arxiv:1003.1251v2 [cs.DS] 21 May 2010

Minimum Spanning Tree on Spatio-Temporal Networks

Viswanath Gunturi Shashi Shekhar Arnab Bhattacharya
vgvm@iitk.ac.in shekhar@cs.umn.edu arnabb@iitk.ac.in
Dept. of Computer Science and Engineering, Dept. of Com&tence and Engineering, Dept. of Computer Science anth&sgng,
Indian Institute of Technology, Kanpur University of Mirswa, Twin Cities Indian Institute of Technology, Kanpur
Kanpur, UP 208016, India. Minneapolis, MN 55454, USA. KaniP 208016, India.
Abstract to be difficult. Thus, energy conservation becomes a im-

portant constraint in designing algorithms for these kind
Given a spatio-temporal network (ST network) whem sensor networks. In many wireless sensor network ap-
edge properties vary with time, tame-sub-interval min- plications the nodes are not stationary, i.e., they change
imum spanning tre€TSMST) is a collection of minimum their physical position with time, for example, sensor net-
spanning trees of the ST network, where each tree is assork among robots on a reconnaissance mission [23].
ciated with a time interval. During this time interval, th&Jsually in such scenarios, the sensor nodes physically
total cost of tree is least among all the spanning trees. Theve on a predetermined trajectory to collect data in ob-
TSMST problem aims to identify a collection of distincservation field[[2R]. One of the important problems per-
minimum spanning trees and their respective time-suhbining to these kind of sensor networks is to maintain net-
intervals under the constraint that the edge weight funeerk connectivity among the individual nodes such that
tions are piecewise linear. This is an important probletime total cost of transmission among the nodes is mini-
in ST network application domains such as wireless sanum. This can be modeled as a spatio-temporal network
sor networks (e.g., energy efficient routing). Computingith nodes representing sensor nodes and transmission
TSMST is challenging because the ranking of candiddiiek among any two sensor nodes represented as an edge.
spanning trees is non-stationary over a given time intdihe weight of an edge in the network represents energy re-
val. Existing methods such as dynamic graph algorithmugired to transmit along that particular transmission.link
and kinetic data structures assume separable edge weigw the problem is to maintain an energy-efficient com-
functions. In contrast, we propose novel algorithms tounication network among the sensor nodes such that
find TSMST for large ST networks by accounting for botthere is a path between any two nodes and the total sum of
separable and non-separable piecewise linear edge weilygenergy required for transmission for all edges involved
functions. The algorithms are based on the ordering iefminimum. Traditionally minimum spanning trees have
edges in edge-order-intervals and intersection pointshefen used to solve these kind of problems [16, 18] in a
edge weight functions. static environment; but these no longer hold in a non-static

environment.

. Figure[I(d) shows a wireless sensor network main-
1 Introduction tained among a group of sensors moving on prede-
termined trajectories as depicted in Figlre JL(b). In
A spatio-temporal network is a network consisting dfigure[1(d), we assume that there is no direct connectivity
nodes with location information and edges connectigtween the sensor nodes 1 and 4, and that sensor node
these nodes. The topology and network parameters (sBas connected only to sensor node 3. This network of
as edge cost) of a spatio-temporal network change wéénsors is represented as a ST network in Fifurgd 2(a)
time. These kind of networks appear in numerous applic@here the sensors are represented as nodes and the com-
tions such as energy-efficient routing in a wireless sensaunication link between any two sensors is represented
network [16/18]. as an edge. Time dependent edge weights represent cost
In a typical wireless sensor network, large number of packet transmission between sensors. Since the sensor
sensor networks are scattered in the observation fielddes are moving, the distance between any two nodes
Once deployed, physical access to these nodes may pichenges with time. The energy required to transmit data

http://arxiv.org/abs/1003.1251v2
vgvm@iitk.ac.in
shekhar@cs.umn.edu
arnabb@iitk.ac.in

3?(‘ ;ﬁg % Time Total cost
SO 0 o MST-a | MST-b | MST-c | MST-d
S 2L P Bt 1 8 11 13 10
gy oS e B 2 10 7 9 10
3 13 11 10 12
(a) Sensor NetworKb) Positions of sensor nodes at various times 4 5 6 6 5
Figure 1: Sample wireless sensor network. Table 1: Total cost of MSTs at various times.

from one node to another is directly proportional to tHéme complexity analysis of our algorithms in Chapter
square of distance between them1[16]. Thus, even a skl Chapter[6 presents the experimental design and
change in distance would affect the cost of transmissiparformance analysis. We conclude in Chapter 7.
significantly. ~ The solution to the time-sub-interval

minimum spanning tree (TSMST) problem effectively

determines the energy-efficient communication paths

among these sensor nodes. 2 Basic Concepts and Problem Def-
inition
1.1 Motivation We model a spatio-temporal network as tame-

aggregated-grap{TAG) [10, [11]. A time aggregated

The limited energy of the sensor nodes requires efficigpiaph is a graph in which each edge is associated with a
transmission of information so that the network lifetime isdge weight function. These functions are defined over
increased. A lot of work done in this areéa [13] 16,[18, 2@,time horizon and are represented as a time series. For
[21] assume that the sensors nodes are stationary. instance edge (3,5) of the graph shown in Figure] 2(a) has

Computing TSMST is expensive because of theeen assigned a time series [4 3 5 2], i.e., the weight of
non-stationary ranking of candidate spanning trees intte edge (3,5) at time instants t=1, 2, 3, and 4 are 4, 3, 5,
ST network. This is illustrated in Figufé 2. Figure 2(band 2 respectively. The edge weight is assumed to vary
shows the minimum spanning trees (MSTs) at differeliviearly between any two time instants. We also assume
time instants for the ST network shown in Figiire R(ajhat no two edge weight functions have same values for
The total costs of these minimum spanning trees are gitem or more consecutive time instants of their time series.
in Table[d. Figuré 2() shows that both spanning tree alfidsuch a case occurs then the values of any one of the
total cost of spanning tree change with time. edges are increased (or decreased) by small quarttity
make them distinct. For example, in Figlire 2(a) weight
functions of the edges (1,2) and (2,3) have same values
for time t=3 and t=4. The edge weight functions of graph
in Figurg 2(a) are shown in Figuré 3.

We present the problem of time-sub-interval minimum
spanning tree (TSMST) in a spatio-temporal network. VBae

propose two algorithms to find the TSMST on a spatig- finition 1 (Tl.me'-su_b-mterva!l) A tlme_-sub-lnterv_al,
d]enoted as = (is, i), is @ maximal sub interval of time

temporal network and provide analytical evaluatlonssglonzon[l’ K] which has a unique MST. This unique MST

the proposed algorithms. The algorithms allow the 13 denoted ag"M ST'(i). In other words, the ranking of
network to have both separable as well as non-separable

. . . andidate spanning trees (based on the total cost of tree)
edge weight functions. We also present the experimental " : . ; .
. . IS stationary during a time-sub-interval.
analysis of the algorithms proposed.

defines the concepts used in the paper, followed Byq the MSTs during those time periods.
the problem definition of TSMST on a spatio-temporal

network. Related work is described in Chagdiér 3. efinition 2 (Edge-order-interval) An edge-order-
Chapter[#, two algorithms for solving the TSMSTnterval, denoted asy = (ws,w,), is a sub interval of
problem are presented. We present correctness &nte horizon1, K| during which there is a clear ordering

1.2 Contributions

MST-a: MSTatt=1

[1432]

MST-b: MST at t =2
Total cost =7

Node MST-c : MST att =3 MST-d: MST att=4 ‘
O Total cost = 10 Total cost =5
[Edge weight time series]
Eage OO
(a) ST network (b) MSTs at different time instants

Figure 2: Spatio-temporal network and its correspondin@M& various times.

Proof. (By contradiction) Let7; and Ty be two dif-

Edge weight vs time ferent minimum spanning trees of a graph. Let
6 ' ‘(1 2 - o (2“1) 77777 ' 23 o1, = €1€2€3€4 ...€€i41...Cp_1 be the increas-
. @3 ——- (B4 - (35 ing order of the edge weights of; and OT: =
5 | Change point and 4
intersection point Py elesesel ... ejei, ... e, betheincreasing order of the
Al T~ L creneerent | edge weights of ». Heren is the number of vertices in the

graph. Without loss of generality assume thats same
aSe;-, Vj < i. Further assume that,; < ej, ;. Now
consider the cycle generated by adding the edge to
T>. Only one such cycle can be creatediass a span-
ning tree of the graph. Now if this cycle contains only
o the edges’. where; < i, then it implies that there is a
Intersection point . J
o ‘ ‘ ‘ ‘ ‘ ‘ ‘ cycle inTy ase; is same ag’, V;j < i (a contradiction).
o5 1152 Tiife % % %% Now, if the cycle contains some edgeswherej < i
ande;, |, then we can replace the edgg ; with e;;
Figure 3: Edge weight function plot and make a minimum spanning tree of lower cost contra-
dicting the fact thafl, is a MST. Consider the case when
the cycle contains the edge’swherej > i + 1. Lete)
erej # i+ 1 be any edge of the cycle, then we have
1 < ej41 < e} Again, we can replace edgg, ; with
e;+1 and make a MST of lower cost contradicting the fact

An edge-order-interval is guaranteed to have a uni thg;% IsSa?nI(\aAST' Therefore, we can conclude tﬁataréj
2 .

MST (see Propositiori]1). Two or more consecu-
tive edge-order-intervals may have the same MST. A
time-sub-interval is usually composed of one or mogg&oposition 1. An edge-order-interval has a unique MST.
edge-order-intervals. For example, in Figlde 3, the
interval (2.66 3.0) is an edge-order-interval whereas the

interval (2.66 3.66] is a time-sub-interval which is a uniopraof, Using LemmdL, if all the edge weights are dis-

of three consecutive edge-order-intervals (2.66 3.08 (3inct, then there is a unique MST. In an edge-order-interval

3.5) and (3.5 3.66). there is a clear ordering among the edges for all time in-
stants (no two edge weight functions intersect); therefore

Lemma 1. If all the edge weights of a graph are distinctfhere will be an unique MST. -

then there is a unigue minimum spanning tree.

Edge weight
w
T

wh

of edge weight functions, i.e., none of them intersect wgh+
(3

each other.

MST(l) for time [1 1.5] MST(IIl) for time (2.6 3.6] Candidate Spanning Tree ranking

MST(Il) for time (1.5 2.6] MST(IV) for time (3.66 4]
Classical Greedy Separable Edge Cost General Case

Algorithms / \
Figure 4: Time sub-interval minimum spanning trees. Dynamic graph algorithms Our Work

and Kinetic algorithms

o Figure 5: Related work classification
2.1 Problem Definition

Given an undirected ST netwok = (V, E) whereV

is the set of vertices of graplf is the set of edges, andas Kruskal's [[17] and Prim's_[17] cannot be applied to

each edge € E has a weight function associated witi SMST problem on spatio-temporal networks.

it. The weight function is defined over the time horizon

1, I_(] . The prpblem of_TS]_\/[ST is to deter‘mine the set3 o Dynamic Graph Algorithms

of distinct minimum spanning treeg, A/ ST (i), and their

respective time-sub-intervals= (is, i.). Dynamic graph algorithms and kinetic algorithms incor-
The total cost of M ST (i) is least among all otherporate non-stationary candidate ranking by making use of

spanning trees over its respective time-sub-intefval dynamic data structures such as topology tregs|[8, 9] and

[is,ic) Wwhere0 < iy <i, < K. dynamic trees[19]. However, dynamic data structures can
We assume that for all edgese E, the edge weight model only discrete changes such as single edge insertion,

function is defined for the entire time interval K. The deletion or weight modification [6) 8, 14,115]. Hence, they

weight of an edge is assumed to vary linearly between g#nnot handle piecewise linear edge weight functions.

two time instants of time series. Kinetic algorithms[[1] B[12] combine parametric op-
In our example of an energy efficient communicatidinization along with dynamic data structures. In a para-

network maintained by a group of sensors, the commuRietric optimization problem[7], each edgés associated

cation network is represented as a ST network shownVfih & linear weight function. Kinetic algorithms trans-

Figurd 2(@). The collection of distinct minimum spanninp"™ the edge weight functions to a dual plane, i.e., any

trees and their corresponding time-sub-intervals is sho@®fige weight functionv. = aX + b where\ represents
in Figure3. time, is transformed to a poirit-a, b) in the dual plane.

Thus any intersection between the edge functions of a tree
edge and a non-tree edge if)a w) plane is represented
3 Related Work as a common tangent to the convex hulls of the tree and
non tree edges in the dual plane.
: o . . This method is very efficient when there is a clear sepa-
The related work is classified based on candidate spanning . " ona the convex hulls of tree and non-tree edaes
tree ranking. The traditional greedy algorithms for des 9 ges.
termining MST assume stationary ranking. Related wo

done in the area of non-stationary ranking assume separd-, edge weight functions between time= 1 and

ble edge cost. In contrast our work proposes algorithms - .
for non-stationary ranking case by accounting for both 2 for the ST network shown in Figufe 2[a). Figliie 6

separable and non-separable edae weiahts shows the overlapping of the convex hulls formed by the
P P 9 ghis. tree and non-tree edges. However, this kind of separation

can be seen inside a single cycle and thus would require
3.1 Classical Greedy Algorithms to creating and maintainin@(m — n + 1) convex hulls

(one for each fundamental cycle), wheres the number
Classical methods for computing minimum spannir@f edges and is the number of node.
trees [[4/ 5 17] were developed for static networks andMoreover, work done in field of non-stationary can-
assume stationary ranking of candidate trees (see Figdidate ranking assume separable edge weights, i.e, they
[B), i.e., they assume that mutual ranking (on basis of @ssume that there is no correlation between the different
tal cost) among the spanning trees does not change wisights of an edge at different time instants. Due to
time. Therefore, the classical greedy algorithms sutthis assumption the kinetic algorithms do not address

therwise, the convex hulls may overlap. For example,
r|g_ure|3 shows the corresponding points in the dual plane

—_——_— = Along with the intersection points,
store the edges which participate
in intersection at that point

Egde weight functions as points in dual plane
8 T T T

6 L 4 Edge Cost —T
Tree edges —=—

Non-tree edges --o-—
Enough to sort the edges in involved in

the intersection point instead of sorting
all the edges

Figure 7: Sorting only the edges involved in intersection.

o2t ° ' : : " Observation 3. There will be a single MST for the entire
Figure 6: Intersecting convex hulls of tree and non-tr&€8ge-order-interval.
edges.

4.1 Time Sub-Interval Order (TSO) Algo-

rithm

the situation when change points and intersection points
gep P The time sub-interval order (TSO) algorithm is designed

overlap. Change points are those time instants where : ; . :

edge weight function changes its slope and intersecti 9°”thm 1) using Observatp 1, Observatiph 2 _a_nd

points are those time instants where two or more e servafiollB. The TSO algorithm starts by determining
edge-order-intervals. First, it computes all the inter

functions intersect, i.e., they have same edge weight. = .) . .
For example, in FigurEl3 edge (3,5) has change pointsggf:t'on points of the edge weight functions. The intersec-
¢+ — 3 andt _ 2 and edge weight’functions of (1,3) an(Hion points are then sorted with respect to time coordinate.

(2.4) intersect at = 1.5, whereas the weight functionsThiS sorted list of all intersection points is termecdedge-

of edges (1,3) and (2,3) both change and intersect at ﬂqgle:cserieﬁ Thgn thegeﬁ of f"‘" edEge-r?r_der:;ptervals_ Is
same point. At such points the convex hulls may not hae 't_ rom the edge-order series. tac Itermirs a pair
a unique common tangent. This implies that the M tained by picking consecutive elements from the edge-

cannot be changed even if it is required. order series.
g q The algorithm then computes MST for the first edge-

order-interval ofé. Next, MST for the next interval i

is computed and compared with the previous MST. If the
4 TSMST Computation A|gorithms current MST is same as the previous MST, then this inter-

val is combined with the time-sub-interval of the previous
In this chapter, we present two algorithms for computifdST. Otherwise, the previous MST is output along with
the TSMST of a spatio-temporal network. Consider agdis time-sub-interval. The previous MST forms the TSMT
the sample network shown in Figyre 2(a) and its edder that particular time-sub-interval (which was output).
weight function plot in Figurgl3. The following observaThis process continues until there are no more intervals
tions can be inferred from edge weight function plot. leftin §. Since the algorithm outputs the previous TMST

)] _ _ every time, the last TMST has to be output separately.
Observation 1. Consider any two consecutive (with re-

spect to time coordinate) intersection points of the ed@bservation 4. The time-sub-interval order (TSO) algo-

weight functions. These time coordinates form an edgithm can be improved by sorting only the edges involved
order-interval. Within this time interval, all the edgen an intersection instead of sorting all the edges in each
weight functions have a well defined order. edge-order-interval (see Figufd 7). This is true because

. .) ... only the edges involved in intersections can change their
Observation 2. Using the ordering of edge We'ght‘?elative ordering.

within an edge-order-interval, an MST for this interva
can be built using a standard greedy algorithm such asThe TSO algorithm computes a MST for each intersec-
Kruskal's [17] or Prim’s [17]. tion point. This would incur an unnecessary overhead if

Algorithm 1 Time Sub-interval Order Algorithm for find- Replace edge (1,2) with
. edge (5,6) to get MST for
Ing TSMST [44] time t>1.5
1: Determine the intersection points of edge weightss
functions for alle € £
2: Sort the intersection points with respect to time coor-
dinate to form an edge-order series [11]
3: Pick the consecutive elements of the edge-order series

to build the set

[58]

.
/
h
.

[22]

4: Compute MST for the fist edge-order-intervabafnd Curent MST (MST before time t=1.5) MST after time t=1.5
denote as previous MST e

5: Initialize the time-sub-interval of the previous MST Tree Edge Non-tree Edge
to the first edge-order-interval

6: for all remaining edge-order-intervalsin § do Figure 8: Edge exchange inside a cycle.

7: Pick the next interval from
8: Build Minimum Spanning Tree using any greedy

algorithm like Prim’s or Kruskal's .
9: if current MST differs from previous MSthen E&ggué?) does notchange the MST because both are tree-

1o Output the previous MST (which is now TMST) Furthermore, if only one tree edge and one non tree

along with the time-sub-interval and make Curéd e (belonging to only one common cycle) are involved
rent MST as the previous MST 9 ging y Y

in intersection, we can exchange those edges in tree. For

i; elsseet the time-sub-interval of previous MSTdo example see Figufé 8. Here, the weight function of edges
13: Combinew with the time-sub-interval of previ- 1, .2) (a non-tree edge) an@.6) (a _tre_e edge) intersect
at timet = 1.5. Thus instead of building a new MST at
ous MST . :
14 endif t = 1.5 (as done by TSO), exchanging the edges involved
15: end for in intersection in current MST would give the new MST

16: Output the previous MST (TMST) along with itS(see Figur&l8). These ideas are presented formally in the
' time-sub-interval following propositions. These are used in designing an

incremental algorithm for computing the TSMST.

Proposition 2. The intersection of the edge weight func-
the MST does not change at a intersection point (e.g., $&& of two non-tree edges at any time instant will not

Figure[9). affect the minimum spanning tree, i.e., the tree will not
Moreover, if the edges involved in intersection ar&n@nge:

from different bi-connected components, the MST Wilbroof. Consider the intersection of the edge weight func-
not change (Propositidd 4). A bi-connected componentign of two non-tree edges, ande, at a time instant
a graph is a maximal set of edges such that any two edges , | et O = ees.. .eiezey€i+l3 ...em be the as-
in the set lie on a common cyclel [5]. For example, edgggnding order of weights of the edges before time o
(3,5) and(1,2) of the network shown in Figuie 2{a) bezng Oz = e1ea...€,eye€i43 ... ¢, after timet = a.
long to different bi-connected components, therefore ipere 1, is number of edges in the graph. Since all the
tersection of their weight functions can never producee@ges have distinct weights, therefore, MST of the graph
change in MST. On the other hand, intersection of weighijuced by the edges;, wherej < i, will be same for
functions of edges in the same bi-connected componggtn the serie®); andO, (using Lemm&lL). Now due to
(e.9., edgesl,2), (2,4), (3,4), (1,3), (2,3) in Figure the intersection, edges ande, have changed their rela-
[2(a)) may change the MST. tive ordering. Previously, i.e., before tine= «, edgee,,
Similarly, intersection of edge weight functions of twevas not present in the MST. But now its weight has fur-
or more tree edges or non-tree edges do not changettier increased so it will again not be in the MST. Now, the
MST (Propositio R and Propositiéh 3). For example, ineight of the edge, has decreased but it is still more than
Figure[3 intersection of weight functions of edgées3) the next lighter edge (since weight functions of only
and(2, 3) attimet = 2 does not change the MST becausende,, have intersected). Thereforg, will again not be
both are non-tree edges. Likewise, intersection of weighthe MST. Thus the intersection of the edge weight func-
functions of edgegl1,2) and (2,4) at timet = 2 (see tions of two non-tree edges does not affect the MST]

Proposition 3. The intersection of the edge weight func-
tion of two tree edges at any time instant will not affect thel5 5555 5] (131313
minimum spanning tree, i.e., the MST will be the same.

F_’roof. Consider the intersection of the e(_jge weight func- (313131] MST for time [1 6]
tion of two tree edges, ande, at a time instant = o.

Let O1 = erea...ee0ey€i13 ... e be the ascending or-

der of weights of the edges before time- « andO; = 4

€1€2 .. .6 e €543 ... €y after timet = a. Here,m is I eee-e--e---0

number of edges in the graph. Since all the edges have 1 --ee (2
distinct weights, therefore, MST of the graph induced by — . 3
the edges;, wherej < i, will be same for both the series gqqe cost |

01 andO; (using Lemmall). Now due to the intersection 4 — - (@3

edges:, ande, have changed their relative ordering. Pre-
viously i.e., before timeé = «, edgee,, was present in the
MST. But now its weight has decreased so it will again be T T

in the MST. Now, the weight of the edge has increased Time

but it is still less than the next heavier edge (since weiglfven though heaviest edge is not changing but the TSO
functions of onlyem andey have intersected). Therefore,algorithm will still recompute MST for each intersection point
e, Will again be in the MST. Thus the intersection of the

edge weight functions of two tree edges does not affect Figure 9: Worst case behavior of TSO algorithm.
the MST. O

Proposition 4. The intersection of the edge weight func-
tions of two edges belonging to different bi-connect@ége edges) from another bi-connected component cannot
components can never change the MST. change the MST.

Proof. Consider a grapt¥ with two bi-connected compo-
nents, andG, such thatz = G; UG5. The bi-connected
componentssy; andGs can at most share one vertex (b
the maximality of bi-connected componerits [5]). Co
sider a spanning tree 6f, T = Tz, UT,. Now in order
to determine the minimum spanning tree @fwe have

to minimize the total cost df;. The minimum value is
attained when botli;, andT, have their minimum val-
ues. But the minimum value of the total costief, (T¢,)
is attained wheflz, (1,) is the MST ofG; (G2). This
implies that MST ofG is the union of the MSTSs of its
individual bi-connected components.

Consider the intersection of the weight function of
edgee, belonging toG; with an edgee; belonging
to Go. Let O1 = ejea...e5e,...¢,, be the ascend-
ing order of the edge weights of edgesGh and O, =
ehey. . .elel , be the ascending order of the edge

weights cln‘Jedges id’o. Herem; is the number of edges

in the bi-connected componefy andms, is the number 4-2 Edge Intersection Order (EIO) Algo-
of edges in the bi-connected componéft Now due to rithm

this intersection there is no changein or O,. Therefore
the MST ofG; (or G2) will not change. This implies that
the MST of G will not change.

Proof. Consider the intersection of weight functions of
two tree edges; andes of bi-connected componeri

With two non-tree edges, ande), of bi-connected com-
rE)'onentB’. Using Propositiofil4, we conclude that inter-
section of weight functions of edges belonging to different
bi-connected components do not change the MST. Now,
inside each of the bi-connected componédbtand B’ ei-

ther only tree edges are involved or only non-tree edges
are involved. Using Propositidd 2 and Proposifion 3 we
conclude that these intersections cannot change the MSTs
within the bi-connected components. Now, since MSTs
of individual bi-components did not change therefore the
ST of the entire graph will also not change. This is be-
cause the MST of graph is the union of the MSTs of its
individual bi-connected components (Proposifibn 4]

Here we present an incremental algorithm for comput-
ing TSMST. The edge intersection order (EIO) algorithm
starts by computing the MST of the network at time
Proposition 5. Intersection of weight functions of twa: = 1 and then continues to update the tree, only if neces-
or more tree-edges (or non-tree edges) from one Isary, at each intersection point. The intersection points
connected component with two or more non-tree edges éoe processed in increasing order of their time coordi-

nates. Through preprocessing, some additional infornfdgorithm 2 Modified Reverse-Delete Algorithm for
tion about the edges is stored while computing the MSTMST
timet = 1. This information is used to prune the intersec-1: Find depth first search tree of the given network
tion points which are guaranteed not to cause any change while non-tree edge is preseahb
in the MST. 3: Pick anon-tree edge and determine all the edges in
The modified reverse-delete (AlgoritHm 2) is used to the fcycle
compute the MST at timeé = 1. Figure[I0 shows the 4: Delete the edge which has maximum weight.
execution trace of the algorithm. The algorithm first Record the fcycle infcycle — table
computes the depth first search (DFS) tfée [5] of the givelr Find the DFS tree of the remaining network
ST network. A non-tree edgee = (fs, f.), wheref. is 6: end while
the ancestor of, is chosen. Now, edgee and edges 7: The remaining edges form the minimum spanning
seen while following the parent pointers from naofleto tree
fe andne form a cycle. This cycle is termed #sycle
The heaviest edge of this fcycle is deleted. For example,
in Figure[I0, edge (2,4) is a non-tree edge where nod&et to one. The edge-table and fcycle-table are indexed
is an ancestor of node 4 (considering the DFS tree to #®ng hashing. The information stored in fcycle-table can
rooted at node 2). Now on following the parent pointe@so be computed at runtime by adding the non-tree edge
from node 4 to node 2, edges (4,3), (3,2) and (2,4) fotethe MST and determining the fcycle. This would incur
a fcycle with edge (2,4) being the heaviest. This edged8 additionalO(n) cost each time. This is avoided by
deleted and an entry in a table called fcycle table is magf€ring the information while constructing MST for time
for FC1 with edges (4,3), (3,2) and (2,4). A DFS tree= 1. The fcycles column of the edge-table is filled by
of the remaining edges is computed. A non-tree edgelfidversing through the fcycle-table. Each fcycle-id from
picked up and the heaviest edge in its fcycle is deletéte fcycle-table is chosen and the bit corresponding to this
and a corresponding entry in the fcycle table is madgycle-id is set for all the edges in the edges column of
This process continues until only— 1 edges are left in this entry of fcycle-table. The bi-connected component
the network. At this point there will no non-tree edge@olumn of the edge-Table is filled in linear time using the
after constructing the DFS tree, i.e., all edges are tr@gorithm given in[[2].
edges. These edges form the MST of the network. TheyWhile considering an intersection point, two levels of
are marked as tree edges and all other remaining edgelltefs are applied to prune the intersection points that can
the original network are marked as non-tree edges. hot cause any change in MST. If all the edges involved
in an intersection are either non-tree edges or tree edges,
Data structures used by EIO algorithm The following then it can be pruned using Propositidn 2 and Proposition
data structures are used by the EIO algorithm and fiéespectively. Similarly, if all the edges involved in an
modified reverse-delete algorithm. This information igtersection belong to different bi-connected components
pre-computed before the EIO algorithm starts processi#fign it can be pruned using Propositidn 4.
each intersection point: After applying these filters, the edges are grouped by
. _ their bi-connected component number. Now, within each
e Edge-Table: A Iqok up table st_onng the details ofgroup we again check if the edges are only tree edges
each edge. This table contains, for each edgeg@non-tree edges. This is important in cases when the
unique edge-id, the two nodes it connects, the Riwight functions of two or more tree (or non-tree) edges
connected component it belongs to, and a bit vecigf one component and one or more non-tree (or tree)
storing the fcycles of which the edge is a member. gqges of another component intersect at a point. These

e Fcycle-Table: A look up table storing the detailskinds of intersection points cannot cause any change in a
of each fcycle observed while constructing the mil-€ (Propositiodls). Hence, the filters are applied again
imum spanning tree at time — 1. Each entry of after the edges are grouped by their bi-component num-

this table contains a unique fcycle-id and a list of ilkger. After applying these filters if the intersection post i
member edges (edges column) not pruned, we check if the relative order of edges weights

before and after the intersection point are same. The in-
The MST of the network is stored as a bit vector dérsection point can be pruned safely if the relative order
length equal to the number of edges in the network. Tleesame. This can happen when weight functions of two
bit vector would contain a bit corresponding to each edgemore edges touch each other at change points (see Fig-
of the network and the edges belonging to MST would lee[3) without changing their relative order.

If an intersection point is not pruned after applying all
the filters, then a new MST is made by making changes
to the previous MST. If only two edges (per bi-connected | Fct | 23). 24 G4
component) are involved in the intersection and they are | Fc2 | 23).12).13)
part of only one common cycle, i.e., they are not part

Fcycle-Table

Weight

Non Tree Edge

of any cycle except the one which is common, then we DFS Tree weight
can directly exchange the edges in the tree, i.e., make delete (2.4) and \ EE
the heavier edge between them as non-tree edge and the ® recompute DFS tree

lighter edge as tree edge. In all other cases we add each of O
the non-tree edges involved in the intersection to the MST (3) @ e
and delete the heaviest edge from their respective funda- delete (23 and N

mental cycles. We can check whether two edges are party & ©, recompute DFS tree © \

of only the common cycle by performing an AND operavow there are no non-tree edges

tion on the fcycles column of the two edges and check thfigee the remaining edges form the MST G © O

FS Tree

number of bits set to 1 in the result. Note that in the two-
edges intersection case discussed above, adding the non-
tree edge to the tree and deleting the heaviest edge fronfrigure 10: Trace of modified reverse delete algorithm for
fundamental cycle would still give the correct MST. Thbuilding MST.
information gathered during initial construction was used

to save this unnecessary re computation. The start time _ soresponding t foycles
of the time-sub-interval of the new MST and end time infeyctes fieid of Edge-tavle
of the time-sub-interval of previous MST are set to the

time coordinate of intersection point at which the MST EdeeTable

FC2 FC1

Bits corresponding to edges in MST

changed. The previous MST is output along with its time- [®2[*]? A [eafea]en]ea [] eo]
sub-interval. The previous MST forms the TMST for that L1 - . ver vt
particular time-sub-interval. TEIEE ~ EEEEEE BEEEEE
We now describe the terminology used in the EIO |¢&9]®]* A mST (1) MST (V)
algorithm. While considering an intersection point at [**[?] ¢ |CH |4 BEGEEE EEEERE

time t, S, is the set of all intersection points whose

time coordinate ist. An intersection point inS; IS Figure 11: Trace of EIO Algorithm for ST network shown
denoted asp,, wherer € [1,2....|S,[l. The set iy rigurd77a).

of all Sy’s form I'. B, = [b1,be,...] is the set of

groups obtained after grouping the edges involved in

the intersection by their bi-connected components. After building the MST for timet = 1 a bit vector is
and s; are the decreasing order of edges weights (ofceeated by setting the bits corresponding to tree-edges to
particular bi-connected component group) before addMST(l) in Figure[I1). The edge-table and MST(l) is
after the time of the intersection point. The edge intersestrown in Figurd_T1. After that the remaining intersec-
tion order algorithm is formally presented as Algorithim 3ion points belonging to the remaining intervalsdoére
grouped by their time coordinate to buid (here,S; is

. . the set of all intersection points with time coordinate as
Execution Trace of EIO Algorithm We next present anlﬂ' The set of allS,’s form T'. The algorithm then up-

ﬁ?;jrlglon trac_rehgfatlr;%:iitlﬁ)malsggrrghg/ fg(r)rt:su(;)égr?ﬁéebg_ates the MST, if necessary, by exchanging the edges at
[2@). he intersection points. After= 1 the next interval i

connected components of the given graph and filling th?artst = 1.25. There are two pairs of edges intersecting

corresponding columns in the edge table. This can St

S . ; . att = 1.25. Both these pairs involve only tree edges or
done in linear time[2]. The algorithm then determines the 4 .
. non-tree edges, and thus, these are pruned by the if condi-
intersection points of the edge weight functions. They are

then sorted on the time coordinate to form the edge-or ions at line 10 and line 1@S|m|larly, the intersection of

e . . X
series. Minimum spanning treedat 1 is built using Al- nge (3,5) and (2,3) is pruned since they belong to differ-

gorithm[2 and the fcycle-table is populated. Step by stSBt bi-connected components.

.exeCUtionl of Algorithr’h'_lz and the filling of the fcycle-table 1giter the previous MST or the current MST may be used here be-
is shown in F|gurE]0. cause any edge can be involved in only one intersection atea ti

Now for the intersection between the edges (2,4) apthced by a non-tree edge. In such cases, each of the non-
(1,3) at t=1.5, the condition in line 30 is evaluated biyee edges (in increasing order of their weights) is added
performing an bitwise AND operation of their respectived the MST and if any of the tree edges is found in the
fcycle-id columns. Since the edges (2,4) and (1,3) do rmyfcle created by the addition of non-tree edge, then it is
share a cycle (as per fcycles column of edge-table) tleplaced by that particular non-tree edge. The tree edges
non-tree edge (2,4) is added to current MST and heavre stored in a hash table for this case. Now, when an edge
iest edge in the fundamental cycle is deleted and M$dappears (either tree or non-tree), it is added to the MST
is updated (now it will be MST(ll) in FigureZ11). Thisand the heaviest edge is deleted from the cycle created.
step is essential because even if the edges do not slramepractical purposes, we assume that the graph is never
a cycle as per fcycles column of edge-table they still Idisconnected due to disappearance of edges. Therefore, at
on a common cycleé [5]. The next intersection point immostm — n + 1 edge can be absent during any particular
volving tree and non-tree edge of same component istiate interval.
t=2.66 between (3,4) and (2,3). Here, the edges (3,4) an#Vhen an edge is absent during a certain time inter-
(2,3) share a cycle (if condition at line 30 is true) and thwsl, the bi-connected component information of the edges
are exchanged to create MST(lIl). Similarly the next exhange. This information can be recomputed in linear
change is at t=3.66. Since the EIO algorithm outputs thime using the algorithm given in][2]. This updated in-
older MST after every change, the last TMST has to bermation may be useful for pruning some of the inter-
output separately after the main loop. section points which may not be pruned otherwise. The
bi-connected component information has to be recom-
puted again after the edge appears. Re-computation of
. bi-connected components can be delayed until the next
tion intersection point is encountered. This is useful in cases

In this section, we relax the assumption that an edge"{§en there are no intersections during the period of ab-
always present. The absence of an edge can be repfsCe- The b|-c0nnec_:ted component information is only
sented by assigning time intervals during which the edgged by the EIO algorithm.

is absent. Such a case arises when some of the sensor

nodes move very far from other sensor nodes. Consiger . :
a case when an edgeis not present during the time in—‘§ Analytlcal Evaluation

ter\t/al t[2.5—2'19].2 ?I):urthgi :;1532ur3n% thatj';s we|gh:_ atl UMfhe correctness proof and the asymptotic analysis of
Instantst. = 1,2,3, and4 s 2, 3,6, ands respectively. o edge-intersection order algorithm and the time sub-

The edge_ abs_ence inf_ormation can be combine_d with {Aerval order algorithm are presented in this chapter.
edge weight time series by expanding the series to de-

fine weights at smaller time intervals. For example, in . .

the above case, the edge weights would be defined at tthd ~ Analysis of TSO algorithm

instantst = 1.0,1.1,1.2...2.4,2.5 — e and then at time a4rem 1. The time-sub-interval order (TSO) algorithm

instantst = 2.9 +¢,3.0,...3.9,4.0. The edge weight at ;s ~orrect.

these new intermediate time instants can be determined by

interpolating original weight functiof. Proof. The correctness of the TSO algorithm can be es-
The absence of an edge for a certain time period affetablished by using Observatibh 1. The minimum spanning

the MST and the bi-connected components of the grapiee changes whenever there is a change in ordering of the

If a non-tree edge does not exist after a certain time instaages. The TSO algorithm addresses this by recomputing

then there will no change in the MST. On the contrary, ke minimum spanning tree for each intervaldin This

atree edge ceases to exist then it is replaced by a non-tn&ans that it recomputes the ordering of edges again af-

edge of lowest weight such that the MST remains coi®r every intersection point. Moreover, from Observation

nected and optimal. This is done by adding each of fllewe can say that the ordering or edges do not change

non-tree edges (in increasing order of their weights) iteside an edge order interval. This proves that the TSO

the MST and if the tree edge (which is absent) in fourgdgorithm is correct. O

in the cycle created, then it is replaced by that particuléére

4.3 Relaxation of Edge Presence Assump

non-tree edge. If multiple tree edges are absent durin %ymptotlc analysis of TSO algorithmSince the edge

particular time interval then each of these tree edges is | ight |s_assurned to vary linearly between any tW;’ time
instants in a time series, there can be at mos&n*)

2Since the edge function is linear, interpolation works Iyice (wherem is the number of edges) intersections among

10

the edge weight functions in the worst case. Now if thitiction). Now, if the cycle contains some edgesvhere
happens between all time instances in the entire tihe< ¢ ande;11, then the algorithm would have chosen
horizon[1, ... K], the total number of intersections willedgee; 1 to delete instead af; , ; because the algorithm
be O(m?K). The time needed to sort all the intersectiodeletes the heaviest edge of the cycle. Consider the case
points isO(m? K log(m?K)). For each intersection pointwhen the cycle contains the edgeswherej > i + 1.
TSO recomputes the MST which takégmlog m) per Lete;, wherej # i + 1, be any edge of the cycle. Then,
intersection point. Thus, the total time complexity of the] ; < e; 41 < e;. Again, the algorithm would have cho-
TSO algorithm isO(m? K logm + m?K log(m?K)). sen edge;, instead ot/ ,. Therefore, we can conclude
that7T; andT, are same. O
Relaxation of edge presence assumptiddow, consider
the case when the edge presence assumption is rela
Even though the number of time instants in the ed
weight time series increases, the total number of inters
tion points do not change because we are not adding
new weight functions. Lef be the number of disjoint
time intervals during which any of the edges is abse

amptotic analysis of Modified Reverse Delete Algo-

m The algorithm determines the DFS tree of the graph
each iteration. This take®(m + n) wherem is the
mber of edges and is the number of nodes. Finding

the heaviest edge in a fcycle tak@$n) time. This hap-
ns when the fcycle contains all the nodes of the graph.

During each of thesé intervals, if any of the tree edgeéAfter each iteration the number of edges decreases by

is absent then it has to replaced by a non-tree edge. PHE" Therefore, the total number of iterations required are

replacementinvolves observing the cycles created by efbh_ n + 1 (one for each non-tree edge deleted). There-

of theO(m — n+ 1) non-tree edges in increasing order re, the total time taken is given by the sum (_)f the .series
their weights. Since there can be at most 1 tree edges, \'" tn)+(m—1+n)+...+@2n—1). Thls_senes
this takesD(mn 4+ m log m) time. Here, each tree edge i@asm. —n+l te;ms. Thus, the overall complexity of the
not processed individually. All the tree edges are storeqa}lgor'thm isO(m*).
a hash table and are checked in the cycles created by the
addition of each non-tree edge. Then after an edge (eithed Analysis of EIO algorithm
tree or non-tree) reappears, it is again added to MST and . . .
the heaviest edge is deleted from the cycle created. N?)f,hveorem 3. The edge intersection order (EI0) algorithm

. ._iscorrect.
there can be at most —n + 1 edges absent during a time
interval (assuming that the graph always remains cdoof. The EIO algorithm prunes an intersection point if
nected). Therefore, this step take$mn) time. There- only tree edges or non-tree edges are involved. Propo-
fore the total complexity i€)(Lmn + Lmlogm). Thus, sition[2 and Propositioh] 3 show the correctness of this
the overall complexity of the TSO algorithm becomedtering step. Similarly, an intersection point is pruned

O(mPK logm +m?K log(m?K) + Lmn 4+ Lmlogm). if all the edges involved in it belong to different compo-
nents. The correctness of this filtering step is evident from

Propositiod#. An intersection point is also pruned if two

5.2 Analysis of Modified Reverse Delete Al- or more tree edges (or non-tree edges) of one bi-connected

gorithm component intersect with two or more non-tree edges (or
Theorem 2. The modified reverse delete algorithm prd?€€ €dges) of another bi-connected component. The cor-
duces a MST. rectness of this filter step is shown in Proposifibn 5. Fur-

thermore, an intersection is pruned if the relative order of
Proof. (By contradiction) LetT} be the spanning treeedge weights do not change after the intersection. This is
generated by the algorithm and 18t be the MST. because in such cases, as there is no change in the relative
Let OTy = ejes...eei41...em_ni1 be the increas- order of edges and all the edges have distinct weights (be-
ing order of edge weights off3. Let OT, = fore and after the intersection), there will be no change in
eheh .. ejef .. .e,, .1 be the increasing order ofthe MST (using Lemmil1).
edge weights ofl,. Without loss of generality, assume After the filtering steps the algorithm checks if the
thate; is same as), Vj < 4. Further assume thatedges involved can be directly exchanged or not. Other-
ei+1 > €, . Now consider the cycle generated by addingise the non edge is added to the MST. This addition can
the edge;, ; to 7. Only one such cycle can be created aseate only one cycle. The cycle property of minimum
T, is a spanning tree of the graph. Now if this cycle cospanning trees$ [17] states that given a cycle, the heaviest
tains only the edges; where;j < 4, then it implies that edge in that cycle does not belong to any minimum span-
there is a cycle iff; ase; is same as’;, Vj < i (acontra- ning tree. Hence, using this we can add the non tree edges

11

and delete the heaviest edge without creating any cyatdstime interval whenO(m?) intersections (two edge
or affecting the correctness of the minimum spanning treéetersections) occur b&; andO(m) edge intersections
Thus, the EIO algorithm is correct. O be K; where K; + K, = K. The time required to
sort the intersection points in two-edge intersection
Storage costs of the data structuresThe edge-table case is bounded byO(m2Klog(m?K;)), whereas
has an entry for each edge in the ST network. Thustitwould take O(K>log K») time to sort whenO(m)
would havemn entries, wheren is number of edges inedges are involved in the intersection. Therefore the
the ST network. Now the number of fcycles in graph igtal time required for sorting all the intersection points
bounded byO(m — n + 1) (one for each edge deleteds O((m2K, + K;)log(m2K; + K3)). Thus the total
during construction of MST at t=1) where andn are worst case time required by the EIO algorithm is the
number of the edges and nodes of ST network. Thus, $ifin of time spent on two-edge intersection(m)
length of the bit vector for fcycles column of edge-tablgdge intersections and, the time required to sort all the
is —n + 1 (one bit for each fcycle). Therefore the totahtersection points. Thus the overall time complexity of

storage cost of edge-tabledm?). Similarly, the total the EIO algorithm i) (m2n K +mnkKs+ Kom log m+
number of entries in fcycle-table is — n + 1 and each (12K, + K;) log(m?K, + K3)).
entry of fcycle-table has a list which can have a worst

case length oD (m). Therefore, the total storage cost oRelaxation of edge presence assumptiddow, consider
fcycle-table isO(m?). the case when the edge presence assumption is relaxed.
Even though the number of time instants in the edge
Asymptotic analysis of EIO algorithm The running time weight time series increases, the total number of inter-
of the EIO algorithm is sensitive to the number of integection points do not Change because we are not add|ng
section points and number of edges involved per intersggy new weight functions. Let be the number of dis-
tion point. Here, we consider two kinds of intersectiopint time intervals during which any of the edges is ab-
points: one, in which all the edges are involved and tRgnt. The bi-connected component information has to re-
other, where only two edges (or a constant number) &@mputed at the start of each interval and at the end of
involved. First consider the case of a two-edge inters%ch interval. Thus, the bi-connected Component infor-
tion. The number of two edge intersections (or constagtion has to be computedl. times and each of these
number) between a pair of consecutive time instantsdémputations take)(m + n) time [2]. During each
O(m?). Since the edge-table is indexed using hashing, these L intervals, if any of the tree edges is absent
all the filtering steps would take oni(1) time. Sim- then it has to replaced by a non-tree edge. The replace-
ilarly, step 21 (determining; ands;) would take only ment involves observing the cycles created by each of the
constant time as there are only two (or constant number),, — n, + 1) non-tree edges in increasing order of their
edges. Steps 33-36 can takén) (n being the number of weights. Since there can be at mast 1 tree edges, this
nodes in graph) time in the worst case (when the fundakesO (mn + mlogm) time. Here, each tree edge is not
mental cycle involves all the nodes of the graph). Thussocessed individually. All the tree edges are stored in a
the two edge intersection case would taken’n) worst hash table and are checked in the cycles created by the
case time (for one consecutive pair of time instancesgd@dition of each non-tree edge. Then after an edge (ei-
the time SeriES). The maximum number of times this C@her tree or non-tree) reappears, itis again added to MST
happen isD(K) (once between every two time instancegnd the heaviest edge is deleted from the cycle created.
of the time series). Now, there can be at most — n + 1 edges absent dur-
Now, consider the case whe(m) edges intersecting a time interval (assuming that the graph always re-
at a single point. In this case step 21 would takfains connected). Therefore, this step takésin) time.
O(mlogm) time. This kind of intersection would Therefore the total complexity i©(Lmn + Lmlogm).
involve a maximum ofO(m — n + 1) non-tree edges. Thus, the overall complexity of the EIO algorithm be-
Thus step 33 would tak@(n) per non-tree edge makingcomeso(m%ﬂ(1 + mnKy + Komlogm + (m?K; +
a total of O(mn + mlogm) time in the worst case. K,)log(m?K, + K») + Lmn + Lmlogm).
This kind of intersection can happen or@)(K) times.
This is because the edge weight functions vary linearly
between two time instances of the time series, and tHos Experimental Evaluation
they can all meet at only one point between two time
instants of the time series. Consider the case whehe purpose of the experimental evaluation was to com-
length of the time series is very long. Let the lengtbare the execution times of the TSO and EIO algorithms.

12

The two algorithms were compared on synthetic datasdéis3 Performance Evaluation of the Filters

The experimental parameters that were varied in experi-))
ments are: (1) length of time series, (2) number of edggégurelﬂl shows the total number of the intersection

and (3) number of nodes. In our experiments we gengpints anq the numb_er of intersection points pruned _by the
ated the networks randomly. Given the number of nodg algorithm. The figure shows that the number of inter-
(n) and number of edges) of the network, first aspan_sect|on points increase with increase in size of network.
ning tree containing — 1 edges is genera{ed fc;r the netl he figure also shows that a large number of intersection
work. This is to guarantee that the network is connectdints were pruned by the EIO algorithm. This clearly
otherwise, the TSMST cannot be determined. Edges at.pws the_ superior performance of the filters used in the
then randomly added to this spanning tree till the numtel© algorithm. TabléB and Tablé 2 show the percentage
of edges becomes. After that a time series is associateff intersection points filtered by individual filters.

with each edge. The time series is also generated ran-
domly. The experiments were conducted on an Intel Xecyw
workstation with 2.40GHz CPU, 8GB RAM and Linux
operating system.

Conclusions

The time-sub-interval minimum spanning tree (TSMST)
. . problem is a key component of various spatio-temporal
6.1 Effect of Length of Time Series applications such as wireless sensor networks. The pa-

Figure[T2(d) shows the performance of EIO and TSO &€r proposes two novel algorithms for TSMST compu-
gorithm as the length of the time series increases. Exetdfion. The time sub-interval algorithm (TSO) computes
tion time of both the algorithms increase with time. Th&e TSMST by recomputing the MST at all time points
figure shows a superior performance of the EIO algorithffere there is a possible change in the ranking of can-
over the TSO algorithm. This is due to the increase of iflidate spanning trees (i.e., it recomputes the MST at
tersection points that occurs with the increase in the fengl the intersection points of edge weight functions) and
of time series. Since the TSO algorithm recomputes tHn outputs the set of distinct MSTs along with their
MST at each intersection point, it takes much more tini@spective time-sub-intervals. The edge intersection or-
than the EIO algorithm, which just updates the MST witder algorithm (EIO) updates the MST, only if necessary,
no recomputing. Experiments reveal that execution tirdé these time points. Both these algorithms are based

of both TSO and EIO algorithms vary linearly with lengt®n & model for spatio-temporal networks called time-
of time time series. aggregated graphs. The asymptotic complexity of the

TSO algorithm wasO(m? K logm + m2?K log(m?K))
and the asymptotic complexity of the EIO algorithm
6.2 Effect of Number of Edges was O(m2nK: + mnks + Komlogm + (m?K, +
Figure[T2(B) shows the performance of EIO and TSB2)log(m”K; + K>)). Computational complexity anal-
algorithm as the number of edges increases. Executisis shows that the EIO algorithm is faster than the TSO
time of EIO algorithm was observed to increase quadréy a factor of almosO(m). Experiments also show that
ically. Execution time of the TSO algorithm increasethe EIO is faster than the TSO algorithm by an order of
much more rapidly than that of the EIO algorithm. Botfagnitude.
the previous experiments clearly showed the superior perin future, we plan to evaluate the performance of the
formance of the EIO algorithm over the TSO algorithnalgorithms using real datasets. We also plan to extend the
The EIO algorithm was faster than the TSO algorithm ®jgorithms to give optimal solutions subject to the con-
an order of magnitude. Moreover, the difference in ttaraint that the edge weight functions are non-linear in na-
execution times of the two algorithms increased with itudre.
crease in length of time series and number of edges.

Figure[13 shows the performance of the EIO algorithm
for four different network sizes. The execution time inReferences
creased linearly with length of time series in all cases.
The execution time increased at a faster rate as the sigg P. Agarwal, D. Eppstein, L. J. Guibas, and M. R.
of the network increased. For instance, execution time in- Henzinger. Parametric and kinetic minimum span-
creased much more rapidly for a network with 300 nodes ning trees. Proceedings of 39th Annual IEEE
and 1000 edges than for a network with 100 nodes and Symposium on Foundations of Computer Science
650 edges. (FOCS) pages 596-605, 1998.

13

Percentage of intersection points filtered
i Only tree| Only non-| Dfferent bi-\ o change in| Total intersec-
Network size connected : _ ,
edges tree edges relative order | tion points
components

Nodes=100

Edges=130 73.42 10.69 0.87 0.07 356885
Nodes=100

Edges=150 58.95 20.06 0.37 0.05 481301
Nodes=100

Edges=650 5.56 87.74 0 0 8185234
Nodes=300

Edges=330 9251 2.05 0.25 0.01 2388274
Nodes=300

Edges=350 85.77 4.5 0.57 0.01 2676646
Nodes=300

Edges=650 33.7 44.5 0 0.01 9157842

Table 2: Performance of filters for time series length=90.

[2] V. A. Alfred, J. D. Ullman, and J. E. HopcrofData [9] G. Frederickson. Ambivalent data structures for dy-
Structures and AlgorithmsAddison Wesley Long- namic 2-edge-connectivity and k smallest spanning
man, 1983. trees.SIAM J. Computing26:484-538, 1997.

[3] J. Basch, L. J. Guibas, and J. Hershberger. Datd! B- George, S. Kim, and S. Shekhar. Spatio-temporal
structures for mobile data. IRroceedings of the network databases and routing algorithms: A sum-

eighth annual ACM-SIAM Symposium on Discrete Mary of results. InProceedings of Symposium
Algorithms (SODA)pages 747756, 1997. on Spatial and Temporal Databases (SSTj8ges
460-477, 2007.

[4] B. Chazelle. A faster deterministic algorithm f0|[11] B. George and S. Shekhar. Time-aggregated graphs

minimum spanning trees. IRroceedings of the for modelling spatio-temporal networkdournal on
38th Annual Symposium on Foundations of Com- gomantics of Datax|:191, 2007.

puter Science (FOCSpage 22, 1997.
[12] L. J. Guibas. Kinetic data structures: a state of the art
[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and report. InProceedings of the Third Workshop on the
C. Stein. Introduction to Algorithms MIT Press, Algorithmic Foundations of Robotics (WAFERages
2001. 191-209, 1998.

[6] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nis[13] W. R. Heinzelman, A. Chandrakasan, and H. Bal-

senzweig. Sparsification — a technique for speeding akrishna. Energy-efficient communication protocol

up dynamic graph algorithmd. ACM 44:669—696 for wireless microsensor network®roceedings of
1997. ’ the 33rd Hawaii International Conference on System

Sciences - 2000 (HICSS:8020, 2000.

[7] D. Fernandez-Baca, G. Slutzki, and D. Eppstein. UFI4]
ing sparsification for parametric minimum spanning
tree problems.Nordic J. of Computing3(4):352—
366, 1996.

M. R. Henzinger and V. King. Maintaining min-
imum spanning trees in dynamic graphs. Rro-
ceedings of 24th International Colloquium on Au-
tomata, Languages, and Programmjnmages 594—

)) 604, 1997.
[8] G. Frederickson. Data structures for on-line updat-

ing of minimum spanning treeSIAM J. Computing [15] J. Holm, K. de Lichtenberg, and M. Thorup. Poly-
14:781-798, 1985. logarithmic deterministic fully-dynamic algorithms

14

[16]

[17]

[18]

[19]

[20]

[21]

Percentage of intersection points filtered
i Only tree| Only non- Different bi- |y change in| Total intersec-
Network size connected : _ ,
edges tree edges relative order | tion points
components

Nodes=100

Edges=130 72.88 10.33 0.9 0.05 196732
Nodes=100

Edges=150 58.79 19.8 0.49 0.06 264020
Nodes=100

Edges=650 5.72 87.75 0 0 4506094
Nodes=300

Edges=330 92.14 191 0.26 0.01 1317133
Nodes=300

Edges=350 85.77 4.27 0.12 0.02 1476097
Nodes=300

Edges=650 34.38 45.19 0 0.01 5031355

Table 3: Performance of filters for time series length=50.

for connectivity and minimum spanning tree.Rro- [22] A. Verma, H. Sawant, and J. Tan. Selection and nav-
ceedings of 30th ACM Symp. Theory of Computing igation of mobile sensor nodes using a sensor net-
(STOC) pages 79-89, 1998. work. Pervasive and Mobile Computing(1):65—

_ o 84, 2006.
G. Huang, X. Li, and J. He. Dynamic minimal span-

ning tree routing protocol for large wireless sens@23]
networks. Proceedings of the 1st IEEE Conference
on Industrial Electronics and Applications (IEA)
pages 1531-1535, 2006.

S. Yoon and C. Qiao. A novel approach to recon-
naissance using cooperative mobile sensor nodes.
In Proceedings of Military Communications Confer-
ence (MILCOM) pages 1-7, 2006.

J. Kleinberg and E. Tardo#lgorithm Design Pear-
son Education, 2009.

S. Muruganathan, D. Ma, R. Bhasin, and A. Fapo-
juwo. A centralized energy-efficient routing proto-
col for wireless sensor networkEEE Communica-
tions Magazine43:8-13, 2005.

D. D. Sleator and R. E. Tarjan. A data structure
for dynamic trees. IProceedings of the thirteenth
annual ACM Symposium on Theory of Computing
(STOC) pages 114-122,1981.

J.-Z. Sun. Query optimization based on user-
specified delay item for wireless sensor networks.
Proceedings of the 2007 international conference
on Wireless communications and mobile compuyting
pages 493-498, 2007.

N. Trigoni, Y. Yao, A. Demers, J. Gehrke, and
R. Rajaraman. Multi-query optimization for sen-
sor networks. Lecture Notes in Computer Science
3560:307-321, 2005.

15

Edge intersection order algorithm

120 : . . .
Nodes = 100 Edges = 650 —
Nodes = 100 Edges = 1000 R L
100 - Nodes = 300 Edges = 1000 ke o i
Nodes = 300 Edges = 650 @ -
£ 80| g
o -
£ o
~ 60t —
Number of nodes = 100 %
3
e T 2 40 + =) 4
/,,x—*”"””n o -
1000 F I
T e 20 —
= - %
= 20 30 40 50 60 70 80 90
g Time series Length
()
£ 100 EIO edges = 650 —— . i . . .
5 TSO edges =1000 - Figure 13: EIO algorithm: Execution time with respect to
=] TSO edges = 650 ke : ;
8 EIO edges = 1000 & length of time series.
|
10 | o & 4
|
20 30 40 50 60 70 80 90 Number of nodes = 100
Time series length
(a) Comparison on time series length 2e+07 | Total intersection points 1 1
" Intersection points pruned by EIO =03
E 1.8e+07 = 4
Number of nodes = 100 g
‘ _S 1.6e+07 |- q
& 1.4e+07]
14
a £ 12e+07 - .
xeT G
o 1le+07 B
1000 e . g °°
—)) E 8e+06 1
£ X EIO Time series len =50 —— 2
E ’ EIO Time series len = 90 - 6e+06 - —
g P TSO Time series len =50 ---- 46406 b [y
= TSO Ti ies len =90 : : : : =
g 100 p- fme series fen " 3 edges=650 edges=650 edges=1000 edges=1000
= ts=50 ts=90 ts=50 ts=90
5 -
Q -
>< Number of nodes = 300
10 F ,x/’//'/ J T T T —
2e+07 | Total intersection points 1]
- " Intersection points pruned by EIO 23
E 1.8e+07 ! 4
o
. S eeso7 | |
300 500 700 900 1100 1300 1500 1700 1900 .§ :
Number of Edges g 14e+07 - 1
Q
(b) Comparison on number of edges £ l2ex07r 1
S le+07 g
2
. . . - [L 4
Figure 12: Comparison of EIO and TSO algorithms. ER
6e+06 H q
4e+06 ¢ ’_‘u——\ | I I 1

edges=650 edges=650 edges=1000 edges=1000
ts=50 ts=90 ts=50 ts=90

Figure 14: Number of intersection points in different
datasets.

16

Algorithm 3 Edge Intersection Order (EIO) algorithm for finding TSMST

1: Compute the bi-connected components of the given graph pahate bi-connected column of edge-table
2: Determine the intersection points of the edge weight fomsti
3: Sort the intersection points with respect to time coordinat
4: Find the MST at = 1 (let this be previous MST) using Algorithinh 2 and populatefthele-table
5: Set the start time of time sub interval of previous MST to
6
7
8
9

: ConstructS,s from the intersection points

: forall S, € I"do
Set MST-change flag and new-MST-exist flag to FALSE
for all intersection pointg,. € .S; do

10: if all edges are tree edges or non-tree ediges

11: continue

12: end if

13: if all edges belong to different bi-connected compontén

14: continue

15: end if

16: group the edges into bi-connected components (buil@set

17: forall b; € B, do

18: if all edges are tree edges or non-tree ediges

19: continue

20: end if

21: Determines; ands;.

22: if s; ands; are samehen

23: continue

24: end if

25: Set MST-change flag to TRUE (all subsequent steps will ch84§E)

26: if new-MST-exist is FALSEhen

27: Create a new MST (i.e., create a new bit vector and assigrathe salues as of previous MST)), let this
be current MST

28: Set new-MST-exist flag to TRUE

29: end if

30: if only two edges intersect and they are part of only the comryole then

31: update the current MST (set the bit corresponding to headge to 0 and lighter edge to 1).

32: else

33: for all non tree edges ig; do

34: find their fundamental cycle and delete heaviest edge

35: update the current MST

36: end for

37: end if

38: end for

39: end for

40: if MST-change flag is set to TRUen

41: Output the previous MST (TMST) with its time-sub-intervabbBmake current MST as previous MST
42: endif

43: end for

44: Output the previous MST (TMST) along with its time-sub-ivid

17

	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Basic Concepts and Problem Definition
	2.1 Problem Definition

	3 Related Work
	3.1 Classical Greedy Algorithms
	3.2 Dynamic Graph Algorithms

	4 TSMST Computation Algorithms
	4.1 Time Sub-Interval Order (TSO) Algorithm
	4.2 Edge Intersection Order (EIO) Algorithm
	4.3 Relaxation of Edge Presence Assumption

	5 Analytical Evaluation
	5.1 Analysis of TSO algorithm
	5.2 Analysis of Modified Reverse Delete Algorithm
	5.3 Analysis of EIO algorithm

	6 Experimental Evaluation
	6.1 Effect of Length of Time Series
	6.2 Effect of Number of Edges
	6.3 Performance Evaluation of the Filters

	7 Conclusions
	Bibliography

