Skip to main content

Time-Geographic Density Estimation for Moving Point Objects

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6292))

Abstract

This research presents a time-geographic method of density estimation for moving point objects. The approach integrates traditional kernel density estimation (KDE) with techniques of time geography to generate a continuous intensity surface that characterises the spatial distribution of a moving object over a fixed time frame. This task is accomplished by computing density estimates as a function of a geo-ellipse generated for each consecutive pair of control points in the object’s space-time path and summing those values at each location in a manner similar to KDE. The main advantages of this approach are: (1) that positive intensities are only assigned to locations within a moving object’s potential path area and (2) that it avoids arbitrary parameter selection as the amount of smoothing is controlled by the object’s maximum potential velocity. The time-geographic density estimation technique is illustrated with a sample dataset, and a discussion of limitations and future work is provided.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cressie, N.: Statistics for Spatial Data. Wiley, New York (1993)

    Google Scholar 

  2. Galton, A., Duckham, M.: What is the region occupied by a set of points? In: Raubal, M., Miller, H.J., Frank, A.U., Goodchild, M.F. (eds.) GIScience 2006. LNCS, vol. 4197, pp. 91–98. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Diggle, P.: Statistical Analysis of Spatial Point Patterns. Academic Press, London (1983)

    MATH  Google Scholar 

  4. Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, pp. 2226–2231 (1996)

    Google Scholar 

  5. Silverman, B.: Density Estimation. Chapman and Hall, London (1986)

    MATH  Google Scholar 

  6. Bailey, T., Gatrell, A.: Interactive Spatial Data Analysis. Longman, Harlow (1995)

    Google Scholar 

  7. Bastin, L., Rollason, J., Hilton, A., Pillay, D., Corcoran, C., Elgy, J., Lambert, P., De, P., Worthington, T., Burrows, K.: Spatial aspects of MRSA epidemiology: a case study using stochastic simulation, kernel estimation and SaTScan. International Journal of Geographical Information Science 21, 811–836 (2007)

    Article  Google Scholar 

  8. Mesev, V., Shirlow, P., Downs, J.: The geography of conflict and death in Belfast, Northern Ireland. Annals of the Association of American Geographers 99, 893–9035 (2009)

    Article  Google Scholar 

  9. Ramp, D., Caldwell, J., Edwards, K., Warton, D., Croft, D.: Modelling of wildlife fatality hotspots along the snowy mountain highway in New South Wales, Australia. Biological Conservation 126, 474–490 (2005)

    Article  Google Scholar 

  10. Woolford, D.G., Braun, W.J.: Convergent data sharpening for the identification and tracking of spatial temporal centers of lightning activity. Environmetrics 18, 461–479 (2007)

    Article  MathSciNet  Google Scholar 

  11. Brunsdon, C.: Estimating probability surfaces for geographical point data - an adaptive kernel algorithm. Computers & Geosciences 21, 877–894 (1995)

    Article  Google Scholar 

  12. Worton, B.: Kernel methods for estimating the utilization distribution in home-range studies. Ecology 70, 164–168 (1989)

    Article  Google Scholar 

  13. Hsieh1, J., Chen, S., Chuang, C., Chen, Y., Guo, Z., Fan, K.: Pedestrian segmentation using deformable triangulation and kernel density estimation. In: Proceedings of the Eighth International Conference on Machine Learning and Cybernetics, Baoding, pp. 3271–3274 (2009)

    Google Scholar 

  14. Righton, D., Mills, C.: Application of GIS to investigate the use of space in coral reef fish: a comparison of territorial behaviour in two Red Sea butterfly fishes. International Journal of Geographical Information Science 20, 215–232 (2006)

    Article  Google Scholar 

  15. Hemson, G., Johnson, P., South, A., Kenward, R., Ripley, R., Macdonald, D.: Are kernels the mustard? Data from global positioning system (GPS) collars suggests problems for kernel home-range analyses with least-squares cross-validation. Journal of Animal Ecology 74, 455–463 (2005)

    Google Scholar 

  16. Mitchell, M.S., Powell, R.A.: Estimated home ranges can misrepresent habitat relationships on patchy landscapes. Ecological Modelling 216, 409–414 (2008)

    Article  Google Scholar 

  17. Downs, J., Horner, M.: Effects of point pattern shape on home-range estimates. Journal of Wildlife Management 72, 1813–1818 (2008)

    Article  Google Scholar 

  18. Borruso, G.: Network density estimation: Analysis of point patterns over a network. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005, part 3. LNCS, vol. 3482, pp. 126–132. Springer, Heidelberg (2005)

    Google Scholar 

  19. Okabe, A., Satoh, T., Sugihara, K.: A kernel density estimation method for networks, its computational method and a GIS-based tool. International Journal of Geographical Information Science 23, 7–32 (2009)

    Article  Google Scholar 

  20. Wand, M., Jones, M.: Kernel Smoothing. Chapman and Hall, London (1995)

    MATH  Google Scholar 

  21. Hägerstrand, T.: What about people in regional science? Papers of the Regional Science Association 24, 7–21 (1970)

    Google Scholar 

  22. Miller, H.: A measurement theory for time geography. Geogr. Anal. 37, 17–45 (2005)

    Article  Google Scholar 

  23. Miller, H., Bridwell, S.: A Field-Based Theory for Time Geography. Annals of the Association of American Geographers 99, 49–75 (2009)

    Article  Google Scholar 

  24. Miller, H.: Necessary space-time conditions for human interaction. Environment and Planning B-Planning & Design 32, 381–401 (2005)

    Article  Google Scholar 

  25. Kwan, M.: Interactive geovisualization of activity-travel patterns using three-dimensional geographical information systems: a methodological exploration with a large data set. Transp. Res. Pt. C-Emerg. Technol. 8, 185–203 (2000)

    Article  Google Scholar 

  26. Neutens, T., Witlox, F., De Weghe, N., De Maeyer, P.: Space-time opportunities for multiple agents: A constraint-based approach. International Journal of Geographical Information Science 21, 1061–1076 (2007)

    Article  Google Scholar 

  27. Winter, S.: Towards a probabilistic time geography. In: ACM GIS 2009, pp. 528–531 (2009)

    Google Scholar 

  28. Jiang, Z., Sugita, M., Kitahara, M., Takatsuki, S., Goto, T., Yoshida, Y.: Effects of habitat feature, antenna position, movement, and fix interval on GPS radio collar performance in Mount Fuji, central Japan. Ecol. Res. 23, 581–588 (2008)

    Article  Google Scholar 

  29. Neutens, T., Witlox, F., Van de Weghe, N., De Maeyer, P.: Human interaction spaces under uncertainty. Transportation Research Record, 28–35 (2007)

    Google Scholar 

  30. Wentz, E.A., Campbell, A.F., Houston, R.: A comparison of two methods to create tracks of moving objects: linear weighted distance and constrained random walk. Int. J. Geogr. Inf. Sci. 17, 623–645 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Downs, J.A. (2010). Time-Geographic Density Estimation for Moving Point Objects. In: Fabrikant, S.I., Reichenbacher, T., van Kreveld, M., Schlieder, C. (eds) Geographic Information Science. GIScience 2010. Lecture Notes in Computer Science, vol 6292. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15300-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15300-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15299-3

  • Online ISBN: 978-3-642-15300-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics