
Improved Orientations of Physical Networks

Iftah Gamzu1, Danny Segev2, and Roded Sharan1

1 Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel.
Email: {iftgam,roded}@tau.ac.il

2 Department of Statistics, University of Haifa, Haifa 31905, Israel.
Email: segevd@stat.haifa.ac.il

Abstract. The orientation of physical networks is a prime task in deci-
phering the signaling-regulatory circuitry of the cell. One manifestation
of this computational task is as a maximum graph orientation problem,
where given an undirected graph on n vertices and a collection of vertex
pairs, the goal is to orient the edges of the graph so that a maximum
number of pairs are connected by a directed path. We develop a novel
approximation algorithm for this problem with a performance guarantee
of O(log n/ log log n), improving on the current logarithmic approxima-
tion. In addition, motivated by interactions whose direction is pre-set,
such as protein-DNA interactions, we extend our algorithm to handle
mixed graphs, a major open problem posed by earlier work. In this set-
ting, we show that a polylogarithmic approximation ratio is achievable
under biologically-motivated assumptions on the sought paths.

1 Introduction

A fundamental problem in the study of biological networks is the inference
of causal relations that are often not covered by current experimental tech-
niques. One prime example for such deficiency concerns protein-protein inter-
action (PPI) networks. While PPIs have been measured at large scale across
tens of organisms for over a decade now, current technologies do not provide
information on the direction in which signal flows. Such information may be
indirectly obtained from perturbation experiments in which a gene is perturbed
and as a result other genes change their expression levels. Assuming that the
expression changes imply directed pathways from the perturbed, or causal, gene
to the affected genes, several authors have successfully inferred interaction di-
rections [15].

The inference of interaction directions that best fit the perturbation experi-
ments can be cast as amaximum graph orientation (MGO) problem. An instance
of this problem consists of an undirected graph on n vertices, representing the
PPI network, and a collection C of requests. Each request is given as an ordered
pair of source-target vertices, representing a causal gene and an affected gene.
The goal is to orient the graph, i.e., choose a single direction for each of its
edges, such that a maximal number of requests admit a directed path from the
source to the target. We note that any instance of MGO can be reduced to one
where the underlying graph is a tree. Indeed, if the input graph contains cycles,

one can sequentially contract them, one after the other. In each step, the edges
of an arbitrary cycle are all oriented in the same direction (either clockwise or
counter-clockwise). As a result, every pair of vertices on this cycle admit a di-
rected path between them and, thus, the cycle can be contracted into a single
vertex.

Medvedovsky et al. [15] were the first to study MGO. They demonstrated that
the seemingly simple setting when the underlying graph is a star is equivalent
to the maximum directed cut problem. The latter problem admits a semidefinite
programming based 0.874-approximation algorithm [4, 13], while approximating
it within factors of 11/12 ≈ 0.916 and αGW ≈ 0.878 is NP-hard [10] and Unique
Games-hard [12], respectively. These hardness bounds clearly follow to MGO. On
the positive side, they devised an O(log n) approximation algorithm for arbitrary
trees, and proposed an exact dynamic-programming algorithm for the special
case of path graphs.

Further research along these lines focused on variants of the maximum graph
orientation problem. For instance, Hakimi, Schmeichel, and Young [8] studied
the special setting in which the set of requests contains all vertex pairs, and
developed an exact polynomial time algorithm. Arkin and Hassin [2] established
hardness results for the problem of deciding whether one can orient a mixed

graph, i.e., a graph in which the orientation of some edges is predetermined, to
satisfy a given set of requests.

Our contribution in this paper is two-fold: (i) We propose a deterministic al-
gorithm for the maximum graph orientation problem whose approximation ratio
is O(log n/ log logn). This result improves on the current O(log n) approxima-
tion due to Medvedovsky et al. [15]. Our algorithm optimizes with respect to the
optimal solution, which is crucial to our sublogarithmic performance guarantee.
In contrast, previous results made use of the request set cardinality, |C|, as a
reference point, and were therefore limited by the observation that there are
certain trees in which any orientation cannot satisfy more than a logarithmic
fraction of the entire set of requests [14]. (ii) We devise an approximation algo-
rithm for the generalized scenario of mixed graphs. This scenario is motivated
by the need to include in the network protein-DNA interactions (PDIs), which
are both fundamental to signal transduction and key mediators in the observed
expression changes. The approximation guarantee of our algorithm depends on
the number of PDI segments in the underlying pathways. For typical cases, in
which the pathways contain at most one segment, our algorithm achieves an
approximation ratio of O(log n).

The rest of the paper is organized as follows: In Section 2, we describe and
analyze the algorithm for the maximum graph orientation problem, while in
Section 3, we study the mixed-graphs scenario.

2 Orienting Undirected Graphs

In this section, we devise a deterministic algorithm that achieves an approxi-
mation guarantee of O(log n/ log logn) for MGO. The algorithm employs the

classify-and-select paradigm, that is, it exploits various structural properties of
the input graph to partition the collection of requests into O(log n/ log logn)
pairwise-disjoint classes. For each such class, given the additional structure im-
posed, we separately compute a graph orientation that satisfies a constant frac-
tion of the optimal number of satisfiable requests in this class. Consequently, the
above-mentioned approximation ratio follows by picking, out of the set of all the
computed orientations, the one that satisfies a maximum number of requests.
Below we describe the classification and orientation steps in detail.

2.1 The classification process

To specify the process by which requests are partitioned into classes, we begin
by presenting the notion of an almost-balanced decomposition, which can be
viewed as a generalization of the well-known centroid decomposition [5]. Note
that structural properties in this spirit have been explored and exploited in
various settings (see, e.g., [3, 7, 9]).

Definition 1. Let T = (V,E) be a tree. An almost balanced k-decomposition
of T is a partition of T into k edge-disjoint subtrees T1, . . . , Tk such that each

subtree contains between |E|/(3k) and 3|E|/k edges.

Lemma 1. ([6]) Let T = (V,E) be a tree with |E| ≥ k. An almost balanced

k-decomposition of T exists and can be found in polynomial time. In addition,

the number of vertices that are shared by at least two subtrees is less than k.

The classification process corresponds to a recursive decomposition of the
input tree T . Let T1 = {T1, . . . , Tk} be an almost balanced k-decomposition of T
into k edge-disjoint subtrees. We say that a decomposition separates a request i
when its endpoints si and ti reside in different subtrees of the decomposition (see
Figure 1 for an example). The first class of requests, C1, consists of all requests
separated by T1. To classify the remaining set of requests, C \C1, we recursively
apply the previously-described procedure with respect to the collection of sub-
trees in T1. Specifically, in the second level of the recursion, an almost balanced
k-decomposition is computed in each of the subtrees T1, . . . , Tk, to obtain a set
T2, comprising of k2 subtrees. The second class of requests, C2, consists of all
yet-unclassified requests separated by T2. In other words, the endpoints of each
request i ∈ C2 reside in different subtrees of T2, but in the same subtree of T1.
The remaining classes C3, C4, . . . are defined in a similar manner. It is important
to note that the recursive process ends as soon as we arrive at a subtree with
strictly less than k edges. In this case, we make use of the trivial decomposition,
where the given subtree is broken into its individual edges.

In the above description, k was treated as a parameter whose value has
not been determined yet. To obtain the desired approximation ratio, we set
k = ⌈logn⌉. It follows that the overall number of levels in the recursion, or
equivalently, the number of request classes is O(logk n) = O(log n/ log logn).
This claim is immediately implied by observing that the maximum size of a
subtree in level ℓ of the recursion is at most (3/k)ℓ · |E|.

s1

t2

t4 s4

s3

s2

t5

t1

s5

t3

Fig. 1. An almost balanced 9-decomposition. Here, requests 1, 2, and 3 are separated,
whereas requests 4 and 5 are not.

2.2 An orientation algorithm for a single decomposition

Notice that a class of requests, say Cℓ, generally consists of several subsets of re-
quests, each created when different subtrees in Tℓ−1 are partitioned by the decom-
position Tℓ. More specifically, assuming that the subtrees in Tℓ−1 are T1, T2, . . .,
the class Cℓ can be written as the disjoint union of C1

ℓ , C
2
ℓ , . . ., where Cj

ℓ is the
set of requests that are first separated when Tj is partitioned. Recall that the
path of any request separated by some subtree decomposition must be contained
in that subtree (otherwise, this request would have been separated in previous
recursion steps). This observation implies that it is sufficient to compute an
orientation for a single subtree decomposition and its induced set of separated
requests. Given a polynomial-time algorithm that computes such an orientation,
one can sequentially apply it to each of the subtree decompositions in the same
recursion level. The resulting orientations (in edge-disjoint subtrees) can then be
“glued” to form a single orientation, defined for the entire edge set, satisfying at
least as many requests as the overall number of requests satisfied in all individual
subtrees.

In what follows, we focus our attention on a single decomposition, and devise
a randomized algorithm that computes an orientation which satisfies, in expec-
tation, a constant fraction of the optimal number of satisfiable requests for this
decomposition. Formally, an instance of the problem in question consists of a tree
T = (V,E), and a partition T = {T1, . . . , Tk} of this tree into k edge-disjoint
subtrees, where k ≤ ⌈logn⌉, and the number of vertices shared by at least two
subtrees is less than k. In addition, we are given a collection C of requests, where
each request path is separated by T , meaning that si and ti reside in different
subtrees of the decomposition T .

We need the following notation (exemplified in Figure 2). Let OPT denote
the number of satisfied requests in some fixed optimal orientation of T . Let

VB ⊆ V be the set of border vertices of T , that is, the set of vertices that are
shared by at least two subtrees in T . Moreover, let S ⊆ T be the skeleton of
T , namely, the minimal subtree spanned by all border vertices. Note that this
subtree consists of the union of paths connecting any two vertices in VB . Finally,
let VJ ⊆ V the set of junction vertices, defined as non-border skeleton vertices
with degree at least 3 (counting only skeleton edges).

T5

T6

T4T3T2T1

Fig. 2. An almost balanced 6-decomposition. Note that black vertices are border ver-
tices, gray vertices are junction vertices, and bold edges make up the skeleton of the
decomposition.

The algorithm. We are now ready to present the orientation algorithm. Our
algorithm consists of two phases: segment guessing, where the optimal direction
state of disjoint subpaths of the skeleton is attained, followed by randomized

assignment, in which individual edges are assigned a direction.

Phase I: segment guessing. Let us name the vertex set VB ∪ VJ the core of
the skeleton S. One can easily verify that |VB ∪ VJ | < 2k as |VJ | < |VB| < k, by
Lemma 1. We now partition the skeleton into a collection Σ(S) of edge-disjoint
paths, which are referred to as segments. Each such segment is a subpath of S
whose endpoints are core vertices, but its interior traverses only non-core vertices.
Clearly, |Σ(S)| = |VB ∪ VJ | − 1 < 2k. We now argue that one could obtain in
polynomial time the direction state that the optimal orientation induces on each
segment σ ∈ Σ(S), simultaneously for all segments. To this end, notice that any
skeleton segment σ = 〈v1, v2, . . . , vℓ〉 may be in one of three possible direction
states:

1. Right direction: all edges are consistently directed from v1 towards vℓ, i.e.,
v1 → v2, v2 → v3, . . . , vℓ−1 → vℓ.

2. Left direction: all edges are consistently directed from vℓ towards v1, namely,
v1 ← v2, v2 ← v3, . . . , vℓ−1 ← vℓ.

3. Mixed direction: the direction of segment edges is non-consistent.

These definitions imply that the total number of segment direction states to be
examined is of polynomial size since 3|Σ(S)| = 3O(k) = 3O(logn) = nO(1). As a

consequence, we may assume without loss of generality that the set of direction
states induced by the optimal orientation on all the segments of Σ(S) is known
in advance. This assumption can be easily enforced by enumerating over all nO(1)

possible segment direction states.

Phase II: randomized assignment. The goal of this phase is to orient the
graph while making sure that the edge directions respect the outcome of the
segment guessing phase. For this purpose, we begin by considering skeleton seg-
ments that have a consistent direction, namely, segments in either right or left
direction states, and assign all the edges in these segments their implied di-
rection. The assignment procedure proceeds with two randomized assignment
steps:

1. Each segment in a mixed direction state is assigned, independently and uni-
formly at random, a right or left direction. All segment edges are oriented
according to the chosen direction.

2. Each of the decomposition subtrees T1, . . . , Tk is assigned, independently and
uniformly at random, the role of a sender or a receiver. All the edges of each
sender subtree are oriented towards the skeleton (in its simplest form, when
the subtree contains a single border vertex, all edges are oriented toward
that vertex). In contrast, all the edges of each receiver subtree are oriented
away from the skeleton. We refer the reader to an example in Figure 3(a).

(a)

Tti

si ti

Tsi

rsi

vsi

vti

rti

(b)

Fig. 3. (a) An orientation of a sender subtree, where the bold edges are part of the
skeleton. (b) A partition of a request path into five parts.

We turn to prove that the expected number of satisfied requests is within a
constant factor of optimal, as formally stated in the following theorem.

Theorem 1. The resulting orientation satisfies at least OPT/16 requests in ex-

pectation.

Proof. Recall that we have previously assumed the endpoints of each request to
reside in different subtrees of the decomposition T . In particular, this implies

that each request path must traverse at least one border (core) vertex. For this
reason, as shown in Figure 3(b), we can divide each request path, with endpoints
si and ti, into five (some possibly empty) parts:

1. A subpath between si and its closest skeleton vertex vsi .
2. A subpath, along a partial skeleton segment, between vsi and its closest core

vertex rsi .
3. A subpath between ti and its closest skeleton vertex vti .
4. A subpath, along a partial skeleton segment, between vti and its closest core

vertex rti .
5. A subpath between rsi and rti , along a sequence of complete skeleton seg-

ments.

With these definitions in mind, let us focus on some request i that is satisfied
in the optimal orientation. We now argue that, with probability at least 1/16,
this request is satisfied in the random orientation constructed by the algorithm.
Consequently, by linearity of expectation, the overall expected number of sat-
isfied requests is OPT/16. A key observation one should make to establish this
argument is that all the segments along the subpath between rsi and rti must
have a consistent direction in the optimal orientation; otherwise, this request
would not have been satisfied. Accordingly, we may assume that our algorithm
assigned the same direction to all the edges in these segments. Now, notice that
the request under consideration is satisfied if the following four probabilistic
events occur: (1) the edges in the subpath between si and vsi are oriented to-
wards vsi ; (2) the edges in the subpath between vsi and rsi are oriented towards
rsi ; (3) the edges in the subpath between vti and rti are oriented towards vti ;
and (4) the edges in the subpath between ti and vti are oriented towards ti. One
can easily validate that these four events are independent, and that each one
of them occurs with probability of at least 1/2. For example, the edges in the
subpath between si and vsi are oriented towards vsi if the underlying subtree
Tsi is selected as a sender. As a result, the probability that request i is satisfied
in the random orientation is at least 1/16.

Derandomization. The avid reader may have already noticed that the extent
to which we utilize randomization is rather limited, and that its foremost pur-
pose is to make the presentation of our algorithm simpler. Specifically, each
segment in a mixed direction state is randomly assigned one of two possible
directions, while each decomposition subtree is randomly assigned one of two
possible roles. In other words, all we need to obtain a deterministic algorithm
is a uniform sample space, with two possible values for O(log n) independent
random variables. This can be constructed in polynomial time either explicitly,
as there are only nO(1) possible outcomes, or in a more compact way, by observ-
ing that fourwise-independence is sufficient for the preceding analysis (see, for
instance, [1, Chap. 15]).

A semi-oblivious property. In view of the derandomization procedure, we
may reinterpret our algorithm as the following two-stage process: initially, we

generate a set of polynomially-many potential orientations, determined by all
possible outcomes of both the segment guessing and randomized assignment
phases, and then, we select an orientation that maximizes the number of satis-
fied requests. Now, notice that the first stage of this process is semi-oblivious.
Specifically, the set of generated orientations is independent of the collection
of requests, and only builds on the structure of the underlying network. This
property allows us to employ the algorithm in generalized requests settings. For
instance, a natural generalization of maximum graph orientation is when each
request is characterized by a collection of ordered source-target pairs, rather
than a single pair. In this setting, a request is regarded as satisfied if at least
one of its source-target pairs admits a directed path in the oriented graph. One
can easily verify that our algorithm attains the same performance guarantees for
this setting by applying nearly identical analysis.

One interesting scenario that is captured by the above-mentioned general-
ization is of maximum graph orientation with groups. In this scenario, a request
i is satisfied if there is a directed path from some vertex si ∈ Si to some vertex
ti ∈ Ti in the oriented graph. Here, Si and Ti are vertex sets that characterize
the request.

3 Orienting Mixed Graphs

Thus far, we have restricted our attention to undirected graphs. In practice, sig-
naling pathways contain various types of interactions whose direction is specified
in advance, most notably protein-DNA interactions. This implies that the input
to the graph orientation problem is, in its utmost general setting, a mixed graph.
A key difficulty in this setting is that, unlike the seemingly easier-to-handle sce-
nario of unoriented edges, there is no trivial reduction to tree instances. What
prevents us from contracting cycles is the possible existence of cycles with ori-
ented edges pointing in opposite directions, for which there does not seem to be
an easy way to decide in advance on the orientation of remaining edges.

Despite the inherent difficulty in a mixed graph input, the biological setting
provides us with several constraints on the input graph, which we exploit in
our approximation algorithm. The first biologically-motivated constraint relates
to the occurrence of PDI edges along pathways. Reviewing real pathways, we
observed that signaling pathways do not jump back and forth between PPIs and
PDIs, rather in the vast majority of the cases there is a single switch from PPIs to
PDIs. Precisely, define a PDI segment in a linear path as a series of consecutive
PDIs along the path that is flanked by PPI edges or by the start/end of the
path. To gather statistics on the number of PDI segments in real pathways,
we downloaded 116 human pathways from KEGG [11]. For each pathway, we
counted the number of PDI segments in its longest linear path. Only 35 of the
116 pathways contained PDIs, and 18 of which had at least one PDI segment
in their longest path. Notably, 17 of the 18 contained a single PDI segment; the
remaining pathway contained two segments.

A second constraint is a refinement of the first one: In two thirds of the 18
KEGG pathways with at least one PDI segment, the segment occurred at the
end of the pathway. Interestingly, our algorithm can be directly applied to this
latter scenario (of a single PDI segment that occurs at the end of the pathway)
as each cause-effect pair can then be translated into a group request where the
cause should connect to any of the genes that have a directed PDIs path to the
effect. Below, we consider the general case and show that if the sought pathways
contain at most ℓ segments then an O(logℓ n) approximation is possible.

3.1 The approximation algorithm

Let G = (V,E) be a mixed graph whose edge set can be described as E =
EO ∪ EU , where EO consists of edges with predefined directions, and EU are
unoriented edges. Even though the input graph may contain cycles with oriented
edges pointing in opposite directions, we can still contract unoriented cycles, and
more generally, cycles where all oriented edges are consistently pointing in the
same direction. Therefore, from this point on we assume that such cycles have
already been contracted. With this setting in mind, an unoriented component

(or, U-component, for short) is defined as a maximal connected component of
the unoriented subgraph (V,EU). It is worth noting that any U-component is
necessarily a tree, or otherwise, there must be unoriented cycles, which should
have been contracted earlier on. Also note that there are no oriented edges
with both head and tail residing in the same U-component since any such edge
induces a cycle that should have been contracted before. As a consequence of
the preprocessing steps described above, the input graph can be represented
as a directed acyclic graph on the U-components, as illustrated in Figure 4(a).
That is, the collection of U-components can be topologically sorted such that all
oriented edges between them are pointing from left to right.

(b)

. . .

(a)

right:

left:

Fig. 4. (a) A directed acyclic graph on U-components. (b) The two possible orientations
of a decomposed tree.

Let T = (VT , ET) be some U-component. We first show how to compute a
random orientation of ET such that any pair of vertices in T is connected with

probability Ω(1/ logn). For this purpose, suppose we execute the classification
process suggested in Section 2.1 where the collection of requests consists of all
vertex pairs in T . However, rather than using almost-balanced k-decompositions
with k = ⌈logn⌉, we will simplify the process by picking k = 2. Even though
the number of resulting request classes slightly blows up to O(log n), each time
a tree is being decomposed, we obtain only two almost-balanced edge-disjoint
subtrees which intersect in a common vertex. On top of picking an alternative
value of k, instead of testing all O(log n) request classes as potential candidates
for the class that separates the maximal number of pairs, we will pick one such
class uniformly at random. Given this class, the orientation of each decomposed
tree (two edge-disjoint subtrees) is determined, independently and uniformly at
random, from one of the following two alternatives, as shown in Figure 4(b):

– Right orientation: all edges of the first subtree are oriented towards the
common root and all edges of the second subtree are oriented away from
that root.

– Left orientation: all edges of the second subtree are oriented towards the
common root and all edges of the first subtree are oriented away from that
root.

Following Section 2.1, it is not difficult to verify that any pair of vertices (s, t) ∈
VT ×VT is connected with probability Ω(1/ logn) since the particular class that
separates s and t is picked with probability Ω(1/ logn), and given that this class
has been picked, there is a directed path from s to t with probability 1/2.

We handle an arbitrary mixed graph G = (V,EO ∪ EU), which has already
been brought to the structural form of a directed acyclic graph on the collec-
tion of its U-components, by independently running the randomized single-tree
procedure in each U-component. As a result, we obtain a random orientation
of the graph, whose performance guarantee depends on the minimal number of
U-components that must be traversed in order to satisfy any request. Specifi-
cally, let (si, ti) be the i-th request pair, and suppose ℓi stands for the minimal
number of components that have to be traversed in an orientation that connects
si to ti. Then the following result can be stated:

Theorem 2. The random orientation algorithm constructs an orientation that

satisfies Ω(OPT/ logℓ n) requests in expectation, where ℓ = max ℓi.

Proof. Let us focus on request i, and let Pi be a directed si-ti path that tra-
verses ℓi components in some orientation of G; we denote these U-components
by U1, . . . ,Uℓi , indexed in topological order. Furthermore, let xj and yj be the
entry vertex and exit vertex of Pi in U

j , respectively. Notice that every (xj , yj)
pair is connected with probability Ω(1/ logn) since the randomized single-tree
procedure is independently run in each U-component. This implies that si and ti
are connected with probability Ω(1/ logℓi n). Consequently, the expected number
of satisfied requests is Ω(OPT/ logℓ n) by linearity of expectation.

4 Conclusions

We have designed a novel approximation algorithm for maximum graph ori-
entation that achieves an O(log n/ log logn) ratio. We have further shown an
extension of the algorithm that handles mixed graphs and provides a polyloga-
rithmic approximation ratio under biologically-motivated assumptions. On the
theoretical side, we believe that the techniques presented here are of indepen-
dent interest, and may be applicable in other settings as well. On the practical
side, the algorithmic extension to mixed graphs tackles a major open problem
posed in [14] and is expected to yield much more realistic network orientations
by integrating knowledge on PDIs into the orientation process.

Acknowledgments

We thank Yael Silberberg for her help in gathering statistics on the KEGG
pathways. I.G. was supported by the Israel Science Foundation, by the European
Commission under the Integrated Project QAP funded by the IST directorate
as Contract Number 015848, by a European Research Council (ERC) Starting
Grant, and by the Wolfson Family Charitable Trust. R.S. was supported by a
research grant from the Israel Science Foundation (grant no. 385/06).

References

1. N. Alon and J. H. Spencer. The Probabilistic Method. Wiley, New York, second
edition, 2000.

2. E. M. Arkin and R. Hassin. A note on orientations of mixed graphs. Discrete

Applied Mathematics, 116(3):271–278, 2002.
3. G. Even, N. Garg, J. Könemann, R. Ravi, and A. Sinha. Covering graphs using

trees and stars. In Proceedings 6th International Workshop on Approximation

Algorithms for Combinatorial Optimization Problems, pages 24–35, 2003.
4. U. Feige and M. X. Goemans. Aproximating the value of two prover proof systems,

with applications to MAX 2SAT and MAX DICUT. In Proceedings 3rd Israel

Symposium on Theory and Computing Systems, pages 182–189, 1995.
5. G. N. Frederickson and D. B. Johnson. Generating and searching sets induced by

networks. In Proceedings 7th International Colloquium on Automata, Languages

and Programming, pages 221–233, 1980.
6. I. Gamzu and D. Segev. A sublogarithmic approximation for highway and

tollbooth pricing. In Proceedings of the 37th International Colloquium on Au-

tomata, Languages and Programming, to appear, 2010. Available online at:
http://arxiv.org/abs/1002.2084.

7. O. Goldschmidt, D. S. Hochbaum, A. Levin, and E. V. Olinick. The SONET
edge-partition problem. Networks, 41(1):13–23, 2003.

8. S. L. Hakimi, E. F. Schmeichel, and N. E. Young. Orienting graphs to optimize
reachability. Information Processing Letters, 63(5):229–235, 1997.

9. R. Hassin and D. Segev. Robust subgraphs for trees and paths. ACM Transactions

on Algorithms, 2(2):263–281, 2006.

10. J. H̊astad. Some optimal inapproximability results. Journal of the ACM, 48(4):798–
859, 2001.

11. M. Kanehisa, S. Goto, M. Furumichi, M. Tanabe, and M. Hirakawa. KEGG for
representation and analysis of molecular networks involving diseases and drugs.
Nucleic Acids Research, 38(2):D355–D360, 2010.

12. S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal inapproximability
results for MAX-CUT and other 2-variable CSPs? SIAM Journal on Computing,
37(1):319–357, 2007.

13. M. Lewin, D. Livnat, and U. Zwick. Improved rounding techniques for the MAX
2-SAT and MAX DI-CUT problems. In Proceedings 9th International Conference

on Integer Programming and Combinatorial Optimization, pages 67–82, 2002.
14. A. Medvedovsky. An algorithm for orienting graphs based on cause-effect pairs and

its applications to orienting protein networks. Master’s thesis, Tel-Aviv University,
Israel, 2009.

15. A. Medvedovsky, V. Bafna, U. Zwick, and R. Sharan. An algorithm for orient-
ing graphs based on cause-effect pairs and its applications to orienting protein
networks. In Proceedings 8th International Workshop on Algorithms in Bioinfor-

matics, pages 222–232, 2008.

