Skip to main content

Sparse Representation: Extract Adaptive Neighborhood for Multilabel Classification

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6230))

Abstract

Unlike traditional classification tasks, multilabel classification allows a sample to associate with more than one label. This generalization naturally arises the difficulty in classification. Similar to the single label classification task, neighborhood-based algorithms relying on the nearest neighbor have attracted lots of attention and some of them show positive results. In this paper, we propose an Adaptive Neighborhood algorithm for multilabel classification. Constructing an adaptive neighborhood is challenging because specified information about the neighborhood, e.g. similarity measurement, should be determined automatically during construction rather than provided by the user beforehand. Few literature has covered this topic and we address this difficulty by solving an optimization problem based on the theory of sparse representation. Taking advantage of the extracted adaptive neighborhood, classification can be readily done using weighted sum of labels of training data. Extensive experiments show our proposed method outperforms the state-of-the-art.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zhang, M., Zhou, Z.: Ml-knn: A lazy learning approach to multilabel learning. Pattern Recognition 40(7), 2038–2048 (2007)

    Article  MATH  Google Scholar 

  2. Cheng, W., Hullermeier, E.: Combining instance-based learning and logistic regression for multilabel classification. Machine Learning 76(2/3), 211–225 (2009)

    Article  Google Scholar 

  3. Schapire, R., Singer, Y.: Boostexter: A boosting-based system for text categorization. Machine Learning 39(2/3), 135–168 (2000)

    Article  MATH  Google Scholar 

  4. Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. Advances in Neural Information Processing Systems 14, 681–687 (2002)

    Google Scholar 

  5. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(2-3), 210–227 (2009)

    Article  Google Scholar 

  6. Qiao, L., Chen, S., Tan, X.: Sparsity preserving projections with applications to face recognition. Pattern Recognition 43(1), 331–341 (2010)

    Article  MATH  Google Scholar 

  7. Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution as sparse representation of raw image patches. In: Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8 (June 2008)

    Google Scholar 

  8. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Process. 15(12), 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  9. Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Review 51(1), 34–81 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Natarajan, B.K.: Sparse approximation solutions to linear systems. SIAM J. Comput. 24(2), 227–234 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Review 43(1), 129–159 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(22), 2323–2326 (2000)

    Article  Google Scholar 

  13. Tenenbaum, J., Silva, V., Langford, J.: A global geometric framework for nonlinear dimensionality reduction. Science 290(22), 2319–2322 (2000)

    Article  Google Scholar 

  14. Liu, J., Ji, S., Ye, J.: SLEP: Sparse Learning with Efficient Projections. Arizona State University (2009)

    Google Scholar 

  15. Diplaris, S., Tsoumakas, G., Mitkas, P., Vlahavas, I.: Protein classification with multiple algorithms. In: Bozanis, P., Houstis, E.N. (eds.) PCI 2005. LNCS, vol. 3746, pp. 448–456. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Katakis, I., Tsoumakas, G., Vlahavas, I.: Multilabel text classification for automated tag suggestion. In: Proceedings of the ECML/PKDD 2008 Discovery Challenge (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xiang, S., Chen, S., Qiao, L. (2010). Sparse Representation: Extract Adaptive Neighborhood for Multilabel Classification. In: Zhang, BT., Orgun, M.A. (eds) PRICAI 2010: Trends in Artificial Intelligence. PRICAI 2010. Lecture Notes in Computer Science(), vol 6230. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15246-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15246-7_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15245-0

  • Online ISBN: 978-3-642-15246-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics