Skip to main content

Supporting Global Numerical Optimization of Rational Functions by Generic Symbolic Convexity Tests

  • Conference paper
Book cover Computer Algebra in Scientific Computing (CASC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6244))

Included in the following conference series:

Abstract

Convexity is an important property in nonlinear optimization since it allows to apply efficient local methods for finding global solutions. We propose to apply symbolic methods to prove or disprove convexity of rational functions over a polyhedral domain. Our algorithms reduce convexity questions to real quantifier elimination problems. Our methods are implemented and publicly available in the open source computer algebra system Reduce. Our long term goal is to integrate Reduce as a “workhorse” for symbolic computations into a numerical solver.

This work was supported by the DFG Research Center Matheon Mathematics for key technologies in Berlin, http://www.matheon.de

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballerstein, M., Michaels, D., Seidel-Morgenstern, A., Weismantel, R.: A theoretical study of continuous counter-current chromatography for adsorption isotherms with inflection points. Computers & Chemical Engineering 34(4), 447–459 (2010)

    Article  Google Scholar 

  2. Grossmann, I.E. (ed.): Global Optimization in Engineering Design. Kluwer Academic Publishers, Dordrecht (1996)

    MATH  Google Scholar 

  3. Grossmann, I.E., Kravanja, Z.: Mixed-integer nonlinear programming: A survey of algorithms and applications. In: Conn, A., Biegler, L., Coleman, T., Santosa, F. (eds.) Large-Scale Optimization with Applications, Part II: Optimal Design and Control. Springer, Heidelberg (1997)

    Google Scholar 

  4. Jüdes, M., Tsatsaronis, G., Vigerske, S.: Optimization of the design and partial-load operation of power plants using mixed-integer nonlinear programming. In: Kallrath, J., Pardalos, P., Rebennack, S., Scheidt, M. (eds.) Optimization in the Energy Industry. Springer, Heidelberg (2009)

    Google Scholar 

  5. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications. Kluwer Academic Publishers, Dordrecht (2002)

    Book  MATH  Google Scholar 

  6. Nocedal, J., Wright, S.: Numerical Optimization. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  7. Adjiman, C.S., Floudas, C.A.: Rigorous convex underestimators for general twice-differentiable problems. Journal of Global Optimization 9, 23–40 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fourer, R., Maheshwari, C., Neumaier, A., Orban, D., Schichl, H.: Convexity and concavity detection in computational graphs: Tree walks for convexity assessment. INFORMS Journal on Computing 22(1), 26–43 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mönnigmann, M.: Efficient calculation of bounds on spectra of Hessian matrices. SIAM Journal on Scientific Computing 30(5), 2340–2357 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Nenov, I.P., Fylstra, D.H., Kolev, L.V.: Convexity determination in the Microsoft Excel solver using automatic differentiation techniques. Technical report, Frontline Systems Inc. (2004)

    Google Scholar 

  11. Sturm, T., Weber, A.: Investigating generic methods to solve Hopf bifurcation problems in algebraic biology. In: Horimoto, K., Regensburger, G., Rosenkranz, M., Yoshida, H. (eds.) AB 2008. LNCS, vol. 5147, pp. 200–215. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Sturm, T., Weber, A., Abdel-Rahman, E.O., El Kahoui, M.: Investigating algebraic and logical algorithms to solve Hopf bifurcation problems in algebraic biology. Mathematics in Computer Science 2(3), 493–515 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Tarski, A.: A decision method for elementary algebra and geometry. Prepared for publication by J.C.C. McKinsey. RAND Report R109, August 1 (1948) (revised May 1951); Second Edition, RAND, Santa Monica, CA (1957)

    Google Scholar 

  14. Basu, S., Pollack, R., Roy, M.F.: On the combinatorial and algebraic complexity of quantifier elimination. Journal of the ACM 43(6), 1002–1045 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Weispfenning, V.: The complexity of linear problems in fields. Journal of Symbolic Computation 5(1&2), 3–27 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Weispfenning, V.: Quantifier elimination for real algebra—the quadratic case and beyond. Applicable Algebra in Engineering Communication and Computing 8(2), 85–101 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. Journal of Symbolic Computation 12(3), 299–328 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dolzmann, A., Sturm, T.: Redlog: Computer algebra meets computer logic. ACM SIGSAM Bulletin 31(2), 2–9 (1997)

    Article  Google Scholar 

  19. Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. Journal of Symbolic Computation 5(1-2), 29–35 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dolan, E.D., Moré, J.J., Munson, T.S.: Benchmarking optimization software with COPS 3.0. Technical Report ANL/MCS-273, Mathematics and Computer Science Division, Argonne National Laboratory (2004), http://www.mcs.anl.gov/~more/cops

  21. Bonami, P., Kilinç, M., Linderoth, J.: Algorithms and software for convex mixed integer nonlinear programs (2009), Optimization Online, http://www.optimization-online.org/DB_HTML/2009/10/2429.html

  22. Bussieck, M.R., Drud, A.S., Meeraus, A.: MINLPLib—A Collection of Test Models for Mixed-Integer Nonlinear Programming. INFORMS Journal on Computing 15(1), 114–119 (2003), http://www.gamsworld.org/minlp/minlplib.htm

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Neun, W., Sturm, T., Vigerske, S. (2010). Supporting Global Numerical Optimization of Rational Functions by Generic Symbolic Convexity Tests . In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2010. Lecture Notes in Computer Science, vol 6244. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15274-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15274-0_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15273-3

  • Online ISBN: 978-3-642-15274-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics