Skip to main content

Identifying Rare Cell Populations in Comparative Flow Cytometry

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6293))

Abstract

Multi-channel, high throughput experimental methodologies for flow cytometry are transforming clinical immunology and hematology, and require the development of algorithms to analyze the high-dimensional, large-scale data. We describe the development of two combinatorial algorithms to identify rare cell populations in data from mice with acute promyelocytic leukemia. The flow cytometry data is clustered, and then samples from the leukemic, pre-leukemic, and Wild Type mice are compared to identify clusters belonging to the diseased state. We describe three metrics on the clustered data that help in identifying rare populations. We formulate a generalized edge cover approach in a bipartite graph model to directly compare clusters in two samples to identify clusters belonging to one but not the other sample. For detecting rare populations common to many diseased samples but not to the Wild Type, we describe a clique-based branch and bound algorithm. We provide statistical justification of the significance of the rare populations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antoniak, C.E.: Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Annals of Statistics 2(6), 1152–1174 (1974)

    Article  Google Scholar 

  2. Bashashati, A., Brinkman, R.: A survey of flow cytometry data analysis methods. In: Advances in Bioinformatics, pp. 1–19 (December 2009)

    Google Scholar 

  3. Boedigheimer, M., Ferbas, J.: Mixture modeling approach to flow cytometry data. Cytometry A 73, 421–429 (2008)

    Article  PubMed  Google Scholar 

  4. Chan, C., Feng, F., Ottinger, J., et al.: Statistical mixture modeling for cell subtype identification in flow cytometry. Cytometry A 73(A), 693–701 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  5. Herzenberg, L., Tung, J., Moore, W., et al.: Interpreting flow cytometry data: A guide for the perplexed. Nature Immunology 7(7), 681–685 (2006)

    Article  CAS  PubMed  Google Scholar 

  6. Kullback, S.: Information Theory and Statistics. Dover Publications Inc., Mineola (1968)

    Google Scholar 

  7. Meur, N., Rossini, A., Gasparetto, M., Smith, C., Brinkman, R., Gentleman, R.: Data quality assessment of ungated flow cytometry data in high throughput experiments. Cytometry A 71A, 393–403 (2007)

    Article  Google Scholar 

  8. Moore, D., McCabe, G.: Introduction to the Practice of Statistics. W. H. Freeman & Co., New York (2006)

    Google Scholar 

  9. Neal, R.: Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics 9, 249–265 (2000)

    Google Scholar 

  10. Pyne, S., Hu, X., Wang, K., et al.: Automated high-dimensional flow cytometric data analysis. PNAS 106(21), 8519–8524 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rasmussen, C.E.: The infinite Gaussian mixture model. In: Solla, S., Leen, T., Muller, K.R. (eds.) Advances in Neural Information Processing Systems, vol. 12. MIT Press, Cambridge (2000)

    Google Scholar 

  12. De Rosa, S., Brenchley, J., Roederer, M.: Beyond six colors: A new era in flow cytometry. Nature Medicine 9(1), 112–117 (2003)

    Article  PubMed  Google Scholar 

  13. Schrijver, A.: Combinatorial Optimization — Polyhedra and Efficiency, Volume A: Paths, Flows, Matchings. Algorithms and Combinatorics, vol. 24. Springer, New York (2003)

    Google Scholar 

  14. Teh, Y.W.: DPM Software (2010), http://www.gatsby.ucl.ac.uk/~ywteh/research/software.html

  15. Wojiski, S., Gubal, F.C., Kindler, T., et al.: PML-RARα initiates leukemia by conferring properties of self-renewal to committed promyelocytic progenitors. Leukemia 23, 1462–1471 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Azad, A., Langguth, J., Fang, Y., Qi, A., Pothen, A. (2010). Identifying Rare Cell Populations in Comparative Flow Cytometry. In: Moulton, V., Singh, M. (eds) Algorithms in Bioinformatics. WABI 2010. Lecture Notes in Computer Science(), vol 6293. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15294-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15294-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15293-1

  • Online ISBN: 978-3-642-15294-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics