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Abstract

Given a spatio-temporal network (ST network) where
edge properties vary with time, atime-sub-interval min-
imum spanning tree(TSMST) is a collection of minimum
spanning trees of the ST network, where each tree is asso-
ciated with a time interval. During this time interval, the
total cost of tree is least among all the spanning trees. The
TSMST problem aims to identify a collection of distinct
minimum spanning trees and their respective time-sub-
intervals under the constraint that the edge weight func-
tions are piecewise linear. This is an important problem
in ST network application domains such as wireless sen-
sor networks (e.g., energy efficient routing). Computing
TSMST is challenging because the ranking of candidate
spanning trees is non-stationary over a given time inter-
val. Existing methods such as dynamic graph algorithms
and kinetic data structures assume separable edge weight
functions. In contrast, we propose novel algorithms to
find TSMST for large ST networks by accounting for both
separable and non-separable piecewise linear edge weight
functions. The algorithms are based on the ordering of
edges in edge-order-intervals and intersection points of
edge weight functions.

1 Introduction

A spatio-temporal network is a network consisting of
nodes with location information and edges connecting
these nodes. The topology and network parameters (such
as edge cost) of a spatio-temporal network change with
time. These kind of networks appear in numerous applica-
tions such as energy-efficient routing in a wireless sensor
network [16, 18].

In a typical wireless sensor network, large number of
sensor networks are scattered in the observation field.
Once deployed, physical access to these nodes may prove

to be difficult. Thus, energy conservation becomes a im-
portant constraint in designing algorithms for these kind
of sensor networks. In many wireless sensor network ap-
plications the nodes are not stationary, i.e., they change
their physical position with time, for example, sensor net-
work among robots on a reconnaissance mission [23].
Usually in such scenarios, the sensor nodes physically
move on a predetermined trajectory to collect data in ob-
servation field [22]. One of the important problems per-
taining to these kind of sensor networks is to maintain net-
work connectivity among the individual nodes such that
the total cost of transmission among the nodes is mini-
mum. This can be modeled as a spatio-temporal network
with nodes representing sensor nodes and transmission
link among any two sensor nodes represented as an edge.
The weight of an edge in the network represents energy re-
quired to transmit along that particular transmission link.
Now the problem is to maintain an energy-efficient com-
munication network among the sensor nodes such that
there is a path between any two nodes and the total sum of
the energy required for transmission for all edges involved
is minimum. Traditionally minimum spanning trees have
been used to solve these kind of problems [16, 18] in a
static environment; but these no longer hold in a non-static
environment.

Figure 1(a) shows a wireless sensor network main-
tained among a group of sensors moving on prede-
termined trajectories as depicted in Figure 1(b). In
Figure 1(a), we assume that there is no direct connectivity
between the sensor nodes 1 and 4, and that sensor node
5 is connected only to sensor node 3. This network of
sensors is represented as a ST network in Figure 2(a)
where the sensors are represented as nodes and the com-
munication link between any two sensors is represented
as an edge. Time dependent edge weights represent cost
of packet transmission between sensors. Since the sensor
nodes are moving, the distance between any two nodes
changes with time. The energy required to transmit data
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Figure 1: Sample wireless sensor network.

from one node to another is directly proportional to the
square of distance between them [16]. Thus, even a small
change in distance would affect the cost of transmission
significantly. The solution to the time-sub-interval
minimum spanning tree (TSMST) problem effectively
determines the energy-efficient communication paths
among these sensor nodes.

1.1 Motivation

The limited energy of the sensor nodes requires efficient
transmission of information so that the network lifetime is
increased. A lot of work done in this area [13, 16, 18, 20,
21] assume that the sensors nodes are stationary.

Computing TSMST is expensive because of the
non-stationary ranking of candidate spanning trees in a
ST network. This is illustrated in Figure 2. Figure 2(b)
shows the minimum spanning trees (MSTs) at different
time instants for the ST network shown in Figure 2(a).
The total costs of these minimum spanning trees are given
in Table 1. Figure 2(b) shows that both spanning tree and
total cost of spanning tree change with time.

1.2 Contributions

We present the problem of time-sub-interval minimum
spanning tree (TSMST) in a spatio-temporal network. We
propose two algorithms to find the TSMST on a spatio-
temporal network and provide analytical evaluations of
the proposed algorithms. The algorithms allow the ST
network to have both separable as well as non-separable
edge weight functions. We also present the experimental
analysis of the algorithms proposed.

The rest of the thesis is organized as follows. Chapter
2 defines the concepts used in the paper, followed by
the problem definition of TSMST on a spatio-temporal
network. Related work is described in Chapter 3. In
Chapter 4, two algorithms for solving the TSMST
problem are presented. We present correctness and

Time Total cost
MST-a MST-b MST-c MST-d

1 8 11 13 10
2 10 7 9 10
3 13 11 10 12
4 5 6 6 5

Table 1: Total cost of MSTs at various times.

time complexity analysis of our algorithms in Chapter
5. Chapter 6 presents the experimental design and
performance analysis. We conclude in Chapter 7.

2 Basic Concepts and Problem Def-
inition

We model a spatio-temporal network as atime-
aggregated-graph(TAG) [10, 11]. A time aggregated
graph is a graph in which each edge is associated with a
edge weight function. These functions are defined over
a time horizon and are represented as a time series. For
instance edge (3,5) of the graph shown in Figure 2(a) has
been assigned a time series [4 3 5 2], i.e., the weight of
the edge (3,5) at time instants t=1, 2, 3, and 4 are 4, 3, 5,
and 2 respectively. The edge weight is assumed to vary
linearly between any two time instants. We also assume
that no two edge weight functions have same values for
two or more consecutive time instants of their time series.
If such a case occurs then the values of any one of the
edges are increased (or decreased) by small quantityǫ to
make them distinct. For example, in Figure 2(a) weight
functions of the edges (1,2) and (2,3) have same values
for time t=3 and t=4. The edge weight functions of graph
in Figure 2(a) are shown in Figure 3.

Definition 1 (Time-sub-interval). A time-sub-interval,
denoted asi = (is, ie), is a maximal sub interval of time
horizon[1,K] which has a unique MST. This unique MST
is denoted asTMST (i). In other words, the ranking of
candidate spanning trees (based on the total cost of tree)
is stationary during a time-sub-interval.

For example, Figure 4 shows the 4 time-sub-intervals
and the MSTs during those time periods.

Definition 2 (Edge-order-interval). An edge-order-
interval, denoted asω = (ωs, ωe), is a sub interval of
time horizon[1,K] during which there is a clear ordering
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Figure 2: Spatio-temporal network and its corresponding MSTs at various times.
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of edge weight functions, i.e., none of them intersect with
each other.

An edge-order-interval is guaranteed to have a unique
MST (see Proposition 1). Two or more consecu-
tive edge-order-intervals may have the same MST. A
time-sub-interval is usually composed of one or more
edge-order-intervals. For example, in Figure 3, the
interval (2.66 3.0) is an edge-order-interval whereas the
interval (2.66 3.66] is a time-sub-interval which is a union
of three consecutive edge-order-intervals (2.66 3.0), (3.0
3.5) and (3.5 3.66).

Lemma 1. If all the edge weights of a graph are distinct,
then there is a unique minimum spanning tree.

Proof. (By contradiction) LetT1 and T2 be two dif-
ferent minimum spanning trees of a graph. Let
OT1 = e1e2e3e4 . . . eiei+1 . . . en−1 be the increas-
ing order of the edge weights ofT1 and OT2 =
e′1e

′

2e
′

3e
′

4 . . . e
′

ie
′

i+1 . . . e
′

n−1 be the increasing order of the
edge weights ofT2. Heren is the number of vertices in the
graph. Without loss of generality assume thatej is same
ase′j , ∀j ≤ i. Further assume thatei+1 < e′i+1. Now
consider the cycle generated by adding the edgeei+1 to
T2. Only one such cycle can be created asT2 is a span-
ning tree of the graph. Now if this cycle contains only
the edgese′j wherej ≤ i, then it implies that there is a
cycle inT1 asej is same ase′j, ∀j ≤ i (a contradiction).
Now, if the cycle contains some edgese′j wherej ≤ i

and e′i+1, then we can replace the edgee′i+1 with ei+1

and make a minimum spanning tree of lower cost contra-
dicting the fact thatT2 is a MST. Consider the case when
the cycle contains the edgese′j wherej ≥ i + 1. Let e′j
wherej 6= i + 1 be any edge of the cycle, then we have
ei+1 < e′i+1 < e′j . Again, we can replace edgee′i+1 with
ei+1 and make a MST of lower cost contradicting the fact
thatT2 is a MST. Therefore, we can conclude thatT1 and
T2 are same.

Proposition 1. An edge-order-interval has a unique MST.

Proof. Using Lemma 1, if all the edge weights are dis-
tinct, then there is a unique MST. In an edge-order-interval
there is a clear ordering among the edges for all time in-
stants (no two edge weight functions intersect); therefore,
there will be an unique MST.
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Figure 4: Time sub-interval minimum spanning trees.

2.1 Problem Definition

Given an undirected ST networkG = (V,E) whereV
is the set of vertices of graph,E is the set of edges, and
each edgee ∈ E has a weight function associated with
it. The weight function is defined over the time horizon
[1,K]. The problem ofTSMST is to determine the set
of distinct minimum spanning trees,TMST (i), and their
respective time-sub-intervals,i = (is, ie).

The total cost ofTMST (i) is least among all other
spanning trees over its respective time-sub-intervali =
[is, ie] where0 ≤ is ≤ ie ≤ K.

We assume that for all edgese ∈ E, the edge weight
function is defined for the entire time interval[1,K]. The
weight of an edge is assumed to vary linearly between any
two time instants of time series.

In our example of an energy efficient communication
network maintained by a group of sensors, the communi-
cation network is represented as a ST network shown in
Figure 2(a). The collection of distinct minimum spanning
trees and their corresponding time-sub-intervals is shown
in Figure 4.

3 Related Work

The related work is classified based on candidate spanning
tree ranking. The traditional greedy algorithms for de-
termining MST assume stationary ranking. Related work
done in the area of non-stationary ranking assume separa-
ble edge cost. In contrast our work proposes algorithms
for non-stationary ranking case by accounting for both
separable and non-separable edge weights.

3.1 Classical Greedy Algorithms

Classical methods for computing minimum spanning
trees [4, 5, 17] were developed for static networks and
assume stationary ranking of candidate trees (see Figure
5), i.e., they assume that mutual ranking (on basis of to-
tal cost) among the spanning trees does not change with
time. Therefore, the classical greedy algorithms such

Figure 5: Related work classification

as Kruskal’s [17] and Prim’s [17] cannot be applied to
TSMST problem on spatio-temporal networks.

3.2 Dynamic Graph Algorithms

Dynamic graph algorithms and kinetic algorithms incor-
porate non-stationary candidate ranking by making use of
dynamic data structures such as topology trees [8, 9] and
dynamic trees [19]. However, dynamic data structures can
model only discrete changes such as single edge insertion,
deletion or weight modification [6, 8, 14, 15]. Hence, they
cannot handle piecewise linear edge weight functions.

Kinetic algorithms [1, 3, 12] combine parametric op-
timization along with dynamic data structures. In a para-
metric optimization problem [7], each edgee is associated
with a linear weight function. Kinetic algorithms trans-
form the edge weight functions to a dual plane, i.e., any
edge weight functionwe = aλ + b whereλ represents
time, is transformed to a point(−a, b) in the dual plane.
Thus any intersection between the edge functions of a tree
edge and a non-tree edge in a(λ,w) plane is represented
as a common tangent to the convex hulls of the tree and
non tree edges in the dual plane.

This method is very efficient when there is a clear sepa-
ration among the convex hulls of tree and non-tree edges.
Otherwise, the convex hulls may overlap. For example,
Figure 6 shows the corresponding points in the dual plane
for the edge weight functions between timet = 1 and
t = 2 for the ST network shown in Figure 2(a). Figure 6
shows the overlapping of the convex hulls formed by the
tree and non-tree edges. However, this kind of separation
can be seen inside a single cycle and thus would require
to creating and maintainingO(m − n + 1) convex hulls
(one for each fundamental cycle), wherem is the number
of edges andn is the number of node.

Moreover, work done in field of non-stationary can-
didate ranking assume separable edge weights, i.e, they
assume that there is no correlation between the different
weights of an edge at different time instants. Due to
this assumption the kinetic algorithms do not address
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the situation when change points and intersection points
overlap. Change points are those time instants where an
edge weight function changes its slope and intersection
points are those time instants where two or more edge
functions intersect, i.e., they have same edge weight.
For example, in Figure 3 edge (3,5) has change points at
t = 3 andt = 2 and edge weight functions of (1,3) and
(2,4) intersect att = 1.5, whereas the weight functions
of edges (1,3) and (2,3) both change and intersect at the
same point. At such points the convex hulls may not have
a unique common tangent. This implies that the MST
cannot be changed even if it is required.

4 TSMST Computation Algorithms

In this chapter, we present two algorithms for computing
the TSMST of a spatio-temporal network. Consider again
the sample network shown in Figure 2(a) and its edge-
weight function plot in Figure 3. The following observa-
tions can be inferred from edge weight function plot.

Observation 1. Consider any two consecutive (with re-
spect to time coordinate) intersection points of the edge
weight functions. These time coordinates form an edge-
order-interval. Within this time interval, all the edge
weight functions have a well defined order.

Observation 2. Using the ordering of edge weights
within an edge-order-interval, an MST for this interval
can be built using a standard greedy algorithm such as
Kruskal’s [17] or Prim’s [17].

Time

Edge Cost

Enough to sort the edges in involved in 
the intersection point instead of sorting 
all the edges 

Along with the intersection points, 
store the edges which participate 
in intersection at that point 

Figure 7: Sorting only the edges involved in intersection.

Observation 3. There will be a single MST for the entire
edge-order-interval.

4.1 Time Sub-Interval Order (TSO) Algo-
rithm

The time sub-interval order (TSO) algorithm is designed
(Algorithm 1) using Observation 1, Observation 2 and
Observation 3. The TSO algorithm starts by determining
all edge-order-intervals. First, it computes all the inter-
section points of the edge weight functions. The intersec-
tion points are then sorted with respect to time coordinate.
This sorted list of all intersection points is termed asedge-
order series. Then the setδ of all edge-order-intervals is
built from the edge-order series. Each item inδ is a pair
obtained by picking consecutive elements from the edge-
order series.

The algorithm then computes MST for the first edge-
order-interval ofδ. Next, MST for the next interval inδ
is computed and compared with the previous MST. If the
current MST is same as the previous MST, then this inter-
val is combined with the time-sub-interval of the previous
MST. Otherwise, the previous MST is output along with
its time-sub-interval. The previous MST forms the TSMT
for that particular time-sub-interval (which was output).
This process continues until there are no more intervals
left in δ. Since the algorithm outputs the previous TMST
every time, the last TMST has to be output separately.

Observation 4. The time-sub-interval order (TSO) algo-
rithm can be improved by sorting only the edges involved
in an intersection instead of sorting all the edges in each
edge-order-interval (see Figure 7). This is true because
only the edges involved in intersections can change their
relative ordering.

The TSO algorithm computes a MST for each intersec-
tion point. This would incur an unnecessary overhead if

5



Algorithm 1 Time Sub-interval Order Algorithm for find-
ing TSMST

1: Determine the intersection points of edge weight
functions for alle ∈ E

2: Sort the intersection points with respect to time coor-
dinate to form an edge-order series

3: Pick the consecutive elements of the edge-order series
to build the setδ

4: Compute MST for the fist edge-order-intervalofδ and
denote as previous MST

5: Initialize the time-sub-interval of the previous MST
to the first edge-order-interval

6: for all remaining edge-order-intervalsω in δ do
7: Pick the next interval fromδ
8: Build Minimum Spanning Tree using any greedy

algorithm like Prim’s or Kruskal’s
9: if current MST differs from previous MSTthen

10: Output the previous MST (which is now TMST)
along with the time-sub-interval and make cur-
rent MST as the previous MST

11: Set the time-sub-interval of previous MST toω
12: else
13: Combineω with the time-sub-interval of previ-

ous MST
14: end if
15: end for
16: Output the previous MST (TMST) along with its

time-sub-interval

the MST does not change at a intersection point (e.g., see
Figure 9).

Moreover, if the edges involved in intersection are
from different bi-connected components, the MST will
not change (Proposition 4). A bi-connected component of
a graph is a maximal set of edges such that any two edges
in the set lie on a common cycle [5]. For example, edges
(3, 5) and(1, 2) of the network shown in Figure 2(a) be-
long to different bi-connected components, therefore in-
tersection of their weight functions can never produce a
change in MST. On the other hand, intersection of weight
functions of edges in the same bi-connected component
(e.g., edges(1, 2), (2, 4), (3, 4), (1, 3), (2, 3) in Figure
2(a)) may change the MST.

Similarly, intersection of edge weight functions of two
or more tree edges or non-tree edges do not change the
MST (Proposition 2 and Proposition 3). For example, in
Figure 3 intersection of weight functions of edges(1, 3)
and(2, 3) at timet = 2 does not change the MST because
both are non-tree edges. Likewise, intersection of weight
functions of edges(1, 2) and (2, 4) at time t = 2 (see

[2 2]

[1 1]

[8 5]

[4 4]

[5 8]

[3 3]

Current MST (MST before time t=1.5)

Tree Edge Non-tree Edge

Replace edge (1,2) with 
edge (5,6) to get MST for 
time t>1.5

1

2

3 4

5

6
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 MST after time  t=1.5

Figure 8: Edge exchange inside a cycle.

Figure 3) does not change the MST because both are tree-
edges.

Furthermore, if only one tree edge and one non tree
edge (belonging to only one common cycle) are involved
in intersection, we can exchange those edges in tree. For
example see Figure 8. Here, the weight function of edges
(1, 2) (a non-tree edge) and(5, 6) (a tree edge) intersect
at timet = 1.5. Thus instead of building a new MST at
t = 1.5 (as done by TSO), exchanging the edges involved
in intersection in current MST would give the new MST
(see Figure 8). These ideas are presented formally in the
following propositions. These are used in designing an
incremental algorithm for computing the TSMST.

Proposition 2. The intersection of the edge weight func-
tion of two non-tree edges at any time instant will not
affect the minimum spanning tree, i.e., the tree will not
change.

Proof. Consider the intersection of the edge weight func-
tion of two non-tree edgesex and ey at a time instant
t = α. Let O1 = e1e2 . . . eiexeyei+3 . . . em be the as-
cending order of weights of the edges before timet = α

andO2 = e1e2 . . . eieyexei+3 . . . em after time t = α.
Here,m is number of edges in the graph. Since all the
edges have distinct weights, therefore, MST of the graph
induced by the edgesej , wherej ≤ i, will be same for
both the seriesO1 andO2 (using Lemma 1). Now due to
the intersection, edgesex andey have changed their rela-
tive ordering. Previously, i.e., before timet = α, edgeex
was not present in the MST. But now its weight has fur-
ther increased so it will again not be in the MST. Now, the
weight of the edgeey has decreased but it is still more than
the next lighter edge (since weight functions of onlyex
andey have intersected). Therefore,ey will again not be
in the MST. Thus the intersection of the edge weight func-
tions of two non-tree edges does not affect the MST.

6



Proposition 3. The intersection of the edge weight func-
tion of two tree edges at any time instant will not affect the
minimum spanning tree, i.e., the MST will be the same.

Proof. Consider the intersection of the edge weight func-
tion of two tree edgesex andey at a time instantt = α.
Let O1 = e1e2 . . . eiexeyei+3 . . . em be the ascending or-
der of weights of the edges before timet = α andO2 =
e1e2 . . . eieyexei+3 . . . em after timet = α. Here,m is
number of edges in the graph. Since all the edges have
distinct weights, therefore, MST of the graph induced by
the edgesej , wherej ≤ i, will be same for both the series
O1 andO2 (using Lemma 1). Now due to the intersection
edgesex andey have changed their relative ordering. Pre-
viously i.e., before timet = α, edgeey was present in the
MST. But now its weight has decreased so it will again be
in the MST. Now, the weight of the edgeex has increased
but it is still less than the next heavier edge (since weight
functions of onlyex andey have intersected). Therefore,
ex will again be in the MST. Thus the intersection of the
edge weight functions of two tree edges does not affect
the MST.

Proposition 4. The intersection of the edge weight func-
tions of two edges belonging to different bi-connected
components can never change the MST.

Proof. Consider a graphG with two bi-connected compo-
nentsG1 andG2 such thatG =G1∪G2. The bi-connected
componentsG1 andG2 can at most share one vertex (by
the maximality of bi-connected components [5]). Con-
sider a spanning tree ofG, TG = TG1

∪TG2
. Now in order

to determine the minimum spanning tree ofG we have
to minimize the total cost ofTG. The minimum value is
attained when bothTG1

andTG2
have their minimum val-

ues. But the minimum value of the total cost ofTG1
(TG2

)
is attained whenTG1

(TG2
) is the MST ofG1 (G2). This

implies that MST ofG is the union of the MSTs of its
individual bi-connected components.

Consider the intersection of the weight function of an
edge ex belonging toG1 with an edgee′y belonging
to G2. Let O1 = e1e2 . . . eiex . . . em1

be the ascend-
ing order of the edge weights of edges inG1 andO2 =
e′1e

′

2 . . . e
′

ie
′

j . . . e
′

m2
be the ascending order of the edge

weights of edges inG2. Herem1 is the number of edges
in the bi-connected componentG1 andm2 is the number
of edges in the bi-connected componentG2. Now due to
this intersection there is no change inO1 orO2. Therefore
the MST ofG1 (orG2) will not change. This implies that
the MST ofG will not change.

Proposition 5. Intersection of weight functions of two
or more tree-edges (or non-tree edges) from one bi-
connected component with two or more non-tree edges (or

Time

Edge Cost

1

2 3
[3 1 3 1 3 1]

(1 2)

(1 3)

(2 3)

Even though heaviest edge is not changing but the TSO 
algorithm will still recompute MST for each intersection point

[5 5 5 5 5 5] [1 3 1 3 1 3]

MST for time [1 6]

1

2 3

Figure 9: Worst case behavior of TSO algorithm.

tree edges) from another bi-connected component cannot
change the MST.

Proof. Consider the intersection of weight functions of
two tree edgese1 ande2 of bi-connected componentB
with two non-tree edgese′1 ande′2 of bi-connected com-
ponentB′. Using Proposition 4, we conclude that inter-
section of weight functions of edges belonging to different
bi-connected components do not change the MST. Now,
inside each of the bi-connected componentsB andB′ ei-
ther only tree edges are involved or only non-tree edges
are involved. Using Proposition 2 and Proposition 3 we
conclude that these intersections cannot change the MSTs
within the bi-connected components. Now, since MSTs
of individual bi-components did not change therefore the
MST of the entire graph will also not change. This is be-
cause the MST of graph is the union of the MSTs of its
individual bi-connected components (Proposition 4).

4.2 Edge Intersection Order (EIO) Algo-
rithm

Here we present an incremental algorithm for comput-
ing TSMST. The edge intersection order (EIO) algorithm
starts by computing the MST of the network at time
t = 1 and then continues to update the tree, only if neces-
sary, at each intersection point. The intersection points
are processed in increasing order of their time coordi-
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nates. Through preprocessing, some additional informa-
tion about the edges is stored while computing the MST at
timet = 1. This information is used to prune the intersec-
tion points which are guaranteed not to cause any change
in the MST.

The modified reverse-delete (Algorithm 2) is used to
compute the MST at timet = 1. Figure 10 shows the
execution trace of the algorithm. The algorithm first
computes the depth first search (DFS) tree [5] of the given
ST network. A non-tree edgene = (fs, fe), wherefe is
the ancestor offs, is chosen. Now, edgene and edges
seen while following the parent pointers from nodefs to
fe andne form a cycle. This cycle is termed asfcycle.
The heaviest edge of this fcycle is deleted. For example,
in Figure 10, edge (2,4) is a non-tree edge where node 2
is an ancestor of node 4 (considering the DFS tree to be
rooted at node 2). Now on following the parent pointers
from node 4 to node 2, edges (4,3), (3,2) and (2,4) form
a fcycle with edge (2,4) being the heaviest. This edge is
deleted and an entry in a table called fcycle table is made
for FC1 with edges (4,3), (3,2) and (2,4). A DFS tree
of the remaining edges is computed. A non-tree edge is
picked up and the heaviest edge in its fcycle is deleted
and a corresponding entry in the fcycle table is made.
This process continues until onlyn − 1 edges are left in
the network. At this point there will no non-tree edges
after constructing the DFS tree, i.e., all edges are tree
edges. These edges form the MST of the network. They
are marked as tree edges and all other remaining edges of
the original network are marked as non-tree edges.

Data structures used by EIO algorithm The following
data structures are used by the EIO algorithm and the
modified reverse-delete algorithm. This information is
pre-computed before the EIO algorithm starts processing
each intersection point:

• Edge-Table: A look up table storing the details of
each edge. This table contains, for each edge, a
unique edge-id, the two nodes it connects, the bi-
connected component it belongs to, and a bit vector
storing the fcycles of which the edge is a member.

• Fcycle-Table: A look up table storing the details
of each fcycle observed while constructing the min-
imum spanning tree at timet = 1. Each entry of
this table contains a unique fcycle-id and a list of its
member edges (edges column).

The MST of the network is stored as a bit vector of
length equal to the number of edges in the network. The
bit vector would contain a bit corresponding to each edge
of the network and the edges belonging to MST would be

Algorithm 2 Modified Reverse-Delete Algorithm for
MST

1: Find depth first search tree of the given network
2: while non-tree edge is presentdo
3: Pick a non-tree edge and determine all the edges in

the fcycle
4: Delete the edge which has maximum weight.

Record the fcycle infcycle− table

5: Find the DFS tree of the remaining network
6: end while
7: The remaining edges form the minimum spanning

tree

set to one. The edge-table and fcycle-table are indexed
using hashing. The information stored in fcycle-table can
also be computed at runtime by adding the non-tree edge
to the MST and determining the fcycle. This would incur
an additionalO(n) cost each time. This is avoided by
storing the information while constructing MST for time
t = 1. The fcycles column of the edge-table is filled by
traversing through the fcycle-table. Each fcycle-id from
the fcycle-table is chosen and the bit corresponding to this
fcycle-id is set for all the edges in the edges column of
this entry of fcycle-table. The bi-connected component
column of the edge-Table is filled in linear time using the
algorithm given in [2].

While considering an intersection point, two levels of
filters are applied to prune the intersection points that can-
not cause any change in MST. If all the edges involved
in an intersection are either non-tree edges or tree edges,
then it can be pruned using Proposition 2 and Proposition
3 respectively. Similarly, if all the edges involved in an
intersection belong to different bi-connected components,
then it can be pruned using Proposition 4.

After applying these filters, the edges are grouped by
their bi-connected component number. Now, within each
group we again check if the edges are only tree edges
or non-tree edges. This is important in cases when the
weight functions of two or more tree (or non-tree) edges
of one component and one or more non-tree (or tree)
edges of another component intersect at a point. These
kinds of intersection points cannot cause any change in a
tree (Proposition 5). Hence, the filters are applied again
after the edges are grouped by their bi-component num-
ber. After applying these filters if the intersection point is
not pruned, we check if the relative order of edges weights
before and after the intersection point are same. The in-
tersection point can be pruned safely if the relative order
is same. This can happen when weight functions of two
or more edges touch each other at change points (see Fig-
ure 3) without changing their relative order.
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If an intersection point is not pruned after applying all
the filters, then a new MST is made by making changes
to the previous MST. If only two edges (per bi-connected
component) are involved in the intersection and they are
part of only one common cycle, i.e., they are not part
of any cycle except the one which is common, then we
can directly exchange the edges in the tree, i.e., make
the heavier edge between them as non-tree edge and the
lighter edge as tree edge. In all other cases we add each of
the non-tree edges involved in the intersection to the MST
and delete the heaviest edge from their respective funda-
mental cycles. We can check whether two edges are part
of only the common cycle by performing an AND opera-
tion on the fcycles column of the two edges and check the
number of bits set to 1 in the result. Note that in the two-
edges intersection case discussed above, adding the non-
tree edge to the tree and deleting the heaviest edge from its
fundamental cycle would still give the correct MST. The
information gathered during initial construction was used
to save this unnecessary re computation. The start time
of the time-sub-interval of the new MST and end time
of the time-sub-interval of previous MST are set to the
time coordinate of intersection point at which the MST
changed. The previous MST is output along with its time-
sub-interval. The previous MST forms the TMST for that
particular time-sub-interval.

We now describe the terminology used in the EIO
algorithm. While considering an intersection point at
time t, St is the set of all intersection points whose
time coordinate ist. An intersection point inSt is
denoted aspr, where r ∈ [1, 2, . . . |St|]. The set
of all St’s form Γ. Bpr

= [b1, b2, . . .] is the set of
groups obtained after grouping the edges involved in
the intersection by their bi-connected components.si
and sj are the decreasing order of edges weights (of a
particular bi-connected component group) before and
after the time of the intersection point. The edge intersec-
tion order algorithm is formally presented as Algorithm 3.

Execution Trace of EIO Algorithm We next present an
execution trace of the EIO algorithm for the example in
Figure 2(a). The algorithm starts by computing the bi-
connected components of the given graph and filling the
corresponding columns in the edge table. This can be
done in linear time [2]. The algorithm then determines the
intersection points of the edge weight functions. They are
then sorted on the time coordinate to form the edge-order
series. Minimum spanning tree att = 1 is built using Al-
gorithm 2 and the fcycle-table is populated. Step by step
execution of Algorithm 2 and the filling of the fcycle-table
is shown in Figure 10.

Fcycle-Table

FC1

FC2

2

4 5 1

3

2

4 5 1

3

2

4 5 1

3

delete (2,4) and
recompute DFS tree

delete (2,3) and 
recompute DFS tree

Now there are no non-tree edges
hence the remaining edges form the MST

1

3
24

4
2

Non Tree Edge

Tree Edge

Node

Weight

Weight
DFS Tree

DFS Tree

(2,3), (2,4), (3,4)

(2,3), (1,2), (1,3)

Figure 10: Trace of modified reverse delete algorithm for
building MST.

1 11010

(1,2) (3,5)(1,3)(4,2)(3,4)(2,3)

Bits corresponding to edges in MST

1 10110

1 10101 1 10011

MST (I) MST (II)

MST (III) MST (IV)

(1,2) 21 A

Edge-Table

(2,3) 32 A

(1,3) 31 A

(3,5) 53 B

(3,4) 43 A

(2,4) 42 A

1 0

FC1FC2
Bits corresponding to fcycles 
in fcycles field of Edge-table

1 1

1 0

0 0

0 1

0 1

Figure 11: Trace of EIO Algorithm for ST network shown
in Figure 2(a).

After building the MST for timet = 1 a bit vector is
created by setting the bits corresponding to tree-edges to
1 (MST(I) in Figure 11). The edge-table and MST(I) is
shown in Figure 11. After that the remaining intersec-
tion points belonging to the remaining intervals ofδ are
grouped by their time coordinate to buildSt (here,St is
the set of all intersection points with time coordinate as
t). The set of allSt’s form Γ. The algorithm then up-
dates the MST, if necessary, by exchanging the edges at
the intersection points. Aftert = 1 the next interval inδ
startst = 1.25. There are two pairs of edges intersecting
at t = 1.25. Both these pairs involve only tree edges or
non-tree edges, and thus, these are pruned by the if condi-
tions at line 10 and line 13.1 Similarly, the intersection of
edge (3,5) and (2,3) is pruned since they belong to differ-
ent bi-connected components.

1Either the previous MST or the current MST may be used here be-
cause any edge can be involved in only one intersection at a time.
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Now for the intersection between the edges (2,4) and
(1,3) at t=1.5, the condition in line 30 is evaluated by
performing an bitwise AND operation of their respective
fcycle-id columns. Since the edges (2,4) and (1,3) do not
share a cycle (as per fcycles column of edge-table) the
non-tree edge (2,4) is added to current MST and heav-
iest edge in the fundamental cycle is deleted and MST
is updated (now it will be MST(II) in Figure 11). This
step is essential because even if the edges do not share
a cycle as per fcycles column of edge-table they still lie
on a common cycle [5]. The next intersection point in-
volving tree and non-tree edge of same component is at
t=2.66 between (3,4) and (2,3). Here, the edges (3,4) and
(2,3) share a cycle (if condition at line 30 is true) and thus
are exchanged to create MST(III). Similarly the next ex-
change is at t=3.66. Since the EIO algorithm outputs the
older MST after every change, the last TMST has to be
output separately after the main loop.

4.3 Relaxation of Edge Presence Assump-
tion

In this section, we relax the assumption that an edge is
always present. The absence of an edge can be repre-
sented by assigning time intervals during which the edge
is absent. Such a case arises when some of the sensor
nodes move very far from other sensor nodes. Consider
a case when an edgee is not present during the time in-
terval [2.5 2.9]. Further assume that its weight at time
instantst = 1, 2, 3, and4 is 2, 3, 6, and8 respectively.
The edge absence information can be combined with the
edge weight time series by expanding the series to de-
fine weights at smaller time intervals. For example, in
the above case, the edge weights would be defined at time
instantst = 1.0, 1.1, 1.2 . . .2.4, 2.5 − ǫ and then at time
instantst = 2.9 + ǫ, 3.0, . . .3.9, 4.0. The edge weight at
these new intermediate time instants can be determined by
interpolating original weight function2.

The absence of an edge for a certain time period affects
the MST and the bi-connected components of the graph.
If a non-tree edge does not exist after a certain time instant
then there will no change in the MST. On the contrary, if
a tree edge ceases to exist then it is replaced by a non-tree
edge of lowest weight such that the MST remains con-
nected and optimal. This is done by adding each of the
non-tree edges (in increasing order of their weights) to
the MST and if the tree edge (which is absent) in found
in the cycle created, then it is replaced by that particular
non-tree edge. If multiple tree edges are absent during a
particular time interval then each of these tree edges is re-

2Since the edge function is linear, interpolation works nicely.

placed by a non-tree edge. In such cases, each of the non-
tree edges (in increasing order of their weights) is added
to the MST and if any of the tree edges is found in the
cycle created by the addition of non-tree edge, then it is
replaced by that particular non-tree edge. The tree edges
are stored in a hash table for this case. Now, when an edge
reappears (either tree or non-tree), it is added to the MST
and the heaviest edge is deleted from the cycle created.
For practical purposes, we assume that the graph is never
disconnected due to disappearance of edges. Therefore, at
mostm− n+ 1 edge can be absent during any particular
time interval.

When an edge is absent during a certain time inter-
val, the bi-connected component information of the edges
change. This information can be recomputed in linear
time using the algorithm given in [2]. This updated in-
formation may be useful for pruning some of the inter-
section points which may not be pruned otherwise. The
bi-connected component information has to be recom-
puted again after the edge appears. Re-computation of
bi-connected components can be delayed until the next
intersection point is encountered. This is useful in cases
when there are no intersections during the period of ab-
sence. The bi-connected component information is only
used by the EIO algorithm.

5 Analytical Evaluation

The correctness proof and the asymptotic analysis of
the edge-intersection order algorithm and the time sub-
interval order algorithm are presented in this chapter.

5.1 Analysis of TSO algorithm

Theorem 1. The time-sub-interval order (TSO) algorithm
is correct.

Proof. The correctness of the TSO algorithm can be es-
tablished by using Observation 1. The minimum spanning
tree changes whenever there is a change in ordering of the
edges. The TSO algorithm addresses this by recomputing
the minimum spanning tree for each interval inδ. This
means that it recomputes the ordering of edges again af-
ter every intersection point. Moreover, from Observation
1, we can say that the ordering or edges do not change
inside an edge order interval. This proves that the TSO
algorithm is correct.

Asymptotic analysis of TSO algorithm Since the edge
weight is assumed to vary linearly between any two time
instants in a time series, there can be at mostO(m2)
(wherem is the number of edges) intersections among
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the edge weight functions in the worst case. Now if this
happens between all time instances in the entire time
horizon [1, . . .K], the total number of intersections will
beO(m2K). The time needed to sort all the intersection
points isO(m2K log(m2K)). For each intersection point
TSO recomputes the MST which takesO(m logm) per
intersection point. Thus, the total time complexity of the
TSO algorithm isO(m3K logm+m2K log(m2K)).

Relaxation of edge presence assumptionNow, consider
the case when the edge presence assumption is relaxed.
Even though the number of time instants in the edge
weight time series increases, the total number of intersec-
tion points do not change because we are not adding any
new weight functions. LetL be the number of disjoint
time intervals during which any of the edges is absent.
During each of theseL intervals, if any of the tree edges
is absent then it has to replaced by a non-tree edge. The
replacement involves observing the cycles created by each
of theO(m−n+1) non-tree edges in increasing order of
their weights. Since there can be at mostn− 1 tree edges,
this takesO(mn+m logm) time. Here, each tree edge is
not processed individually. All the tree edges are stored in
a hash table and are checked in the cycles created by the
addition of each non-tree edge. Then after an edge (either
tree or non-tree) reappears, it is again added to MST and
the heaviest edge is deleted from the cycle created. Now,
there can be at mostm−n+1 edges absent during a time
interval (assuming that the graph always remains con-
nected). Therefore, this step takesO(mn) time. There-
fore the total complexity isO(Lmn + Lm logm). Thus,
the overall complexity of the TSO algorithm becomes
O(m3K logm+m2K log(m2K) +Lmn+Lm logm).

5.2 Analysis of Modified Reverse Delete Al-
gorithm

Theorem 2. The modified reverse delete algorithm pro-
duces a MST.

Proof. (By contradiction) LetT1 be the spanning tree
generated by the algorithm and letT2 be the MST.
Let OT1 = e1e2 . . . eiei+1 . . . em−n+1 be the increas-
ing order of edge weights ofT1. Let OT2 =
e′1e

′

2 . . . e
′

ie
′

i+1 . . . e
′

m−n+1 be the increasing order of
edge weights ofT2. Without loss of generality, assume
that ej is same ase′j, ∀j ≤ i. Further assume that
ei+1 > e′i+1. Now consider the cycle generated by adding
the edgee′i+1 toT1. Only one such cycle can be created as
T1 is a spanning tree of the graph. Now if this cycle con-
tains only the edgesej wherej ≤ i, then it implies that
there is a cycle inT2 asej is same ase′j , ∀j ≤ i (a contra-

diction). Now, if the cycle contains some edgesej where
j ≤ i andei+1, then the algorithm would have chosen
edgeei+1 to delete instead ofe′i+1 because the algorithm
deletes the heaviest edge of the cycle. Consider the case
when the cycle contains the edgesej wherej ≥ i + 1.
Let ej , wherej 6= i + 1, be any edge of the cycle. Then,
e′i+1 < ei+1 < ej. Again, the algorithm would have cho-
sen edgeei+1 instead ofe′i+1. Therefore, we can conclude
thatT1 andT2 are same.

Asymptotic analysis of Modified Reverse Delete Algo-
rithm The algorithm determines the DFS tree of the graph
in each iteration. This takesO(m + n) wherem is the
number of edges andn is the number of nodes. Finding
the heaviest edge in a fcycle takesO(n) time. This hap-
pens when the fcycle contains all the nodes of the graph.
After each iteration the number of edges decreases by
one. Therefore, the total number of iterations required are
m − n + 1 (one for each non-tree edge deleted). There-
fore, the total time taken is given by the sum of the series
(m + n) + (m − 1 + n) + . . . + (2n − 1). This series
hasm− n+ 1 terms. Thus, the overall complexity of the
algorithm isO(m2).

5.3 Analysis of EIO algorithm

Theorem 3. The edge intersection order (EIO) algorithm
is correct.

Proof. The EIO algorithm prunes an intersection point if
only tree edges or non-tree edges are involved. Propo-
sition 2 and Proposition 3 show the correctness of this
filtering step. Similarly, an intersection point is pruned
if all the edges involved in it belong to different compo-
nents. The correctness of this filtering step is evident from
Proposition 4. An intersection point is also pruned if two
or more tree edges (or non-tree edges) of one bi-connected
component intersect with two or more non-tree edges (or
tree edges) of another bi-connected component. The cor-
rectness of this filter step is shown in Proposition 5. Fur-
thermore, an intersection is pruned if the relative order of
edge weights do not change after the intersection. This is
because in such cases, as there is no change in the relative
order of edges and all the edges have distinct weights (be-
fore and after the intersection), there will be no change in
the MST (using Lemma 1).

After the filtering steps the algorithm checks if the
edges involved can be directly exchanged or not. Other-
wise the non edge is added to the MST. This addition can
create only one cycle. The cycle property of minimum
spanning trees [17] states that given a cycle, the heaviest
edge in that cycle does not belong to any minimum span-
ning tree. Hence, using this we can add the non tree edges
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and delete the heaviest edge without creating any cycles
or affecting the correctness of the minimum spanning tree.
Thus, the EIO algorithm is correct.

Storage costs of the data structuresThe edge-table
has an entry for each edge in the ST network. Thus it
would havem entries, wherem is number of edges in
the ST network. Now the number of fcycles in graph is
bounded byO(m − n + 1) (one for each edge deleted
during construction of MST at t=1) wherem andn are
number of the edges and nodes of ST network. Thus, the
length of the bit vector for fcycles column of edge-table
ism− n+ 1 (one bit for each fcycle). Therefore the total
storage cost of edge-table isO(m2). Similarly, the total
number of entries in fcycle-table ism − n + 1 and each
entry of fcycle-table has a list which can have a worst
case length ofO(m). Therefore, the total storage cost of
fcycle-table isO(m2).

Asymptotic analysis of EIO algorithm The running time
of the EIO algorithm is sensitive to the number of inter-
section points and number of edges involved per intersec-
tion point. Here, we consider two kinds of intersection
points: one, in which all the edges are involved and the
other, where only two edges (or a constant number) are
involved. First consider the case of a two-edge intersec-
tion. The number of two edge intersections (or constant
number) between a pair of consecutive time instants is
O(m2). Since the edge-table is indexed using hashing,
all the filtering steps would take onlyO(1) time. Sim-
ilarly, step 21 (determiningsi and sj) would take only
constant time as there are only two (or constant number)
edges. Steps 33-36 can takeO(n) (n being the number of
nodes in graph) time in the worst case (when the funda-
mental cycle involves all the nodes of the graph). Thus,
the two edge intersection case would takeO(m2n) worst
case time (for one consecutive pair of time instances in
the time series). The maximum number of times this can
happen isO(K) (once between every two time instances
of the time series).

Now, consider the case whenO(m) edges intersect
at a single point. In this case step 21 would take
O(m logm) time. This kind of intersection would
involve a maximum ofO(m − n + 1) non-tree edges.
Thus step 33 would takeO(n) per non-tree edge making
a total of O(mn + m logm) time in the worst case.
This kind of intersection can happen onlyO(K) times.
This is because the edge weight functions vary linearly
between two time instances of the time series, and thus
they can all meet at only one point between two time
instants of the time series. Consider the case when
length of the time series is very long. Let the length

of time interval whenO(m2) intersections (two edge
intersections) occur beK1 andO(m) edge intersections
be K2 whereK1 + K2 = K. The time required to
sort the intersection points in two-edge intersection
case is bounded byO(m2K1 log(m

2K1)), whereas
it would takeO(K2 logK2) time to sort whenO(m)
edges are involved in the intersection. Therefore the
total time required for sorting all the intersection points
is O((m2K1 + K2) log(m

2K1 + K2)). Thus the total
worst case time required by the EIO algorithm is the
sum of time spent on two-edge intersections,O(m)
edge intersections and, the time required to sort all the
intersection points. Thus the overall time complexity of
the EIO algorithm isO(m2nK1+mnK2+K2m logm+
(m2K1 +K2) log(m

2K1 +K2)).

Relaxation of edge presence assumptionNow, consider
the case when the edge presence assumption is relaxed.
Even though the number of time instants in the edge
weight time series increases, the total number of inter-
section points do not change because we are not adding
any new weight functions. LetL be the number of dis-
joint time intervals during which any of the edges is ab-
sent. The bi-connected component information has to re-
computed at the start of each interval and at the end of
each interval. Thus, the bi-connected component infor-
mation has to be computed2L times and each of these
computations takeO(m + n) time [2]. During each
of theseL intervals, if any of the tree edges is absent
then it has to replaced by a non-tree edge. The replace-
ment involves observing the cycles created by each of the
O(m− n+ 1) non-tree edges in increasing order of their
weights. Since there can be at mostn− 1 tree edges, this
takesO(mn+m logm) time. Here, each tree edge is not
processed individually. All the tree edges are stored in a
hash table and are checked in the cycles created by the
addition of each non-tree edge. Then after an edge (ei-
ther tree or non-tree) reappears, it is again added to MST
and the heaviest edge is deleted from the cycle created.
Now, there can be at mostm − n + 1 edges absent dur-
ing a time interval (assuming that the graph always re-
mains connected). Therefore, this step takesO(mn) time.
Therefore the total complexity isO(Lmn + Lm logm).
Thus, the overall complexity of the EIO algorithm be-
comesO(m2nK1 + mnK2 + K2m logm + (m2K1 +
K2) log(m

2K1 +K2) + Lmn+ Lm logm).

6 Experimental Evaluation

The purpose of the experimental evaluation was to com-
pare the execution times of the TSO and EIO algorithms.
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The two algorithms were compared on synthetic datasets.
The experimental parameters that were varied in experi-
ments are: (1) length of time series, (2) number of edges,
and (3) number of nodes. In our experiments we gener-
ated the networks randomly. Given the number of nodes
(n) and number of edges (m) of the network, first, a span-
ning tree containingn− 1 edges is generated for the net-
work. This is to guarantee that the network is connected;
otherwise, the TSMST cannot be determined. Edges are
then randomly added to this spanning tree till the number
of edges becomesm. After that a time series is associated
with each edge. The time series is also generated ran-
domly. The experiments were conducted on an Intel Xeon
workstation with 2.40GHz CPU, 8GB RAM and Linux
operating system.

6.1 Effect of Length of Time Series

Figure 12(a) shows the performance of EIO and TSO al-
gorithm as the length of the time series increases. Execu-
tion time of both the algorithms increase with time. The
figure shows a superior performance of the EIO algorithm
over the TSO algorithm. This is due to the increase of in-
tersection points that occurs with the increase in the length
of time series. Since the TSO algorithm recomputes the
MST at each intersection point, it takes much more time
than the EIO algorithm, which just updates the MST with
no recomputing. Experiments reveal that execution time
of both TSO and EIO algorithms vary linearly with length
of time time series.

6.2 Effect of Number of Edges

Figure 12(b) shows the performance of EIO and TSO
algorithm as the number of edges increases. Execution
time of EIO algorithm was observed to increase quadrat-
ically. Execution time of the TSO algorithm increased
much more rapidly than that of the EIO algorithm. Both
the previous experiments clearly showed the superior per-
formance of the EIO algorithm over the TSO algorithm.
The EIO algorithm was faster than the TSO algorithm by
an order of magnitude. Moreover, the difference in the
execution times of the two algorithms increased with in-
crease in length of time series and number of edges.

Figure 13 shows the performance of the EIO algorithm
for four different network sizes. The execution time in-
creased linearly with length of time series in all cases.
The execution time increased at a faster rate as the size
of the network increased. For instance, execution time in-
creased much more rapidly for a network with 300 nodes
and 1000 edges than for a network with 100 nodes and
650 edges.

6.3 Performance Evaluation of the Filters

Figure 14 shows the total number of the intersection
points and the number of intersection points pruned by the
EIO algorithm. The figure shows that the number of inter-
section points increase with increase in size of network.
The figure also shows that a large number of intersection
points were pruned by the EIO algorithm. This clearly
shows the superior performance of the filters used in the
EIO algorithm. Table 3 and Table 2 show the percentage
of intersection points filtered by individual filters.

7 Conclusions

The time-sub-interval minimum spanning tree (TSMST)
problem is a key component of various spatio-temporal
applications such as wireless sensor networks. The pa-
per proposes two novel algorithms for TSMST compu-
tation. The time sub-interval algorithm (TSO) computes
the TSMST by recomputing the MST at all time points
where there is a possible change in the ranking of can-
didate spanning trees (i.e., it recomputes the MST at
all the intersection points of edge weight functions) and
then outputs the set of distinct MSTs along with their
respective time-sub-intervals. The edge intersection or-
der algorithm (EIO) updates the MST, only if necessary,
at these time points. Both these algorithms are based
on a model for spatio-temporal networks called time-
aggregated graphs. The asymptotic complexity of the
TSO algorithm wasO(m3K logm + m2K log(m2K))
and the asymptotic complexity of the EIO algorithm
was O(m2nK1 + mnK2 + K2m logm + (m2K1 +
K2) log(m

2K1 +K2)). Computational complexity anal-
ysis shows that the EIO algorithm is faster than the TSO
by a factor of almostO(m). Experiments also show that
the EIO is faster than the TSO algorithm by an order of
magnitude.

In future, we plan to evaluate the performance of the
algorithms using real datasets. We also plan to extend the
algorithms to give optimal solutions subject to the con-
straint that the edge weight functions are non-linear in na-
ture.
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Figure 12: Comparison of EIO and TSO algorithms.
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Figure 13: EIO algorithm: Execution time with respect to
length of time series.
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Algorithm 3 Edge Intersection Order (EIO) algorithm for finding TSMST
1: Compute the bi-connected components of the given graph and update bi-connected column of edge-table
2: Determine the intersection points of the edge weight functions
3: Sort the intersection points with respect to time coordinate
4: Find the MST att = 1 (let this be previous MST) using Algorithm 2 and populate thefcycle-table
5: Set the start time of time sub interval of previous MST to1
6: ConstructSts from the intersection points
7: for all St ∈ Γ do
8: Set MST-change flag and new-MST-exist flag to FALSE
9: for all intersection pointspr ∈ St do

10: if all edges are tree edges or non-tree edgesthen
11: continue
12: end if
13: if all edges belong to different bi-connected componentsthen
14: continue
15: end if
16: group the edges into bi-connected components (build setBpr

)
17: for all bi ∈ Bpr

do
18: if all edges are tree edges or non-tree edgesthen
19: continue
20: end if
21: Determinesi andsj .
22: if si andsj are samethen
23: continue
24: end if
25: Set MST-change flag to TRUE (all subsequent steps will changeMST)
26: if new-MST-exist is FALSEthen
27: Create a new MST (i.e., create a new bit vector and assign the same values as of previous MST), let this

be current MST
28: Set new-MST-exist flag to TRUE
29: end if
30: if only two edges intersect and they are part of only the common cycle then
31: update the current MST (set the bit corresponding to heavieredge to 0 and lighter edge to 1).
32: else
33: for all non tree edges insj do
34: find their fundamental cycle and delete heaviest edge
35: update the current MST
36: end for
37: end if
38: end for
39: end for
40: if MST-change flag is set to TRUEthen
41: Output the previous MST (TMST) with its time-sub-interval and make current MST as previous MST
42: end if
43: end for
44: Output the previous MST (TMST) along with its time-sub-interval
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