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Symmetry within and between solutions⋆
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Abstract. Symmetry can be used to help solve many problems. For instance,
Einstein’s famous 1905 paper (”On the Electrodynamics of Moving Bodies”)
uses symmetry to help derive the laws of special relativity.In artificial intelli-
gence, symmetry has played an important role in both problemrepresentation
and reasoning. I describe recent work on using symmetry to help solve constraint
satisfaction problems. Symmetries occur within individual solutions of problems
as well as between different solutions of the same problem. Symmetry can also
be applied to the constraints in a problem to give new symmetric constraints.
Reasoning about symmetry can speed up problem solving, and has led to the
discovery of new results in both graph and number theory.

1 Introduction

Symmetry occurs in many combinatorial search problems. Forexample, in the magic
squares problem (prob019 in CSPLib [1]), we have the symmetries that rotate and re-
flect the square. Eliminating such symmetry from the search space is often critical when
trying to solve large instances of a problem. Symmetry can occur bothwithin a single
solution as well asbetweendifferent solutions of a problem. We can alsoapplysymme-
try to the constraints in a problem. We focus here on constraint satisfaction problems,
though there has been interesting work on symmetry in other types of problems (e.g.
planning, and model checking). We summarize recent work appearing in [2,3,4].

2 Symmetry between solutions

A symmetryσ is a bijection on assignments. Given a set of assignmentsA and a sym-
metryσ, we writeσ(A) for {σ(a) | a ∈ A}. A special type of symmetry, calledsolution
symmetryis a symmetrybetweenthe solutions of a problem. More formally, we say that
a problem has thesolution symmetryσ iff σ of any solution is itself a solution [5].

Running example: The magic squaresproblem is to label an by n square so
that the sum of every row, column and diagonal are equal (prob019 in CSPLib [1]).
A normalmagic square contains the integers 1 ton2. We model this withn2 variables
Xi,j whereXi,j = k iff the ith column andjth row is labelled with the integerk.
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“Lo Shu”, the smallest non-trivial normal magic square has been known for over
four thousand years and is an important object in ancient Chinese mathematics:

4 9 2
3 5 7
8 1 6

(1)

The magic squares problem has a number of solution symmetries. For example,
consider the symmetryσd that reflects a solution in the leading diagonal. This map “Lo
Shu” onto a symmetric solution:

6 7 2
1 5 9
8 3 4

(2)

Any other rotation or reflection of the square maps one solution onto another. The 8
symmetries of the square are thus all solution symmetries ofthis problem. In fact, there
are only 8 different magic square of order 3, and all are in thesame symmetry class.

One way to factor solution symmetry out of the search space isto post symmetry
breaking constraints. See, for instance, [6,7,8,9,10,11,12,13,14]. For example, we can
eliminateσd by posting a constraint which ensures that the top left corner is smaller than
its symmetry, the bottom right corner. This selects (1) and eliminates (2). Symmetry can
be used to transform such symmetry breaking constraints [2]. For example, if we apply
σd to the constraint which ensures that the top left corner is smaller than the bottom
right, we get a new symmetry breaking constraints which ensures that the bottom right
is smaller than the top left. This selects (2) and eliminates(1).

3 Symmetry within a solution

Symmetries can also be found within individual solutions ofa constraint satisfaction
problem. We say that a solutionA containsthe internal symmetryσ (or equivalentlyσ
is a internal symmetrywithin this solution) iffσ(A) = A.

Running example: Consider again “Lo Shu”. This contains an internal symmetry.
To see this, consider the solution symmetryσinv that inverts labels, mappingk onto
n2 + 1 − k. This solution symmetry maps “Lo Shu” onto a different (but symmetric)
solution. However, if we now apply the solution symmetryσ180 that rotates the square
180◦, we map back onto the original solution:

4 9 2
3 5 7
8 1 6

σinv

⇒
⇐
σ180

6 1 8
7 5 3
2 9 4

Consider the composition of these two symmetries:σinv ◦ σ180. As this maps “Lo
Shu” onto itself, the solution “Lo Shu” contains the internal symmetryσinv ◦ σ180.

In general, there is no relationship between the solution symmetries of a problem
and the internal symmetries within a solution of that problem. There are solution sym-
metries of a problem which are not internal symmetries within any solution of that



problem, and vice versa. However, when all solutions of a problem contain the same
internal symmetry, we can be sure that this is a solution symmetry of the problem itself.
The exploitation of internal symmetries involves two steps: finding internal symme-
tries, and then restricting search to solutions containingjust these internal symmetries.
We have explored this idea in two applications where we have been able to extend the
state of the art. In the first, we found new lower bound certificates for Van der Waer-
den numbers. Such numbers are an important concept in Ramseytheory. In the second
application, we increased the size of graceful labellings known for a family of graphs.
Graceful labelling has practical applications in areas like communication theory. Be-
fore our work, the largest double wheel graph that we found graceful labelled in the
literature had size 10. Using our method, we constructed thefirst known labelling for a
double wheel of size24.
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