Skip to main content

The Complexity of Inferring a Minimally Resolved Phylogenetic Supertree

  • Conference paper
Algorithms in Bioinformatics (WABI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6293))

Included in the following conference series:

Abstract

A recursive algorithm by Aho, Sagiv, Szymanski, and Ullman [1] forms the basis for many modern rooted supertree methods employed in Phylogenetics. However, as observed by Bryant [4], the tree output by the algorithm of Aho et al. is not always minimal; there may exist other trees which contain fewer nodes yet are still consistent with the input. In this paper, we prove strong polynomial-time inapproximability results for the problem of inferring a minimally resolved supertree from a given consistent set of rooted triplets (MinRS). We also present an exponential-time algorithm for solving MinRS exactly which is based on tree separators. It runs in 2O(n logk) time when every node is required to have at most k children which are internal nodes and where n is the cardinality of the leaf label set of the input trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aho, A.V., Sagiv, Y., Szymanski, T.G., Ullman, J.D.: Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions. SIAM Journal on Computing 10(3), 405–421 (1981)

    Article  Google Scholar 

  2. Bininda-Emonds, O.R.P.: The evolution of supertrees. TRENDS in Ecology and Evolution 19(6), 315–322 (2004)

    Article  PubMed  Google Scholar 

  3. Björklund, A., Husfeldt, T.: Exact graph coloring using inclusion-exclusion. In: Kao, M.-Y. (ed.) Encyclopedia of Algorithms, p. 289. Springer Science+Business Media, LLC, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Bryant, D.: Building Trees, Hunting for Trees, and Comparing Trees: Theory and Methods in Phylogenetic Analysis. PhD thesis, University of Canterbury, Christchurch, New Zealand (1997)

    Google Scholar 

  5. Byrka, J., Guillemot, S., Jansson, J.: New results on optimizing rooted triplets consistency. Discrete Applied Mathematics 158(11), 1136–1147 (2010)

    Article  Google Scholar 

  6. Chor, B., Hendy, M., Penny, D.: Analytic solutions for three taxon ML trees with variable rates across sites. Discrete Applied Mathematics 155(6-7), 750–758 (2007)

    Article  Google Scholar 

  7. Garey, M., Johnson, D.: Computers and Intractability – A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York (1979)

    Google Scholar 

  8. Gąsieniec, L., Jansson, J., Lingas, A., Östlin, A.: On the complexity of constructing evolutionary trees. Journal of Combinatorial Optimization 3(2-3), 183–197 (1999)

    Article  Google Scholar 

  9. Henzinger, M.R., King, V., Warnow, T.: Constructing a tree from homeomorphic subtrees, with applications to computational evolutionary biology. Algorithmica 24(1), 1–13 (1999)

    Article  Google Scholar 

  10. Holm, J., de Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. Journal of the ACM 48(4), 723–760 (2001)

    Article  Google Scholar 

  11. Jansson, J., Ng, J.H.-K., Sadakane, K., Sung, W.-K.: Rooted maximum agreement supertrees. Algorithmica 43(4), 293–307 (2005)

    Article  Google Scholar 

  12. Kearney, P.: Phylogenetics and the quartet method. In: Jiang, T., Xu, Y., Zhang, M.Q. (eds.) Current Topics in Computational Molecular Biology, pp. 111–133. The MIT Press, Massachusetts (2002)

    Google Scholar 

  13. Otter, R.: The number of trees. Annals of Mathematics 49(3), 583–599 (1948)

    Article  Google Scholar 

  14. Page, R.D.M.: Modified mincut supertrees. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 537–552. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Semple, C., Steel, M.: A supertree method for rooted trees. Discrete Applied Mathematics 105(1-3), 147–158 (2000)

    Article  Google Scholar 

  16. Snir, S., Rao, S.: Using Max Cut to enhance rooted trees consistency. IEEE/ACM Transactions on Computational Biology and Bioinformatics 3(4), 323–333 (2006)

    Article  PubMed  Google Scholar 

  17. Zuckerman, D.: Linear degree extractors and the inapproximability of Max Clique and Chromatic Number. Theory of Computing 3(1), 103–128 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jansson, J., Lemence, R.S., Lingas, A. (2010). The Complexity of Inferring a Minimally Resolved Phylogenetic Supertree. In: Moulton, V., Singh, M. (eds) Algorithms in Bioinformatics. WABI 2010. Lecture Notes in Computer Science(), vol 6293. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15294-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15294-8_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15293-1

  • Online ISBN: 978-3-642-15294-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics