the value of* outside these trivial cases is more involved. First, we asethe
optimal bidop} in @ modelwith options:

n J

Emgg")[vgyn [ZK,,} H op,] [z o) [] opk}

i= j=1 k=1
First, we isolateop; in the above equation:

E(Wsy7z) Fl (Opl |: Usyn Z Kh H F Opt :|

n

+ Fy(om)-om) + | 3 opj>HF,s<opk>}

Jj=2 k=2
E(’/ngn) = FOl (Opl) |: — op1 + ’Usyn Z Kh H 01 Opz)]
=2
> (o) I Fok(OPk)H

j=2 k=2
We take the derivative with respectdp; :

OE(n

80251?/") = f{(op1) { — op1 + [(Vsyn (G 2:: I;IFiO(Opi)]

+ [ (o) T Felope)]] + F(op)(-1) =0

j=2 k=2
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In order to determine the optimal valug;, we add the conditim% =0:

(0% [ - OPT + Usyn Z Kh H Opz)]

=2

n

T F(opi)] | + aolopi = uao)(=1) = 0

j=2 k=2
Which finally yields the following equation for determining;:

n

J
[(Vsyn (G Z Kp) H Fy(opi)] + [ Y _(—opy) [ [ Fi(opr)] + ua, = 20p7
i= Jj=2 k=2

We now focus our attention at computing the differeatdetween the optima decision-
theoretic bid in a model with options vs. a model without ops. By definition, we have
that: \* = (K7 + opy) — b}, S02\* = 20p} + 2K, — 2bj. When taking this difference,
ua, = ua — K7 andopy, are replaced according tg;, = op}, = b; — K; (because for the
other auctions, the benchmark strategy is used)fgh@dp). ) = F1(b7). Then all variables
cancel each other out, except for thg:

n

+[D (b + K;) H Fk(b}i)]] +ua — Ky

j=2 k=2
hence
22" = [0 (G ZKh H b)]
=2
n j
+ 1] Fk(b;)]} + ua+ K, — 2b°
j=2 k=2
thus

A" :0.5([ Veyn (G ZKh H b))
+ [Z(—’ﬁ + Kj) H Fk(bz*c)]] +ua + Ky

n n

— (o (@ T Fi®0)] + [3°(=5) [T Feb)]] +ua))
k=2

i=2 j=2
After some re-writing:
=S KW [[F®) + > K [] Feld;) + Ky
h=1 =2 Jj=2 k=2
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Re-arranging the parantheses:

N =0.5(K — Ky ﬁFi(bf) - zn:Kh ﬁFi(bf) + zn:Kj IT Feo0))

=2 h=2 =2 Jj=2 k=2

Which finally leads to the equation in Lemma 3.8:

n n n

A =05(K(1— [[E®)) + > K(]] Fe@r) - [T Fi ) (11)
J k=2

i=2 =2 i=2
1

The main intuition behind this formula is that, in an optiansdel, the synergy buyer
saves the exercise price when she fails to complete her @uiitierefore, it is her profit-
optimizing strategy, in a model with options, to increaselid with a part of the potential
savings on the exercise prices of subsequent auctions.

LEmMMA 3.9. If Fy(by) follows a uniform distribution, then the lower bound is:

M= =(b; = wa + [1 = [T Fal6p)] (brres — K1)+
h=2

+ $ (b3 — ua + [1 — ﬁ Fh(b;;)} (b1,res — K1))?

h=2

—2(bt — ua) [1 - H Fh(b;i)} (b1,res — K1)
h=2

PrROOF Take the); equation from Theorem 3.6. With a uniform distributidn,(b;) =
a(by — ua) andE(bmq|b + N\; > bmy > b7) = b} + 0.5);. So the equation becomes:

n

a (b} + A = ua)(=A) = a (b} + A — ua)(br,res — K1) [1 = [T Fubi)])
h=2

FaN (b — b — 0.5))

Dividing both sides byr and reducingj in the last parenthesis gives:
(01 + N —ua)(=N) = (0] + N — ua)((b1,res — K1) [1 - ﬁ Fh(bZ)}) + Ai(—=0.5))
h=2
After re-arranging the terms and moving the left -hand sidéaé right, this yields:
(b1 + M = ua) (A + (Br,pes = K1) |1 = ﬁ Fu(i)]) = 0.54F = 0
h=2

The above equation can be brought to standard, 2nd ordergmigl form in the unknown
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0 = 0.5\7 + N (b — ua + (b res — K1) [1 - H Fh(bZ)b
h=2

+ (0] — ua)((byres — K1) [1 = [T Fa67)])
h=2
This polynomial equation can then be solved via the quadfatmula:

N o= — (bt —ua+ [1 -1 Fh(b?;)} (b1res — K1)
h=2

| 0 = wat [1= TT Fai)| 0rres = K0)2 = 2065 = wa) [1 = T] Fuv)] br,res = K1)
h=2 h=2

Note that, formally, the conditioma < b* < wb should also be imposed in the above
equation. However, ib* for the direct sale case falls outside this interval (i.e.<if
E(rdir o) <wuaor< E(xdr ) > ub+ (ub— ua)), we know that the the lambda
of the seller\* = 0, so there is no point in the seller even considering offedptions.
Outside this interval, it makes no sense to compute an esiprefor ;. [

The next and final step involves comparing the equationafdfrom Lemma 3.8) and
A; (from Lemma 3.9), such as to derive a condition for when< A*. We found that
getting a closed form expression for this condition is natgole for these two equations.
However, the framework developed above is sufficient to kntie seller to solve this
condition numerically using a standard solver and, thuspsh the optimal level for the
exercise priceds;.

Note that all the analysis performed in this section (andyral, in this paper) refers
to using options when [at least] one of the buyers partigigain the sequential auction
market is a synergy buyer (and, thus, she has an exposurkeiproéis defined in the in-
troduction). All the optimal price bounds for options givieare refer to the case when
options serve to relieve this exposure problem of a buydr @edmplementarities.

It is conceivable, however, that options might also provefulsin cases when agents
do not have synergy valuations. For example, options cogld lze used in the case of
substitutabilities (i.e. when agents have to choose betaeet of items sold in sequence).
However, the complementarity problem is arguably the hartbeaddress, and this is why
we focus on it here, leaving the study of the usefulness abogtin other cases to future
work.

3.3 Numerical illustration of option pricing

In this section, before we provide the full experimentallgsia of the model, we provide
some details of the optimal pricing window (i.e. the intérfiea which op’ + \; < op’ +
A < op’ + \y). To this end, we use a configuration similar to the settirggdun the
experiments reported in Section 4.

We consider a basic setting with = 2 auctions, and a synergy bidder wanting both
items. Her valuation for getting both of these itemsds,. Now, in each of the 2 auctions
the bidder faces a number of local bidders only interesteaicuiring the item in that
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Fig. 2. lllustration of the size of the window for whielp’ + X\; < op’ + \* (for which using priced options
is beneficial for both seller and synergy bidder), in a seqeeaf 2 auctions and 2 cases: A (left). A synergy
bidder with a valuatiows,,,, = 24 faces one local bidder in each auction, with valuations dratwvandom from
N(p = 10,0 = 4). B (right). A synergy bidder with a valuation,,, = 28 faces 5 local bidders in each
auction, with valuations drawn at random fraW(p = 10,0 = 4).

auction, whose valuations are drawn from a normal distidbuiv (10,4). We consider
two settings: in the first one, a synergy bidder with a vabrafor 2 items ofv,,,, = 24
faces exactly one local bidder with valuation drawn fréwi10,4) per auction. In the
second setting, the valuation of the synergy bidder,js, = 28, but she faces 5 local
bidders with valuations drawn frodv (10, 4) in each auction. Moreover, we note that we
consider a seller that sets an exercise pficen advance, and theamefor both auctions
(i,e. K1 = Ky = K), where the value of is varied on the abscissa. The optimal price
intervals are illustrated in Figure 2.

Figure 2 illustrates that, for both configurations of valaempetition setting/price ex-
pectations, there is an interval in which the seller cantseteikercise pricé(, such that
op’ + A\ < op’ + A*. In these case, the increase in the bids of the synergy biddepared
to direct auctions (i.eA*) is above the minimum threshold increase expected by ther sel
(i.e. \;), to compensate for the risk of remaining with the first itensald. In our exam-
ple, note that this interval is considerably narrower indeeond case, due to the increased
competition. In both cases, adding more local bidders pei@uand increasing the mean
of the valuation distributions have an effect of narrowihg twindow” in which options
are beneficial for both parties. Note that we do not claim ltlaigpens in every configura-
tion, and there are many value settings in which it alwaysdbatop’ + \; > op’ + Ay,
i.e. the window in which sellers have an incentive to offetias - either free or positively
priced - may be empty.). However, as we discuss in the nekibseoptions can be bene-
ficial for both buyer and seller in a wide variety of settingsd in such settingsothseller
and synergy buyers would benefit, in expectation, from usptgn contracts.
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4. SIMULATION OF A MARKET WITH A SINGLE SYNERGY BUYER

This section presents an experimental examination of aeharih one synergy buyer. It

introduces the market entry effects in the synergy buyeatsalviour, as well as the thresh-
old effects that may determine which exercise prices thiersehooses for her options.
This experimental analysis is performed here for a markét wne synergy bidder and
several local bidders, while Sect. 5 considers a marketmithiple synergy bidders.

The experimental setting is as follows: we consider a sitiariavhere two goods A
and B are auctioned 4, andnp times respectively. The synergy buyer desires one copy
of both goods and has zero valuation for the individual goddsat is, each synergy (or
global) bidder requires exactly one bundle{of, B}3. In the setting considered in this
section, local bidders want only one good and participateni@ auction, thus their bids
can be modeled as a distribution.

Furthermore, in order to simplify the analysis of the modet, assume there is a sin-
gle seller who auctions all the goods. This is actually egjent to studying whethesn
averagesellers have an incentive to use options. To explain, on amgfessequence of
auctions taken in isolation, the sellers of different itemmesy have diverging incentives to
use options, based on their position in the auction queuadtasl at the end of section 2.5,
sellers with a later position in the auction queue may makeemwney). However, in a
very large setting, where buyers enter the market randanmydifficult for any individual
seller to strategize about her particular place in the segpiéand, furthermore, in most
markets she may simply have no information to do this). Owa goto study under which
conditions, on average, sellers benefit from using optibtiere are synergy buyers in the
market. Here, the average revenue can be also interpretie bsnefits of a typical seller,
if her position in the sequential queue were chosen at ran@drith is realistic in large
markets, with repeated interactions). Also, to somewtldiice the number of test param-
eters, we further assume that the exercise price is the samad fjoods of the same type.
So the seller needs to determine which exercise price fordwdrich for B maximize her
expected profit.

Note that, typically a seller has a resale value for the gdlogisremain unsold, which is
usually lower than the value at the start of the auction secgieThe reason for this may
be that there is some time discounting associated withnggitir a sequence of auctions to
resell her items, or even a listing cost, which is paid petiano¢such as in the eBay case).
In this paper, we do not explicitly simulate resale, but we ageservation value, which
represents the expected resale value the seller expeats, tid ghe is forced to resell her
items. To summarize, simulations were run in Matlab and haddllowing parameters:

Name | Description

n The number of auctions.

mean | The mean of price distribution.

std The standard deviation of price distribution.

res Reserve prices.

Vsyn Valuation of synergy buyer for A and B combined.

k Number of simulations for each auction run (i.e. how manyesm
a sequence of auctions is repeated for one set of parameters

13 An intuitive way to think about this setting is as a sequérsiae of individual shoes of exactly the same type,
whereA is the left shoe, and is the right shoe, and each synergy buyer requires exactyain.
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A basic simulation run is as follows. First, all possible ot sequences are determined
for the given number of auctions for A and B. The simulatiorihien run for all these
sequences, both for a direct sale setting and for a settiegerthe items are sold through
options with given exercise prices.

For each auction, in each simulation run, there is a set af lmdders, who are assumed
not to reason about the bids of the synergy buyer. The bidbesfet local bidders are
therefore, assumed to follow a normal price distributioithwhe parameters, mean, std
andres consisting out of two values: one for good A and one for goo&®&:. each sim-
ulation run, the synergy bidders(s) are asked to deterrhigie profit-maximizing bid for
that setting, as described in the next section. The optiiizaequired for determining
their optimal bid is done using the Matlab function “fminsg@ from the Optimization
Toolbox.

Since there may be considerable variance in the bids of tre¢ bidders each possible
auction sequence is runtimes (typically, we had: > 10000). The average profit of the
seller and the synergy buyer which are reported here, fdr thet case of with and without
options, are averages over all théssimulations and also over all possible auction orders
of items A and B in the sequence.

4.1 Synergy buyer’s bid strategy

This section describes how the synergy buyer determinebilisrin the simulation. In

order to neutralize the effect that the exact order itemaactioned in plays on the bidding
strategy, we add the assumption that the synergy buyer kttveumber of remaining
auctions, but not the order they will be held in. This remainhumber of auctions of
each type is common knowledge (i.e. the synergy bidders leeaya observe how many
auctions of each type are left before they have to leave titkethand so does the seller).

The model described here is for a situation without optioBst in order to apply it
to a situation with options, one merely has to replace thabkkes: b, = op, — K; and
Usyn (A, B) 1= vsyn(4, B) — K4 — Kp. Asin the analytical section, we assume a bidder
wants only a complete bundle ¢fi, B}. Thereforep,,,(A) = 0, veyn(B) = 0.

Determining the synergy buyer’s profit-maximizing ldil at statet basically involves
solving the Markov Decision Process (MDP), where we seleetoptimal bidb; at time
t, subject to the optimal bid;, ; being selected for the future time point- 1 (which in
this case, is an auction). We can, however, use the valufatimtion of the bidding agent
to significantly reduce the state space of the MDP, as showowbeHowever, first we
introduce some notation.

Let b* be the immediate best response to the state, which depenfidsiovariables:
za, 2B, X andl;. The variables:y, andzp are the number of remaining auctions fér
and B respectively (including the current auction), 89 < na, zg < ng. The type
of good, which is currently sold, is denoted Iy The set of goods the synergy buyer
owns (i.e. the endowment) is describedX¥ywhich can either b@, { A} or { B}. If X is
{A, B} then the synergy buyer is doffeLetQ(z4, 25, X, I+, b;) be the expected profit of

4 Note that the experimental settings used in the model corsideere preclude the possibility of the synergy
buyer from acquiring more options than she needs to make upelse@ed bundle. But it is theoretically possible
in our model, especially in settings with very low option psccompared to the synergy valuations, that the
synergy buyer is incentivised to hoard options for more itémas tshe really needs, and only choose to exercise
some of these in the end. We leave the examination of such caBether work.
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the synergy buyer when biddirtg. Note that, in these definitions;, ; andV; () denote
the best available bid, respectively best expected valuthéonext state (as computed by
recursion), while/; ; is the type of the next item in the auction sequence. Thezefming
MDP notation, the profit-maximizing bib} is determined as follows:

by = argmaxy, Q(za,z25, X, It,bt) (12)
Where the expected profit is determined via:

Q(za,2B, X, Iy = A bf ) = Fa(by)(—b;

+ Vig1(za — 1,25, X UAb; 1))+ (1 — Fa(b))Vig1(2a — 1,25, X,b; ;) (13)
Q(za,25,X,I; = B,by) = Fp(by)(—b,

+ Vig1(2a,2 = 1, X UB,b{ 1)) + (1 = Fp(b))Vig1(2a, 28 — 1, X,b; 1) (14)

WhereV () is the value of a state, which simply means the maximum ergegtofit of
that state:

‘/t(ZszBvX7bt) :ma'rbt Q(ZA)ZB7X7It7bt) (15)

Looking at the formula for)(), it basically says that for the probability of winning the
auction with her bid, the synergy buyer has to pay a pricelgquzer bid and the good is
included in the endowment of the next state. If she does not win the auction, then the
value of the current state is equal to the value of the neté sta

As we mentioned before, in computing its optimal biddingtgy used in the experi-
mental section, we assume the synergy buyer does not knotherttee next auction will
be for A or B, she knows only the total numbers of auctions faml B remaining. We
acknowledge this is a departure from the formulas in thertétemal analysis, where the
exact order of the auctions was taken into account to contpatkidding strategies. There
are two reasons to use this assumption here. The first isttreduces considerable the
state space that needs to be modeled when computed thezgitomi But the second is
that we also find this choice more realistic if this model ibéoapplied to real-life settings.
For example, when bidding on a part-truck order in a logistienario, it is more realistic
to assume that a carrier can approximate the number of foppertunities to buy a com-
plementary load, but not the exact auction order in whichreitoads will be offered for
auction.

If we assume the synergy buyer only knows the total numbeeasicfions for A and B
remaining (and not their exact order), then her biddingetiais based on assuming each
future auction has an equal probability to occur. Thereftre probability of an auction
for A occurring next is simply the number of remaining auscA divided by the total
number of remaining auctions. Thus, a weighted average eamsed to determine the
value of the next auction, while not knowing for which goowitl be for.

Apart from this general framework, we can prune the stateespédth the cases in which
we know the synergy buyer’s bid is zero:

bf = argmaxy, Q(0,25, X, B,b;) =0, with A ¢ X (16)
by = argmazxy, Q(z4,0,X,A,b;) =0, with B ¢ X a7
bix = argmary, Q(z4,28, X, I; € X,b;) =0 (18)

With the first two cases, the synergy buyer can no longer obiar desired bundle,
because she does not own the complementary item and therel®nce left of acquiring
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it. The last equation is for the case when the synergy buyeady has a copy of the type
of good (and, from her valuation function, she only wantscélyaone copy of A and B).
The corresponding values of these states are:

V(0,25,X,b;)=0,if A¢ X (19)
V(z4,0,X,0;)=0,if B¢ X (20)
V(za,zp,{A},b7) = V(0, 25, {A}, bF) (21)
V(za,zp,{B},b;) = V(24,0,{B},b}) (22)

The first two equations correspond to the case when the bayena longer get the
complementary-valued item, therefore the sequence ofcguscof the same type has no
value to her. In both these cadgs= 0. The last two equations are important, since they
help the most to reduce the state space. Basically, as glmeadtioned, we assume that
a synergy bidder only wants exactly one bundle{df B}. If she already owns a good
of one of the two types, she will no longer be interested inrémeaining auctions for that
type of good. Therefore, the valuati®f() of these states is equivalent to a state when no
auctions are remaining for the type of good she already oasisite would not take part
in those anyway). All these techniques help reduce the se®usearch.

To conclude, to determine the synergy buyer’s bids in amasiin, the values aff and
V() need to be calculated for the following states:

Vzp >0 Q(0,zp,{A}, B,b;)

Vza >0 Q(z4,0,{B} A, b)
VZA>O,ZB>O Q(ZA,ZB,Q,A,bt)
Vza > 0,25 >0 Q(za,25,0,B,b:)

Note that, in general, solving fdr; involves solving a continuous MDP - except for
some cases for which a closed form solution exists (e.g.abe of uniform distributions in
Section 3.2). Basically, in the setting considered herh gntall sequences of auctions, we
can treat solving for the optimal bids as a multi-variabl&rafzation problem, which can
be solved with standard optimization packages availabléddtiab. In larger settings with
more auctions, computing the solutions of this MDP may besitterably more involved,
and may require additional computational techniques the¢ mot been studied as part of
this paper. We note, however, that solving continuous MOf&ently, while not trivial,
is an active research area, and we provide sufficient deteitsthe solutions developed
there could be applied to our framework.

4.2 Experimental results: market entry effect for one synergy buyer

First, we study experimentally the incentives to use opgtifum the sellers and buyers, in
the case there is just one synergy bidder present in the indrkerder to study different
dimensions of such markets, we considered several conmsaif parameter settings.
The first setting has , = 2 andng = 2. As mentioned above, the local bidders only bid

in one local auction, without considering the bids placedhgysynergy bidder. Therefore,
their bids can be modeled as a distributionV (10, 4) for both goods. The goods A and B
are, in this model, of equal rarity and attract an equal arhofimdependent competition
during bidding. This choice is not random, as having a certeEgree of symmetry in
the experimental model allows us to reduce the number ofhpeter settings we need to
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consider. More specifically, we assume the same exercisespaire set for both goods of
type A and B. This is a reasonable assumption, because A ane & aymmetric value
and because bidders do not know in advance the exact ordds galh be sold in.

Furthermore, for each good, the seller has a reservatioevak = 8, which gives its
estimate resell value in the case the synergy buyer acquireption for the item, but fails
to exercise it. Since, on average, local bidders bid haveja@ated mean of 10 for an item,
20% is a reasonably safe estimate of a resell value.

The value of a bundle ofA,B} for the synergy buyer is an important choice, especially
in relation to the mean expectatignof the bids placed by single-item bidders. We con-
sidered two settings:(A, B) = 24 (thus 20% more, on average, than local competition) -
with results shown in Fig. 3, and A, B) = 21 (which is only 5% more on average than
local competition) - with results shown in Fig. 4.

Frofit increase % of seller and synergy buyer

ian

—&— seller
T
=
=
5 a
&0 S EI==3
W &
=
e
)

—H&— Synergy Buyer
-5 I 1 1 1 0

0 1 2 3 a 5 B 7
Exercise Price of Both Goods

Fig. 3. Percentage increase in profit for a model using optiotisrespect to direct sale, for the case there is one
synergy buyer is present in the market. In the setting, theréa items of type A sold and two items of type B.
For all 4 items, the bids of the local bidders follow the distition NV (10, 4), while the valuation of the synergy
buyerisv(A, B) = 24 (thus 20% more, on average, than the local bidders). Whatiisdzan the horizontal axis

is the exercise price with which the items are sold (assumieg dne set the same for all items, being of equal
rarity). Note that the figure is super-imposed: the left-haiui# axis refers exclusively to the seller, while the
right-hand side axis refers exclusively to the synergy éidérom this picture, one can already see the important
effect: synergy buyer prefers, on average, higher exeprises, while seller prefers lower ones. Note that there
is a sudden increase in profit, on the seller side, for theonpttase withk = ¢ > 0, with respect to direct
auctioning. This is simply because, with options, the sejigs to keep the item (for which it has a non-residual
value), rather than the buyer, who disposes of it (as in trextisale case).

Looking at these two figures, some important effect can berebd. First, we mention
that the seller has an immediately higher expected profft gfitions compared to direct
sale. This is because an option is sometimes not exercisethan the seller gets to keep
the good (for which she has a positive valuation), while treesgy buyer still pays the
option price.

There are two main effects to be observed from Fig. 3 and 4:
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Fig. 4. Percentage increase in profit for a model using optigtisrespect to direct sale, for the case there is one
synergy buyer is present in the market. The settings arelgxbhetsame as those is in Fig. 3 above: 2 auctions
for A and 2 for B, with local bidders followingV (10, 4). However, now the valuation of the synergy buyer is
v(A, B) = 21 (thus only 5% more, on average, than the local bidders). Oneee, however, that there is an
important difference by comparison to Fig. 3: the thresholdatfin the profit increase for the seller when the
exercise price/ > 2.5. Intuitively, the reason this effect occurs is the markanerffect on the part of the
synergy buyer, who would otherwise stay out for this lowdnaton

Profit increase % of seller and synergy buyer
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Exercise Price of Both Goods

Fig. 5. Percentage increase in profit for the case of one gynauyer, for longer auction sequences. The
settings in terms of valuations are exactly the same as thaeerig. 4 above: the synergy buyer has a value
v(A, B) = 21, while single-item bidders bid according9(10, 4). One change is that now there are 4 auctions
available for each type, i.e. 4 auctions for an item of typendl @ for B. Notice that now there are multiple
thresholds, since there are multiple points when the markgt effect of the synergy buyers appears. However,
on average, the percentage increases in expected profiteefeynergy buyers are lower, when compared to the
direct auctions case. The reason for this is that, with melfigture buying opportunities, the exposure problems
that synergy bidder faces decreases.
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Fig. 6. Influence of the position in an auction queue of an itenthe seller's expected profit. Settings are the
same as in Fig. 3, but with one important difference: the rafityhe goods is no longer symmetric. There is now
only 1 auction for a good of type A, but 7 auctions for a good/pEtB. What is varied along the horizontal axis is
the position in the auction queue of the sale of the rarer (t&itype A). The graph shows the absolute difference
in profit for a seller of an itenof type Band for the synergy buyer (i.e. the difference in profit betwan options
and direct auctions model). Note that, if the rare item of thpis sold at the end of the auction sequence, the
benefit of selling item B through an option increases, bezdus exposure risk of not acquiring item of type A
increases.

—First, the synergy buyer in such a market always préfajiserexercise prices (an effect
clearly seen in both Figs. 3 and 4). This may be counteriineuat first, but is a
rational expectation. If the option for an item is sold withigher exercise price, then
the synergy buyer can bid more aggressively on the optiarefgd get the item, since
she is “covered” for the loss represented by the exercise pfihe local bidders extract
no advantage from being offered the good as an options vseetdale, because, if they
acquire the option, they would always exercise it regasdl&herefore, they will simply
lower their bid for the option with the amount representedh®yexercise price.

—Second, the expected profit of the seller seems to decretsedeintervals if she has
to sell the option with a higher exercise price. The maineadsr this is that there
is some chance that she or she would remain with her item difsetause the option
is not exercised), and thus extract only her reservationevédr that item. There is,
however, an important difference between the cases showigir8 and 4, which is the
participation thresholds (that appear as “peaks” in theupg), where the expected profit
of the seller seems to “jump” at a new level. These can be mqidy the synergy buyer
joining the market, as the expected profit becomes non-iwegakhe threshold nature
is determined by the discrete nature of the auction sequesds explained below.

Such a participation threshold is illustrated in Fig. 4 is thcrease in the seller’s ex-
pected profit when the exercise price is set above a certah(& > 2.5, for the settings
in Fig. 4). Such thresholds can be explained as follows. dfgiinergy buyer currently
owns nothing, then she will only bid on a good if the numberasfiaining auctions and
their exercise prices give her a prior expectation of a pasjirofit. Conversely, if the
synergy buyer is not offered a sequence of option sales fromohashe derives a positive
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expected profit, she has the incentive to leave the markadether. There are two main
factors that increase a synergy buyer’s expected profit eqaence of auctions (sold as
options):

—The number of remaining future auctions of the other goodessary to complete her
bundle.

—The exercise price of the options (that only needs to be pgdtlieaend). This should be
high enough to cover the risk, given her valuation for thedbein

Note that in some market setting (such as the one in Fig. 3panticipation effects
(i.e. thresholds) occur, because the value the synergyr lasgigns to her desired bundle
is already high enough, so she would participate in the mankgway (i.e. regardless of
whether she gets offered options or not), and at any poititarseéquence that there is still
a chance of completing her bundle.

However, in the valuation settings in Fig. 4, the synergydswyill only bid on a good
if there are two remaining auctions for the other good. Sopshees a bid for A if the
auctions ar¢A, B, B], but not if they aréd A, B]. This is because with a single auction for
B, the risk of ending up with only a worthless A is too greatt Bua market with exercise
prices of at least 2.5, the risk is reduced and one remainintjam is already enough for
the synergy buyer to stay in the market. So a higher exercise pnables the synergy
buyer to stay the market, even if she owns nothing and thererdy a few auctions left,
which increases the seller's expected profit. This incr@agarticipation is beneficial to
the seller, who thus has an incentive to fix the exercise pice = Kg = 2.5.

4.3 Settings with longer sequences of auctions and effect of auction order

In the previous section, we examined a sequence of auctfiansmecific length ofiy =
2,np = 2. We now look at whether we can observe similar effects in #s=avhen the
number of opportunities to buy goods A and B increases. Wighexception of auction
lengths, the parameters are kept the same as in the preaseskirst, we keep the relative
rarity of both goods symmetrical, but increase the numbawuefions available for each to
4,i.e.ny = np = 4. Results are shown in Fig. 5.

Basically, there are two main effects to observe here. ,Ringt benefits to the buyer
of having options mechanism decreases (seen from compgméngercentage increases
shown in the right-hand vertical axis of Figs. 4 and 5). Thasom for this is that, in
sequential auctions, the number of available future oppdres plays a big role in how
big the exposure problem the synergy buyer faces is. If tleless exposure, then the
relative benefits of using options becomes smaller (althauig still quite considerable).
The second effect to be observed from Fig. 5 is that there are participation thresholds
(denoted by peaks), but they are smaller. The reason isftat,longer sequence of auc-
tions, there are more possible sequences of remainingpaumimbinations. The synergy
bidder will join in the bidding in some, but not in others, di#ag to multiple participation
thresholds.

The second problem we look in this subsection at is what hapgethe relative fre-
guency of the two goods is more asymmetric. We keep the saalentomber of auctions
in the sequence (8), but the relative frequency is highlyramgtric:ns = 1,np = 7. As
mentioned, in the previous graphs, results were averagedathpossible auction orders -
while here, by contrast, we look at auction orders one by one.
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For this setting, there are exactly 8 possible auction grdmrresponding to the point
where the rarer good (type A) can be inserted in the aucti@uguWhat is varied on the
horizontal axis is this position of the typg& good. The reason why we look at whether a
seller of items of type3 would use options is that the exposure of the synergy buyistsex
for the other good in the sequence. For the single item of Wpthe benefits of using
options are limited, because the synergy buyer has 7 otleioas in which to acquire the
second item anyway, hence she has much less of an exposbtermpro

Clearly, we can see an important effect of the position ofrttrer good in the auction
queue, from the perspective of both parties. If the item petA is sold at the very
beginning of the auction sequence, then the synergy bidaenb exposure problem left
for the rest of the sequence, hence there is no incentivee®pisons, for either party.
However, it is at the very end of the auction sequence, thergyrbuyer will not know
whether she would need the item acquired until all auctions Eor this case, the benefits
of using options are considerably greater.

5. MULTIPLE SYNERGY BUYERS

Finally, we consider market settings in which multiple sgyebuyers are active simulta-
neously. Much of the experimental set-up and parameteceblaire the same as described
in the above sections, for the case of one for the single gyrimryer. The only difference
is that now multiple synergy buyers may enter and leave thdehat different times and
they have different valuations for the combination of A and B

We have to emphasize that the results from this sectionidr@agter preliminary and are
based on some restrictions on the reasoning capabilityeafythergy buyers in the market.
Specifically, as in the single-bidder case, we assume thergyibidders have some prior
expectations about the closing prices in future auctiolscampute their optimal strategy
with respect to this expectation. In these results, thigetgiion is assumed the same for all
synergy bidders, which is a reasonable choice in compalieig $trategies, but assuming
the sequence of auctions considered is too short for othrargy buyers to learn about
existing competition and adapt their bids. In a more rdalistarket, however, synergy
bidders could be expected to be able to learn and adjustdkp@ctations based on past
interactions, as well as reason game-theoretically abeifect that another synergy bidder
may present in the market at the same time. At this pointethesre sophisticated forms
of reasoning are left to future work.

As in the previous section all simulations of this sectiomeneeserve prices of 8 and
local bidders following~ N(10,2.5). The first two experiments also have two synergy
buyerssyn; andsyno with valuations for both goods of 21.5 and 22.5 respectivélye
order the synergy bidders enter the market (and the numbeuaifons they can stay in)
are given in Figs. 9 and 10, while results for all settingssim@wn in Fig. 7, respectively
8. In the following, we will discuss these in separate sutises.

5.1 Two synergy buyers interacting indirectly through the exercise price level

In the setting examined here, the two synergy buyers eachhav= 3 andng = 3,
without the other agent participating in these auctions. ekample of such an auction
sequence is shown in Fig. 9. However, these two synergy sdtteinteract indirectly as
follows. Since options are sold through open auctions basdtie option price, the seller
has to fix the exercise prices for the whole market (i.e. fbaattions in the sequence).
So while synergy buyers may not participate in the same @ngtitheir presence does
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Fig. 7. Percentage increase in profits for a market with withireesgy bidders. There are 3 auctions for A and 3
for B, and for each one the bids from the competition formed bgllbidders follows the distributioiV (10, 2.5).

The valuations of the two synergy bidders for a burid#eB } are 21.1 forsyn1, respectively 22.5 fosyn2. The
order the agents enter the market is described by Fig. 9 belothé two agents do not compete directly against
each other in this setting). Notice that, in this case, tlegaye profit okyn2 does not decrease with the entry of
synl in the market.

Seller
Synergy Buyers

Exercise Prices

Fig. 8. Percentage increase in profits for a market with witlyrieggy bidders. The setting and valuations are
the same as in Fig. 7 above. However, the order the agentstbatararket is now described by Fig. 10 below
(so the two agentdo compete directly for the same goods). Notice that, in this,dhgeaverage profit ofyn2
decreases due to the additional competition fram1.

influence the competition through the exercise prices s¢tégeller.

This effect can be seen in Fig. 7, in which the seller maxisizer expected profit at
K = K, = Kp = 2.4. In this casesyns is better off, because without the presence
of syn, she would be offered options with lower exercise prices. 8gut; is worse off,
because if she were alone in the market the seller would ehgos 3.2, which gives her
a higher expected profit. Yet, due 4gn,, the seller seté& = 2.4. In this case, due to the
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Fig. 9. An auction sequence for the case shown in Fig 7.

seller’s choice of exercise prices, one synergy buyen{) gains, whilesyn, loses.

5.2 Direct synergy buyer competition in the same market

Next, we considered a setting in which synergy buyers coengieectly for some of the
goods. The entry points for such a setting are shown in Figwhile simulation results
are given in Fig. 8.

ABABAB
sy T s¥Ny
Sy Mo Sy Mo

Fig. 10. An auction sequence for the case shown in Fig. 8.

As can be seen in Figure 8, the profit @fn, drops at 2.5. In previous figures the
synergy buyers’ profits were monotonically increasing i éercise prices, because they
then have a smaller loss when they fail to complete their lsuriglt now this effect cannot
immediately compensate the extra competition coming fsgmy , who participates in the
same auctions more often after this threshold at 2.5. Sbjsrcase, both synergy buyers
lose from the presence of additional bidders. While one gynbuyer (i.e.syns) should
benefit because she is offered better (higher) exercisegti@n if she were alone in the
market, this effect cannot immediately compensate thetiaddi competition.

5.3 Larger simulation with random synergy buyers’ market entry

In the final results we report in this paper, we conducted gelascale simulation with
multiple synergy buyers, which can enter the market ranglowith a certain probability.

The experimental setup implies that each sequence of ascfforming a test case)
has 10 items of each type (i.ea4 = 10 andnp = 10). What differs from previous
settings is the random entry of synergy buyers. For eachoadhere is &5% chance
that a synergy buyer will enter the market. If she does, thenvhluation is drawn from
a uniform distribution between 20 and 22 and she will stayhainrarket for exactly four
auctions. To simplify matters, the auction sequence is fatdist selling A, then B, then
A etc. so that each synergy buyer will face exactly two aundifor an item of type A
and two for an item of type B. However, the general result &f flection is also true for a
random auction sequence, since the basic effects remasathe.

As shown in Figure 11, the seller’s profit now only has one mmaxn at 5, because
initially each increase in exercise prices causes, withesprobability, a synergy buyer
to participate more often. So each point is a threshold aagtbfit graph smooths out
over those many local maxima, corresponding to a steadyadser (on average) of the
expected profit. This result shows why it can be rational ffier $eller to have the same
exercise prices for all goods of the same type (e.g. the gan)eln a market with random
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Fig. 11. Percentage increase in seller’s profits in a largpe@mental setting, with synergy buyers randomly
entering the market.

entry of synergy buyers, the seller does not know which kaigee participating in any
particular auction. Her optimal policy is to set her exezgwices which maximize her
overall expected profit (in this cask, = 5).

6. DISCUSSION AND FURTHER WORK

This paper examined, from a decision-theoretic perspediie use of priced options as a
solution to the exposure problem in sequential auctionscovsider a model in which the
seller is free to fix the exercise price for options on the gogite has to offer, and then sell
these options in the open market, through a first price auctiechanism.

For this setting, we derived analytically, for a market witsynergy buyer and un-
der some assumptions, expressions that provide the bounilie @ption prices between
which both synergy buyers and sellers have an incentivee@pson contracts over direct
auctions. Next, we performed an experimental analysis éraé settings, where either
one or multiple synergy bidders are active simultaneousthé market. We show that, if
the exercise price is chosen appropriately, selling itdmeuigh priced options rather than
directly can increase the expected profits of both parties.

The overall conclusion of our study is that the proposedegriaptions mechanism can
considerably reduce the exposure problem that synergyelsddce when taking part in
sequential auctions. Furthermore, and most importaoth parties in the market have
an incentive to prefer and use such a mechanism. We showntihaany realistic market
scenarios, sellers can fix the exercise prices at a levebtihtprovides sufficient incentive
for buyers to take part in the auctions, as well as cover tigiof remaining with the items
unsold.

It is important to note, however, that sequential auctidocation is a highly complex
and still under-researched area, for which few exact aicalysolutions are known to ex-
ist. To our knowledge, this study provides a first decisiogeretic analysis for the use of
priced options to solve this problem. The analysis and tedai the several fundamen-
tal cases studied here can serve as a basis for future workr@ complex and realistic
settings. These include more complex market scenariosethgsvmore sophisticated rea-
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soning abilities on the part of participating synergy biddand sellers. For example, in
a large market, synergy bidders could be expected to useingastrategies to adapt to
changing market conditions, as well as the presence of strergy bidders who want
similar item combinations. However, the sellers of the #gerould also use learning to
choose better levels of the exercise priéésvith which to sell the options for their goods.

Other possible issues open to future research include: eteavkhere bidders have im-
perfect or asymmetric information about other particigantore complex preferences over
bundles, or different attitudes to risk. In order to studyrkess involving a variety of such
heterogeneous agents, a promising approach may be to usgaary game theory tech-
niques. Such an approach has already been considered fiimumus double auctions
(CDAS) by [Cai et al. 2007], but to our knowledge this has netib attempted before for
sequential auctions with complementarities.

To conclude, sequential auction bidding with complemegntaduations is a problem
that appears in many real-life settings, although no domistategies exist and bidders
face a severe exposure problem. The main intuition of thidkwsthat a simple options
mechanism, where sellers auction options for their goodith (@vpre-set exercise price),
instead of the goods themselves can go a long way in solvgxposure problem, and
can be beneficial to both sides of such a market.

In practical terms, the potential impact of having a worksajution to the exposure
problem in sequential auctions is considerable. One ex@miich was used to illustrate
some aspects of the model in this paper is decentralisedpiatation logistics [Robu
et al. 2008; Robu et al. 2011], where loads appear sequgntakr time, and a bidding
agent has to acquire a combination of these to fill her tramapon capacity (i.e. truck).
In decentralised electricity markets, much of the avadaddectricity supply (especially
that generated by renewable sources, such as wind or s@eagy@rcomes online with a
certain probability. In allocating this intermittent, ‘@&gn” electricity through an electronic
market, options could be a promising solution to deal withittherent uncertainty. Other
potential applications include retail electronic comnegfguch as those discussed in [Juda
and Parkes 2006] or keyword markets in sponsored seardgjdet al. 2010; Borgs et al.
2007; Robu et al. 2009]. In our future work, we plan to explibre application of priced
option mechanisms to some of these areas.
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