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Abstract. We present an extension of our GPGCD method, an iterative
method for calculating approximate greatest common divisor (GCD) of
univariate polynomials, to multiple polynomial inputs. For a given pair
of polynomials and a degree, our algorithm finds a pair of polynomials
which has a GCD of the given degree and whose coefficients are perturbed
from those in the original inputs, making the perturbations as small as
possible, along with the GCD. In our GPGCD method, the problem of
approximate GCD is transferred to a constrained minimization problem,
then solved with the so-called modified Newton method, which is a gen-
eralization of the gradient-projection method, by searching the solution
iteratively. In this paper, we extend our method to accept more than two
polynomials with the real coefficients as an input.

1 Introduction

For algebraic computations on polynomials and matrices, approximate algebraic
algorithms are attracting broad range of attentions recently. These algorithms
take inputs with some “noise” such as polynomials with floating-point number
coefficients with rounding errors, or more practical errors such as measurement
errors, then, with minimal changes on the inputs, seek a meaningful answer
that reflect desired property of the input, such as a common factor of a given
degree. By this characteristic, approximate algebraic algorithms are expected to
be applicable to more wide range of problems, especially those to which exact
algebraic algorithms were not applicable.

As an approximate algebraic algorithm, we consider calculating the approxi-
mate greatest common divisor (GCD) of univariate polynomials, such that, for a
given pair of polynomials and a degree d, finding a pair of polynomials which has
a GCD of degree d and whose coefficients are perturbations from those in the
original inputs, with making the perturbations as small as possible, along with
the GCD. This problem has been extensively studied with various approaches
including the Euclidean method on the polynomial remainder sequence (PRS)
([1], [2], [3]), the singular value decomposition (SVD) of the Sylvester matrix ([4],
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[5]), the QR factorization of the Sylvester matrix or its displacements ([6], [7],
[8]), Padé approximation [9], optimization strategies ([10], [11], [12], [13], [14]).
Furthermore, stable methods for ill-conditioned problems have been discussed
([6], [15], [16]).

Among methods in the above, we focus our attention on optimization strate-
gies. Already proposed algorithms utilize iterative methods including the Levenberg-
Marquardt method [10], the Gauss-Newton method [14] and the structured total
least norm (STLN) method ([11], [12]). Among them, STLN-based methods have
shown good performance calculating approximate GCD with sufficiently small
perturbations efficiently.

In this paper, we discuss an extension of the GPGCD method, proposed by
the present author ([17], [21]), an iterative method with transferring the original
approximate GCD problem into a constrained optimization problem, then solv-
ing it by the so-called modified Newton method [18], which is a generalization
of the gradient-projection method [19]. In the previous papers ([17], [21]), we
have shown that our method calculates approximate GCD with perturbations
as small as those calculated by the STLN-based methods and with significantly
better efficiency than theirs. While our previous methods accept two polynomials
with the real or the complex coefficients as inputs and outputs, respectively, we
extend it to handle more than two polynomial inputs with the real coefficients
in this paper.

The rest part of the paper is organized as follows. In Section 2, we transform
the approximate GCD problem into a constrained minimization problem for the
case with the complex coefficients. In Section 3, we show details for calculating
the approximate GCD, with discussing issues in minimizations. In Section 4, we
demonstrate performance of our algorithm with experiments.

2 Formulation of the Approximate GCD Problem

Let P1(x), . . . , Pn(x) be real univariate polynomials of degree d1, . . . , dn, respec-
tively, given as

Pi(x) = p
(i)
di
xdi + · · · p

(i)
1 x+ p

(i)
0 ,

for i = 1, . . . , n, with min{d1, . . . , dn} > 0. We permit Pi and Pj be relatively
prime for any i 6= j in general. For a given integer d satisfying min{d1, . . . , dn} >

d > 0, let us calculate a deformation of P1(x), . . . , Pn(x) in the form of

P̃i(x) = Pi(x) +∆Pi(x) = H(x) · P̄i(x),

where ∆Pi(x) is a real polynomial whose degrees do not exceed di, respec-
tively, H(x) is a polynomial of degree d, and P̄i(x) and P̄j(x) are pairwise rel-
atively prime for any i 6= j. In this situation, H(x) is an approximate GCD of
P1(x), . . . , Pn(x). For a given d, we try to minimize ‖∆P1(x)‖

2
2+· · ·+‖∆Pn(x)‖

2
2,

the norm of the deformations.
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For a real univariate polynomial P (x) represented as P (x) = pnx
n+· · ·+p0x

0,

let Ck(P ) be a real (n+ k, k + 1) matrix defined as

Ck(P ) =











pn
...
. . .

p0 pn
. . .

...
p0











,

︸ ︷︷ ︸

k+1

and let p be the coefficient vector of P (x) defined as

p = (pn, . . . , p0). (1)

In this paper, for a generalized Sylvester matrix, we use a formulation by
Rupprecht [20, Sect. 3]. Then, a generalized Sylvester matrix for P1, . . . , Pn

becomes as

N(P1, . . . , Pn) =








Cd1−1(P2) Cd2−1(P1) 0 · · · 0
Cd1−1(P3) 0 Cd3−1(P1) · · · 0

...
...

. . .
...

Cd1−1(Pn) 0 · · · 0 Cdn−1(P1)








, (2)

and the k-th subresultant matrix (with min{d1, . . . , dn} > k ≥ 0) is also defined
similarly as

Nk(P1, . . . , Pn)

=








Cd1−1−k(P2) Cd2−1−k(P1) 0 · · · 0
Cd1−1−k(P3) 0 Cd3−1−k(P1) · · · 0

...
...

. . .
...

Cd1−1−k(Pn) 0 · · · 0 Cdn−1−k(P1)








, (3)

with
rk = d1 + d2 + · · ·+ dn − (n− 1)k + (n− 2)d1 (4)

rows and
ck = d1 + d2 + · · ·+ dn − n · k (5)

columns.
Calculation of GCD is based on the following fact.

Proposition 1 (Rupprecht [20, Proposition 3.1]). Nk(P1, . . . , Pn) has full
rank if and only if deg(gcd(P1, . . . , Pn)) ≤ k.

Thus, for a given degree d, if Nd−1(P̃1, . . . , P̃n) is rank-deficient, then there
exist real univariate polynomials U1(x), . . . , Un(x) of degree at most d1−d, . . . , dn−
d, respectively, satisfying

U1P̃i + UiP̃1 = 0, (6)
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for i = 2, . . . , n. In such a case, if Ui and Uj are pairwise relatively prime for

any i 6= j, then H = P̃1

U1

= − P̃2

U2

= · · · = − P̃n

Un

becomes the expected GCD.
Therefore, for given polynomials P1, . . . , Pn and a degree d, our problem is to
find perturbations ∆P1, . . . , ∆Pn along with cofactors U1, . . . , Un satisfying (6)
with making ‖∆P1(x)‖

2
2 + · · ·+ ‖∆Pn(x)‖

2
2 as small as possible.

By representing P̃i(x) and Ui(x) as

P̃i(x) = p̃
(i)
di
xdi + · · ·+ p̃

(i)
1 x+ p̃

(i)
0 ,

Ui(x) = u
(i)
di−dx

di−d + · · ·+ u
(i)
1 x+ u

(i)
0 ,

(7)

we express the objective function and the constraint as follows. For the objective
function, ‖∆P1(x)‖

2
2 + · · ·+ ‖∆Pn(x)‖

2
2 becomes as

‖∆P1(x)‖
2
2 + · · ·+ ‖∆Pn(x)‖

2
2 =

n∑

i=1







di∑

j=0

(

p̃
(i)
j − p

(i)
j

)2






. (8)

For the constraint, (6) becomes as

Nd−1(P̃1, . . . , P̃n) ·
t(u1, . . . ,un) = 0, (9)

where ui is the coefficient vector of Ui(x) defined as in (1). Furthermore, we add
another constraint for the coefficient of Ui(x) as

‖U1‖
2
2 + · · ·+ ‖Un‖

2
2 = 1, (10)

which can be represented together with (9) as
(

u1 · · · un −1

Nd−1(P̃1, . . . , P̃n) 0

)

· t(u1, . . . ,un, 1) = 0, (11)

where (10) has been put on the top of (9). Note that, in (11), we have total of

d̄ = d1 + · · ·+ dn − (n− 1)(d− 1) + (n− 2)d1 + 1 (12)

equations in the coefficients of polynomials in (7) as a constraint, with the j-th
row of which is expressed as gj = 0.

Now, we substitute the variables

(p̃
(1)
d1

, . . . , p̃
(1)
0 , . . . , p̃

(n)
dn

, . . . , p̃
(n)
0 , u

(1)
d1−d, . . . , u

(1)
0 , . . . , u

(n)
dn−d, . . . , u

(n)
0 ), (13)

as x = (x1, . . . , x2(d1+···+dn)+(2−d)n), then (8) and (11) become as

f(x) = (x1 − p
(1)
d1

)2 + · · ·+ (xd1
− p

(1)
0 )2 + · · ·

· · ·+ (xd1+···+dn−1+n − p
(n)
dn

)2 + · · ·+ (xd1+···+dn−1+dn+n − p
(n)
0 )2, (14)

g(x) = t(g1(x), . . . , gd̄(x)) = 0, (15)

respectively, where d̄ in (15) is defined as in (12). Therefore, the problem of
finding an approximate GCD can be formulated as a constrained minimization
problem of finding a minimizer of the objective function f(x) in (14), subject to
g(x) = 0 in (15).
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3 The Algorithm for Approximate GCD

We calculate an approximate GCD by solving the constrained minimization
problem (14), (15) with the gradient projection method by Rosen [19] (whose ini-
tials become the name of our GPGCD method) or the modified Newton method
by Tanabe [18] (for review, see the author’s previous paper [17]). Our preceding
experiments ([17, Sect. 5.1], [21, Sect. 4]) have shown that the modified Newton
method was more efficient than the original gradient projection method while
the both methods have shown almost the same convergence property, thus we
adopt the modified Newton method in this paper.

In applying the modified Newton method to the approximate GCD problem,
we discuss issues in the construction of the algorithm in detail, such as

– Representation of the Jacobian matrix Jg(x) and certifying that Jg(x) has
full rank (Sect. 3.1),

– Setting the initial values (Sect. 3.2),
– Regarding the minimization problem as the minimum distance problem

(Sect. 3.3),
– Calculating the actual GCD and correcting the coefficients of P̃i (Sect. 3.4),

as follows.

3.1 Representation and the rank of the Jacobian Matrix

By the definition of the constraint (15), we have the Jacobian matrix Jg(x) (with
the original notation of variables (13) for x) as

Jg(x) =










0 0 0 · · · 0
Cd1

(U2) Cd2
(U1) 0 · · · 0

Cd1
(U3) 0 Cd3

(U1) 0
...

...
. . .

...
Cd1

(Un) 0 · · · 0 Cdn
(U1)

2 · tu1 2 · tu2 2 · tu3 · · · 2 · tun

Cd1−d(P2) Cd2−d(P1) 0 · · · 0
Cd1−d(P3) 0 Cd3−d(P1) 0

...
...

. . .
...

Cd1−d(Pn) 0 · · · 0 Cdn−d(P1)










,

which can easily be constructed in every iteration. Note that the number of rows
in Jg(x) is equal to d̄ in (12), which is equal to the number of constraints, while
the number of columns is equal to 2(d1 + · · ·+ dn) + (2− d)n, which is equal to
the number of variables (see (13)).

In executing iterations, we need to keep that Jg(x) has full rank: otherwise,
we are unable to decide proper search direction. For this requirement, we have
the following observations.
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Proposition 2. Assume that we have deg d < min{d1, . . . , dn}−1 and degUi ≥
1 for i = 1, . . . , n. Let x

∗ ∈ Vg be any feasible point satisfying (15). Then, if
the corresponding polynomials do not have a GCD whose degree exceeds d, then

Jg(x
∗) has full rank.

Proof. Let

x
∗ = (p̃

(1)
d1

, . . . , p̃
(1)
0 , . . . , p̃

(n)
dn

, . . . , p̃
(n)
0 , u

(1)
d1−d, . . . , u

(1)
0 , . . . , u

(n)
dn−d, . . . , u

(n)
0 )

as in (13), with its polynomial representation expressed as in (7) (note that this
assumption permits the polynomials P̃i(x) to be relatively prime in general). To
verify our claim, we show that we have rank(Jg(x

∗)) = d̄ = d1 + · · ·+ dn − (n−
1)(d− 1)+ (n− 2)d1 +1 (see (12)). Let us divide Jg(x

∗) into two column blocks
such that Jg(x

∗) =
(
JL | JR

)
, where JL and JR are expressed as

JL =










0 0 0 · · · 0
Cd1

(U2) Cd2
(U1) 0 · · · 0

Cd1
(U3) 0 Cd3

(U1) 0
...

...
. . .

...
Cd1

(Un) 0 · · · 0 Cdn
(U1)










,

JR =










2 · tu1 2 · tu2 2 · tu3 · · · 2 · tun

Cd1−d(P2) Cd2−d(P1) 0 · · · 0
Cd1−d(P3) 0 Cd3−d(P1) 0

...
...

. . .
...

Cd1−d(Pn) 0 · · · 0 Cdn−d(P1)










,

respectively. Then, we have the following lemma.

Lemma 1. We have rank(JL) = d̄ = d1 + · · ·+ dn − (n− 1)(d− 1)+ (n− 2)d1.

Proof. Let J̄ be a submatrix of JL by eliminating the top row. Since the number
of rows in JL is equal to d̄ = d1 + · · ·+ dn − (n− 1)(d− 1)+ (n− 2)d1, we show
that J̄ has full rank.

For i = 2, . . . , n, let us divide column blocks Cd1
(Ui) and Cdi

(U1) as

Cd1
(Ui) =

d+1
︷ ︸︸ ︷

d1−d
︷ ︸︸ ︷

(
Cd1

(Ui)L Cd1
(Ui)R

)
,

Cd1
(Ui)L =

(

Cd(Ui)

0

)

}d1−d
, Cd1

(Ui)R =

(

0

Cd1−d−1(Ui)

)

}d+1

}d1+di−2d
, (16)

Cdi
(U1) =

d+1
︷ ︸︸ ︷

d1−d
︷ ︸︸ ︷

(
Cdi

(U1)L Cdi
(U1)R

)
,

Cdi
(U1)L =

(

Cd(U1)

0

)

}d1−d
, Cdi

(U1)R =

(

0

Cdi−d−1(U1)

)

}d+1

}d1+di−2d
, (17)
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respectively, thus J̄ is expressed as

J̄ =








Cd1
(U2)L Cd1

(U2)R Cd2
(U1)L Cd2

(U1)R 0 0 · · ·
Cd1

(U3)L Cd1
(U3)R 0 0 Cd3

(U1)L Cd3
(U1)L

...
...

...
...

. . .
. . .

Cd1
(Un)L Cd1

(Un)R 0 0 0 0 · · ·

· · · 0 0 0 0
. . .

. . .
...

...
Cdn−1

(U1)L Cdn−1
(U1)R 0 0

· · · 0 0 Cdn
(U1)R Cdn

(U1)R








.

Then, by exchanges of columns, we can transform J̄ to Ĵ =
(

ĴL ĴR
)
, where

ĴL =








Cd1
(U2)L Cd2

(U1)L 0 · · · 0
Cd1

(U3)L 0 Cd3
(U1)L 0

...
...

. . .
...

Cd1
(Un)L 0 · · · 0 Cdn

(U1)L








,

ĴR =








Cd1
(U2)R Cd2

(U1)R 0 · · · 0
Cd1

(U3)R 0 Cd3
(U1)R 0

...
...

. . .
...

Cd1
(Un)R 0 · · · 0 Cdn

(U1)R








.

We see that nonempty rows in ĴR consist of N(U1, . . . , Un), a generalized
Sylvester matrix for U1, . . . , Un (see (2)). By the assumption, U1, . . . , Un are
pairwise relatively prime, thus, by Prop. 1, rank(ĴR) is equal to the number of
nonempty rows in ĴR, which is equal to d2+ · · ·+ dn+(n− 1)(d1− 2d) (see (16)
and (17)).

On the other hand, in ĴL, column blocks Cd2
(U1)L, Cd3

(U1)L, . . . , Cdn
(U1)L

are lower triangular matrices with d + 1 diagonal elements, which shows that
rank(ĴL) is equal to the sum of the number of columns in Cd2

(U1)L, Cd3
(U1)L, . . .,

Cdn
(U1)L, which is equal to (n− 1)(d+ 1).
Furthermore, we see that the row position of diagonal elements in Cd2

(U1)L,
Cd3

(U1)L, . . . , Cdn
(U1)L correspond to the position of the empty rows in ĴR,

thus the columns in Cd2
(U1)L, Cd3

(U1)L, . . . , Cdn
(U1)L are linearly independent

along with the columns in ĴR. Therefore, we have

rank(J̄) = rank(ĴL) + rank(ĴR) = d1 + · · ·+ dn − (n− 1)(d− 1) + (n− 2)d1,

which proves the lemma.

Proof of Proposition 2 (continued). By the assumptions, we have at
least one nonzero coordinate in the top row in JR, while we have no nonzero
coordinate in the top row in JL, thus we have rank(Jg(x)) = d1 + · · · + dn −
(n− 1)(d− 1) + (n− 2)d1 + 1, which proves the proposition. ⊓⊔
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Proposition 2 says that, under certain conditions, so long as the search direc-
tion in the minimization problem satisfies that corresponding polynomials have
a GCD of degree not exceeding d, then Jg(x) has full rank, thus we can safely
calculate the next search direction for approximate GCD.

3.2 Setting the Initial Values

At the beginning of iterations, we give the initial value x0 by using the singu-
lar value decomposition (SVD) [22] of Nd−1(P1, . . . , Pn) (see (3)) as Nd−1 =
U Σ tV, U = (w1, . . . ,wcd−1

), Σ = diag(σ1, . . . , σcd−1
), V = (v1, . . . ,vcd−1

),
where wj ∈ Rrd−1 , vj ∈ Rcd−1 with rk and ck as in (4) and (5), respectively,
and Σ = diag(σ1, . . . , σcd−1

) denotes the diagonal matrix with the j-th di-
agonal element of which is σj . Note that U and V are orthogonal matrices.
Then, by a property of the SVD [22, Theorem 3.3], the smallest singular value
σcd−1

gives the minimum distance of the image of the unit sphere Scd−1−1, given

as Scd−1−1 = {x ∈ Rcd−1 | ‖x‖2 = 1}, by Nd−1(P1, . . . , Pn), represented as
Nd−1 · S

cd−1−1 = {Nd−1x | x ∈ Rcd−1 , ‖x‖2 = 1}, from the origin, along with
σcd−1

wcd−1
as its coordinates. Thus, we have Nd−1 · vcd−1

= σcd−1
wcd−1

. For

vcd−1
= t(ū

(1)
d1−d, . . . , ū

(1)
0 , . . . , ū

(n)
dn−d, . . . , ū

(n)
0 ), let Ūi(x) = ū

(i)
di−dx

di−d + · · · +

ū
(i)
0 x0 for i = 1, . . . , n. Then, Ū1(x), . . . , Ūn(x) give the least norm of U1Pi+UiP1

satisfying ‖U1‖
2
2 + · · ·+ ‖Un‖

2
2 = 1 by putting Ui(x) = Ūi(x) in (7).

Therefore, we admit the coefficients of P1, . . . , Pn, Ū1, . . . , Ūn as the initial
values of the iterations as

x0 = (p
(1)
d1

, . . . , p
(1)
0 , . . . , p

(n)
dn

, . . . , p
(n)
0 , ū

(1)
d1−d, . . . , ū

(1)
0 , . . . , ū

(n)
dn−d, . . . , ū

(n)
0 ).

3.3 Regarding the Minimization Problem as the Minimum Distance
(Least Squares) Problem

Since we have the object function f as in (14), we have

∇f(x) = 2 · t(x1 − p
(1)
d1

, . . . , xd1
− p

(1)
0 , . . . ,

xd1+···+dn−1+n − p
(n)
dn

, . . . , xd1+···+dn−1+dn+n − p
(n)
0 , 0, . . . , 0).

However, we can regard our problem as finding a point x ∈ Vg which has the min-
imum distance to the initial point x0 with respect to the (x1, . . . , xd1+···+dn−1+dn+n)-
coordinates which correspond to the coefficients in Pi(x). Therefore, as in the
case for two polynomials (see the author’s previous papers ([17], [21])), we change
the objective function as f̄(x) = 1

2f(x), then solve the minimization problem of
f̄(x), subject to g(x) = 0.

3.4 Calculating the Actual GCD and Correcting the Deformed
Polynomials

After successful end of the iterations, we obtain the coefficients of P̃i(x) and
Ui(x) satisfying (6) with Ui(x) are relatively prime. Then, we need to compute

8



the actual GCD H(x) of P̃i(x). Although H can be calculated as the quotient of
P̃i divided by Ui, naive polynomial division may cause numerical errors in the
coefficient. Thus, we calculate the coefficients of H by the so-called least squares
division [14], followed by correcting the coefficients in P̃i by using the calculated
H , as follows.

For polynomials P̃i, and Ui represented as in (7) and H represented as

H(x) = hdx
d + · · ·+ h0x

0,

solve the equations HUi = P̃i with respect to H as solving the least squares
problems of a linear system

Cd(Ui)
t(hd . . . , h0) =

t(p
(i)
di
, · · · , p

(i)
0 ). (18)

Let Hi(x) ∈ R[x] be a candidate for the GCD whose coefficients are calculated
as the least squares solutions of (18). Then, for i = 2, . . . , n, calculate the norms
of the residues as

ri =

n∑

j=1

‖Pj −HiUj‖
2
2,

and set the GCD H(x) be Hi(x) giving the minimum value of ri so that the
perturbed polynomials make the minimum amount of perturbations in total.

Finally, for the chosen H(x), correct the coefficients of P̃i(x) as P̃i(x) =
H(x) · Ui(x) for i = 1, . . . , n.

4 Experiments

We have implemented our GPGCD method on the computer algebra system
Maple and compared its performance with a method based on the structured
total least norm (STLN) method [11] for randomly generated polynomials with
approximate GCD. The tests have been carried out on Intel Core2 Duo Mobile
Processor T7400 (in Apple MacBook “Mid-2007” model) at 2.16 GHz with RAM
2GB, under MacOS X 10.5.

In the tests, we have generated random polynomials with GCD then added
noise, as follows. First, we have generated a monic polynomial P0(x) of degree
m with the GCD of degree d. The GCD and the prime parts of degree m − d

are generated as monic polynomials and with random coefficients c ∈ [−10, 10]
of floating-point numbers. For noise, we have generated a polynomial PN(x) of
degree m− 1 with random coefficients as the same as for P0(x). Then, we have
defined a test polynomial P (x) as P (x) = P0(x) +

eP
‖PN(x)‖2

PN(x), scaling the

noise such that the 2-norm of the noise for P is equal to eP . In the present test,
we set eP = 0.1.

In this test, we have compared our implementation against a method based on
the structured total least norm (STLN) method [11], using their implementation
(see Acknowledgments). In their STLN-based method, we have used the proce-
dure R_con_mulpoly which calculates the approximate GCD of several polyno-
mials in R[x]. The tests have been carried out on Maple 13 with Digits=15
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Table 1. Test results for (m, d, n): n input polynomials of degree m with the
degree of approximate GCD d. See Section 4 for details.

Ex. (m, d, n) #Fail Error #Iterations Time (sec.)
STLN GPGCD STLN GPGCD STLN GPGCD STLN GPGCD

1 (10, 5, 3) 0 0 2.31e−3 2.38e−3 5.50 11.2 1.17 0.45

2 (10, 5, 5) 0 0 5.27e−3 5.22e−3 4.70 13.5 3.10 1.53

3 (10, 5, 10) 0 0 5.48e−3 5.62e−3 4.40 17.9 12.49 8.59

4 (20, 10, 3) 0 0 5.17e−3 5.40e−3 4.50 12.0 3.35 1.52

5 (20, 10, 5) 0 0 5.89e−3 5.85e−3 4.40 12.7 10.37 4.97

6 (20, 10, 10) 0 1 6.31e−3 6.20e−3 4.00 25.6 44.62 43.16

7 (40, 20, 3) 0 0 5.32e−3 5.39e−3 4.90 12.8 13.60 5.83

8 (40, 20, 5) 0 0 6.01e−3 5.97e−3 4.30 12.1 41.46 17.92

9 (40, 20, 10) 0 0 6.41e−3 6.25e−3 4.10 8.90 200.88 60.21

executing hardware floating-point arithmetic. For every example, we have gen-
erated 10 random test cases as in the above. In executing the GPGCD method,
we set u = 100 and a threshold of the 2-norm of the “update” vector in each
iteration ε = 1.0× 10−8; in R_con_mulpoly, we set the tolerance e = 1.0× 10−8.

Table 1 shows the results of the test. In each test, we have given several
polynomials of the same degree as the input. The second column with (m, d, n)
denotes the degree of input polynomials, degree of GCD, and the number of input
polynomials, respectively. The columns with “STLN” are the data for the STLN-
based method, while those with “GPGCD” are the data for the GPGCD method.
“#Fail” is the number of “failed” cases such as: in the STLN-based method, the
number of iterations exceeds 50 times (which is the built-in threshold in the
program), while, in the GPGCD method, the number of iterations exceeds 100
times. All the other data are the average over results for the “not failed” cases:
“Error” is the sum of perturbation

∑n

i=1 ‖P̃i − Pi‖
2
2, where “ae− b” denotes

a× 10−b; “#Iterations” is the number of iterations; “Time” is computing time
in seconds.

We see that, in the most of tests, both methods calculate approximate GCD
with almost the same amount of perturbations. In the most of tests, the GPGCD
method runs faster than STLN-based method. However, running time of the
GPGCD method increases as much as that of the STLN-based method in some
cases with relatively large number of iterations (such as Ex. 6). There is a case
in which the GPGCD method does not converge (Ex. 6). Factors leading to such
phenomena is under investigation.

5 Concluding Remarks

Based on our previous research ([17], [21]), we have extended our GPGCD
method for more than two input polynomials with the real coefficients. We have
shown that, at least theoretically, our algorithm properly calculates an approxi-
mate GCD under certain conditions for multiple polynomial inputs.
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Our experiments have shown that, in the case that the number of iterations is
relatively small, the GPGCD method calculates an approximate GCD efficiently
with almost the same amount of perturbations as the STLN-based method.
However, computing time of the GPGCD method increases as the number of it-
erations becomes larger; it suggests that we need to reduce the computing time
of each iteration in the GPGCD method for the cases with relatively large num-
ber of iterations. It is desirable to have more detailed experiments for analyzing
stability, performance for input polynomials of larger degree, etc.

For the future research, generalizing this result to polynomials with the com-
plex coefficients will be among our next problems. It is also an interesting prob-
lem how the choice of P1 affects the performance of the algorithm. Furthermore,
one can also use arbitrary linear combination to transform gcd(P1, P2, . . . , Pn) to
gcd(P1, a2P2 + · · ·+ anPn). This will reduce the size of the generalized Sylvester
matrix and will be another approach for calculating approximate GCD.
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