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Abstract. Symmetry can be used to help solve many problems. For instanc
Einstein's famous 1905 paper ("On the Electrodynamics o¥ikigp Bodies”)
uses symmetry to help derive the laws of special relatiVityartificial intelli-
gence, symmetry has played an important role in both prolkpresentation
and reasoning. | describe recent work on using symmetrylposudve constraint
satisfaction problems. Symmetries occur within individs@lutions of problems
as well as between different solutions of the same problgmngetry can also
be applied to the constraints in a problem to give new symmetmstraints.
Reasoning about symmetry can speed up problem solving, anded to the
discovery of new results in both graph and number theory.

1 Introduction

Symmetry occurs in many combinatorial search problemsekample, in the magic
squares problem (prob019 in CSPLIib [1]), we have the symatetinat rotate and re-
flect the square. Eliminating such symmetry from the segrabiesis often critical when
trying to solve large instances of a problem. Symmetry camobothwithin a single
solution as well abetweerdifferent solutions of a problem. We can akgoplysymme-
try to the constraints in a problem. We focus here on comdteatisfaction problems,
though there has been interesting work on symmetry in othgast of problems (e.g.
planning, and model checking). We summarize recent workaypg in [2,3,4].

2 Symmetry between solutions
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A symmetryos is a bijection on assignments. Given a set of assignmératsd a sym-
metryo, we writeo(A) for {o(a) | a € A}. A special type of symmetry, callesblution
symmetrys a symmetrypetweerthe solutions of a problem. More formally, we say that
a problem has thsolution symmetry iff o of any solution is itself a solution [5].
Running example: The magic squareproblem is to label an by n square so
that the sum of every row, column and diagonal are equal @t8bin CSPLib[[1]).
A normalmagic square contains the integers 1rits We model this with? variables
X, ; whereX; ; = k iff theith column andjth row is labelled with the intege.
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“Lo Shu”, the smallest non-trivial normal magic square hasem known for over
four thousand years and is an important object in ancienin@bé mathematics:
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The magic squares problem has a number of solution symmeefaE example,
consider the symmetpy; that reflects a solution in the leading diagonal. This map “Lo
Shu” onto a symmetric solution:
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Any other rotation or reflection of the square maps one sotutinto another. The 8
symmetries of the square are thus all solution symmetrids®problem. In fact, there
are only 8 different magic square of order 3, and all are in #a@ne symmetry class.

One way to factor solution symmetry out of the search spate [®st symmetry
breaking constraints. See, for instancé, |[6,7.8/9,102(13,14]. For example, we can
eliminateo, by posting a constraint which ensures that the top left adsremnaller than
its symmetry, the bottom right corner. This seletts (1) dimdieates[(2). Symmetry can
be used to transform such symmetry breaking constraint&¢2lexample, if we apply
o4 to the constraint which ensures that the top left corner iallemthan the bottom
right, we get a new symmetry breaking constraints which egssthat the bottom right
is smaller than the top left. This seledi$ (2) and elimingds

3 Symmetry within a solution

Symmetries can also be found within individual solutionsaafonstraint satisfaction
problem. We say that a solutioficontainsthe internal symmetry (or equivalentlyo
is a internal symmetrwithin this solution) iffo (A) = A.

Running example: Consider again “Lo Shu”. This contains an internal symmetry
To see this, consider the solution symmetyy, that inverts labels, mapping onto
n? + 1 — k. This solution symmetry maps “Lo Shu” onto a different (ognhmetric)
solution. However, if we now apply the solution symmetgy that rotates the square
180°, we map back onto the original solution:
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Consider the composition of these two symmetidgs; o o1s9. As this maps “Lo
Shu” onto itself, the solution “Lo Shu” contains the intetreymmetrys;,,, © o150-

In general, there is no relationship between the solutionnsgtries of a problem
and the internal symmetries within a solution of that prahl&here are solution sym-
metries of a problem which are not internal symmetries withny solution of that



problem, and vice versa. However, when all solutions of &lgm contain the same
internal symmetry, we can be sure that this is a solution sgtnnof the problem itself.
The exploitation of internal symmetries involves two stefosding internal symme-
tries, and then restricting search to solutions contaipisgthese internal symmetries.
We have explored this idea in two applications where we haenlable to extend the
state of the art. In the first, we found new lower bound cedtiéis for Van der Waer-
den numbers. Such numbers are an important concept in Rahesay. In the second
application, we increased the size of graceful labellingsvn for a family of graphs.
Graceful labelling has practical applications in arease llommunication theory. Be-
fore our work, the largest double wheel graph that we fourstegfiul labelled in the
literature had size 10. Using our method, we constructedfisteknown labelling for a
double wheel of siz4.
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