Skip to main content

A Worst-Case and Practical Speedup for the RNA Co-folding Problem Using the Four-Russians Idea

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6293))

Abstract

The computational formulation for finding the optimal simultaneous alignment and fold (optimal Co-fold) of RNA sequences was first introduced by Sankoff in 1985. Since then the importance of Co-Folding has grown as conservation of structure and its relationship to function have been widely observed in RNA. For two sequences, the computation time of Sankoff’s Algorithm is θ(N 6). Existing literature on cofolding attempts to improve efficiency through simplifying the original problem formulation.

We present here a practical and worst-case speed up using the Four-Russians method, without placing any added constraints on the types of alignments or folds allowed. Our algorithm, Fast Cofold, finds the optimal Co-fold in O(N 6/log(N 2))-time, a speedup which is observed in practice.

Because the solution matrix produced by our algorithm is identical to the one produced by the Sankoff algorithm, the contribution of the algorithm lays not only in its standalone practicality but also in the ability to implement it alongside heuristic speed ups leading to even greater reductions in time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Backofen, R., Landau, G.M., Möhl, M., Tsur, D., Weimann, O.: Fast RNA structure alignment for crossing input structures. In: Kucherov, G., Ukkonen, E. (eds.) CPM 2009. LNCS, vol. 5577, pp. 236–248. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Backofen, R., Tsur, D., Zakov, S., Ziv-Ukelson, M.: Sparse RNA folding: Time and space efficient algorithms. In: Kucherov, G., Ukkonen, E. (eds.) CPM 2009. LNCS, vol. 5577, pp. 249–262. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Dowell, R., Eddy, S.: Efficient pairwise RNA structure prediction and alignment using sequence alignment constraints. BMC Bioinformatics 7(1), 400 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  4. Eddy, S.R.: Computational genomics of noncoding RNA genes. Cell 109(2), 137–140 (2002)

    Article  CAS  PubMed  Google Scholar 

  5. Eddy, S.R., Durbin, R.: RNA sequence analysis using covariance models. Nucl. Acids Res. 22(11), 2079–2088 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Frid, Y., Gusfield, D.: A simple, practical and complete O(n\(^{\mbox{3}}\)/log(n)) -time algorithm for RNA folding using the four russians speedup. In: Salzberg, S.L., Warnow, T. (eds.) WABI 2009. LNCS, vol. 5724, pp. 97–107. Springer, Heidelberg (2009)

    Google Scholar 

  7. Gorodkin, J., Heyer, L.J., Stormo, G.D.: Finding common sequence and structure motifs in a set of RNA sequences. In: ISMB, pp. 120–123 (1997)

    Google Scholar 

  8. Hofacker, I.L., Fontana, W., Stadler, P.F., Bonhoeffer, S.L., Tacker, M., Schuster, P.: Fast folding and comparison of RNA secondary structures. Chemical Monthly 125, 167–188 (1994)

    Article  CAS  Google Scholar 

  9. Mathews, D.H., Turner, D.H.: Dynalign: an algorithm for finding the secondary structure common to two RNA sequences. Journal of Molecular Biology 317(2), 191–203 (2002)

    Article  CAS  PubMed  Google Scholar 

  10. Nussinov, R., Pieczenik, G., Griggs, J.R., Kleitman, D.J.: Algorithms for loop matchings. SIAM Journal on Applied Mathematics 35(1), 68–82 (1978)

    Article  Google Scholar 

  11. Pedersen, J.S., Bejerano, G., Siepel, A., Rosenbloom, K., Lindblad-Toh, K., Lander, E.S., Kent, J., Miller, W., Haussler, D.: Identification and classification of conserved RNA secondary structures in the human genome. PLoS Comput Biol. 2(4), e33 (2006)

    Google Scholar 

  12. Rivas, E., Eddy, S.: Noncoding RNA gene detection using comparative sequence analysis. BMC Bioinformatics 2(1), 8 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rose, D., Hackermuller, J., Washietl, S., Reiche, K., Hertel, J., FindeiSZ, S., Stadler, P., Prohaska, S.: Computational rnomics of drosophilids. BMC Genomics 8(1), 406 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sankoff, D.: Simultaneous solution of the RNA folding, alignment and protosequence problems. SIAM Journal on Applied Mathematics 45(5), 810–825 (1985)

    Article  Google Scholar 

  15. Seemann, S.E., Gorodkin, J., Backofen, R.: Unifying evolutionary and thermodynamic information for RNA folding of multiple alignments. In: NAR (2008)

    Google Scholar 

  16. Torarinsson, E., Yao, Z., Wiklund, E.D., Bramsen, J.B., Hansen, C., Kjems, J., Tommerup, N., Ruzzo, W.L., Gorodkin, J.: Comparative genomics beyond sequence-based alignments: RNA structures in the encode regions. Genome Res. 18(2), 242–251 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Torarinsson, E., Havgaard, J.H., Gorodkin, J.: Multiple structural alignment and clustering of RNA sequences. Bioinformatics 23(8), 926–932 (2007)

    Article  CAS  PubMed  Google Scholar 

  18. Washietl, S., Hofacker, I.L.: Consensus folding of aligned sequences as a new measure for the detection of functional RNAs by comparative genomics. Journal of Molecular Biology 342(1), 19–30 (2004)

    Article  CAS  PubMed  Google Scholar 

  19. Ziv-Ukelson, M., Gat-Viks, I., Wexler, Y., Shamir, R.: A faster algorithm for RNA co-folding. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI), vol. 5251, pp. 174–185. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Frid, Y., Gusfield, D. (2010). A Worst-Case and Practical Speedup for the RNA Co-folding Problem Using the Four-Russians Idea. In: Moulton, V., Singh, M. (eds) Algorithms in Bioinformatics. WABI 2010. Lecture Notes in Computer Science(), vol 6293. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15294-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15294-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15293-1

  • Online ISBN: 978-3-642-15294-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics