
On the Indifferentiability
of the Grøstl Hash Function

Elena Andreeva, Bart Mennink and Bart Preneel

Dept. Electrical Engineering, ESAT/COSIC and IBBT
Katholieke Universiteit Leuven, Belgium

{elena.andreeva, bart.mennink, bart.preneel}@esat.kuleuven.be

Abstract. The notion of indifferentiability, introduced by Maurer et al.,
is an important criterion for the security of hash functions. Concretely,
it ensures that a hash function has no structural design flaws and thus
guarantees security against generic attacks up to the proven bounds. In
this work we prove the indifferentiability of Grøstl, a second round SHA-3
hash function candidate. Grøstl combines characteristics of the wide-pipe
and chop-Merkle-Damg̊ard iterations and uses two distinct permutations
P and Q internally. Under the assumption that P and Q are random l-bit
permutations, where l is the iterated state size of Grøstl, we prove that
the advantage of a distinguisher to differentiate Grøstl from a random
oracle is upper bounded by O((Kq)4/2l), where the distinguisher makes
at most q queries of length at most K blocks. This result implies that
Grøstl behaves like a random oracle up to q = O(2n/2) queries, where n
is the output size. Furthermore, we show that the output transformation
of Grøstl, as well as ‘Grøstail’ (the composition of the final compression
function and the output transformation), are clearly differentiable from
a random oracle. This rules out indifferentiability proofs which rely on
the idealness of the final state transformation.

1 Introduction

Hash functions are a basic building block in cryptography. Formally, a hash func-
tion maps a bit string of arbitrary length to an output string of fixed length,
H : Z∗2 → Zl

2. An established practice in the design of hash functions is to first
construct a fixed input length compression function, e.g. f : Zl

2 × Zl
2 → Zl

2,
and then iterate it to allow the processing of arbitrarily long strings. The most
popular iteration principle is the strengthened Merkle-Damg̊ard [12, 18] design1.
Common hash functions, such as members of the SHA and MD family, incorpo-
rate the Merkle-Damg̊ard method in their design. However, recent attacks on the
widely used SHA-1 and MD5 [22, 23] have rendered these designs insecure. This
grim situation has triggered the launch of the SHA-3 competition [20] for the
selection of a new secure hash function algorithm by NIST (National Institute
of Standards and Technology). In the current second round of the competition,

1 Throughout, we will refer to it as the ‘Merkle-Damg̊ard design’.

14 candidates are under active evaluation.
These 14 candidates use a wide variety of iterative modes. Some of the designs
still follow the basic Merkle-Damg̊ard iteration. Others either add new features
to it, or simply propose different constructions. Candidates from the latter two
classes include iterations based on the chop-Merkle-Damg̊ard [13], HAIFA [7],
wide-pipe [16] and Sponge [5] design strategies. The main advantage of the basic
Merkle-Damg̊ard construction is its collision security guarantee under the as-
sumption that the underlying compression function is collision resistant [12, 18].
Other important hash function security properties, such as second preimage and
preimage security are, however, not preserved by the Merkle-Damg̊ard iteration
[1]. Moreover, the extension attack shows that the Merkle-Damg̊ard hash func-
tion is clearly differentiable from a monolithic random oracle [11].
A natural question that arises with the emerge of new iterative designs is to
identify the security properties achieved by these constructions. Other than the
classical collision, second preimage and preimage security properties, the indif-
ferentiability property has gained more recent attention due to the advancements
in the theoretical differentiability model of Maurer et al. [17] and their further
development in the context of hashing [11, 2, 9, 10]. Indifferentiability is an
important security criterion because it ensures that the hash function has no
structural design flaws in composition. Such a result provides a guarantee that
no generic attacks (attacks on the iteration which assume ideal behavior of the
underlying primitives) up to the proven bounds are possible.
In this work we analyze the indifferentiability of the Grøstl SHA-3 candidate
[15]. Grøstl borrows characteristics mainly from the wide-pipe and the chop-
Merkle-Damg̊ard iterations: the iterated state is wider than the final hash output,
which classifies it as a type of a wide-pipe design. The iterative message process-
ing together with a final state truncation in Grøstl resemble the chop-Merkle-
Damg̊ard hash function with the added difference of an output transformation
before truncation. More concretely, Grøstl processes its inputs by first calling the
compression function f iteratively, then applying a final output transformation
to the state and finally truncating the result to the desired output length. The
compression function f is built out of two permutations P and Q and the output
transformation is designed on top of the permutation P .

1.1 Our Result

Indifferentiability results on hash functions can be obtained following several
different approaches. One way to argue indifferentiability is to assume ideal be-
havior of the first layer components (i.e., the underlying compression functions),
and prove the result for the concrete composition of interest [11, 10]. Dodis et
al. [14] relax the assumption on the internal compression functions from a ran-
dom oracle to preimage awareness. If a composition is preimage aware, which
they show is true for the Merkle-Damg̊ard iteration when the compression func-
tion is preimage aware itself, then they prove indifferentiability by assuming
idealness only of the final extra transformation. Both approaches turn out fu-
tile for the Grøstl hash function: fixed points for the compression function can

be found easily (as already observed in [15]), and also the final output trans-
formation is clearly differentiable from a random function. Even stronger, if we
consider the composition of the final compression function f and the output
transformation (with and without truncation), which we refer to as ‘Grøstail’,
then we prove that Grøstail is differentiable from a random function. We do so
by demonstrating an attack that tricks any simulator for the indifferentiability of
Grøstail in only three oracle queries. This result indicates that Grøstail is highly
non-random and therefore the results of [14] could not be applied directly.
The next attempt for an indifferentiability proof for the Grøstl hash function is
to refine the level of modularity and to explore the second layer integral com-
ponents, i.e. the permutations P and Q. In a similar fashion, Coron et al. [11]
prove that the chop-Merkle-Damg̊ard construction with Davies-Meyer (DM) [21]
compression function is indifferentiable from a random oracle assuming an ideal
behavior from the block cipher underlying the DM function. While the Grøstl it-
eration is a type of a DM chop-Merkle-Damg̊ard construction, the latter result
cannot be applied here due to clear design differences, such as the presence of
an output transformation. Instead, to prove indifferentiability of the Grøstl hash
function we start from scratch by assuming ideal behavior of the underlying per-
mutations.
The proof is constructed following the indifferentiability theoretical framework
by [17]. We build a simulator for the permutations P and Q that is granted ac-
cess to a random oracle. The goal of the simulator is to answer its queries, such
that it is hard for a distinguisher to tell apart the interactions with the Grøstl
hash functions and truly random permutations from the ones with a random
oracle and the simulator. The simulator is also consistent with the outputs of
the random oracle. Although our proof is geared towards the concrete design
of the Grøstl hash function, we believe its underlying idea can be applied to
similar constructions of independent interest. We prove that the advantage of a
distinguisher to differentiate Grøstl from a random oracle is upper bounded by
O((Kq)4/2l), where the distinguisher makes at most q queries of length at most
K blocks to its oracles. Here, l is the iterated state size which, for Grøstl, is at
least twice as large as the output hash size n. Intuitively, this means that Grøstl
behaves like a random oracle up to q = O(2n/2) queries.
The JH [6], Keccak [4] and Shabal [8] SHA-3 second round candidates have re-
cently been also proved indifferentiable. All of them claim security beyond the
birthday bound (with respect to the output length n). In particular, JH is proven
indifferentiable up to O(q3/2l−m), and Keccak and Shabal up to O((Kq)2/2l−m)
where l is the size of the chaining value and m the number of message bits com-
pressed in one application of the compression function. We notice, however, that
this is an unfair comparison: JH, Keccak and Shabal have iterated state sizes l
of 1024, 1600 and 1408 bits, respectively, which are significantly larger than the
state size of Grøstl. For comparison, Keccak-256 is indifferentiable up to bound
O((Kq)2/2512), while our result implies that Grøstl-256 would be indifferentiable
up to O((Kq)4/21600), were Grøstl be designed to have the same state size as
Keccak. Such an adjustment would, however, decrease the efficiency.

2 Preliminaries

For n ∈ N, where N is the set of natural numbers, let Zn
2 denote the set of bit

strings of length n, (Zn
2)
∗

the set of strings of length a multiple of n and Z∗2 the
set of strings of arbitrary length. If x, y are strings, then x‖y is the concatenation
of x and y. If k, l ∈ N then 〈k〉l is the encoding of k as an l-bit string. If S is

a set, then x
$← S denotes the uniformly random selection of an element from

S. We let y ← A(x) and y
$← A(x) be the assignment to y of the output of a

deterministic and randomized algorithm A, respectively, when run on input x.
For a function f , by dom(f) and rng(f) we denote the domain and range of f ,
respectively. Abusing notation, by (x, y) ∈ f , we denote that x ∈ dom(f) and
y = f(x). A random oracle [3] is a function which provides a random output for
each new query. A random l-bit permutation is a function that is taken uniformly
at random from the set of all l-bit permutations. A random primitive will also
be called ‘ideal’.

2.1 Grøstl

On input of a message of arbitrary length, the Grøstl hash function Gr : Z∗2 → Zn
2

outputs a digest of n bits, with n ∈ {224, 256, 384, 512} [15]. Grøstl is a type of a
wide-pipe design where the iterated state size l is significantly larger than the fi-
nal hash output. More concretely: for n = 224, 256, l = 512, and for n = 384, 512,
l = 1024. The Grøstl hash function makes use of the Merkle-Damg̊ard construc-
tion to process its inputs, then applies an output transformation on the state
value and finally truncates (chops) the result from l to n bits. The Grøstl com-
pression function f : Zl

2×Zl
2 → Zl

2 is defined as f(h,m) = P (h⊕m)⊕Q(m)⊕h,
where P,Q : Zl

2 → Zl
2 are two l-bit permutations. Throughout, P and Q are

considered to be independent random permutations.

Fig. 1. The Grøstl hash function Gr.

For a fixed initialization vector IVn the hash function Gr (see Fig. 1) processes
an arbitrary length message M as follows:

(M1, . . . ,Mk) = pad(M),

h0 = IVn,

hi = f(hi−1,Mi) for i = 1, . . . , k,

hk+1 = P (hk)⊕ hk,
Gr(M) = chopl−n(hk+1),

where chopl−n(x) chops off the l− n rightmost bits of x, and the padding func-

tion pad is defined as pad(M) = M ′, with M ′ = M‖1‖0−|M |−65 mod l‖〈d(|M |+
65)/le〉64, parsed as a sequence of l-bit blocks. On input of a messageM ′ ∈

(
Zl

2

)∗
,

the function depad(M ′) is defined as follows: if M ′ = pad(M) for some mes-
sage M , it outputs this M , otherwise it outputs ⊥. Observe that the output is
unique as the padding function is injective2. For an M ∈

(
Zl

2

)∗
, we denote by

Z(M) the set of all values m ∈ Zl
2 that make (M,m) a valid padding. Formally:

Z(M) = {m ∈ Zl
2 | depad(M‖m) 6= ⊥}. Apart from the indifferentiability of the

Grøstl hash function, we also consider the Grøstail function F : Zl
2 × Zl

2 → Zl
2,

a composition of the last compression function f with the final transformation
(i.e., Grøstail is the ‘tail’ of Grøstl):

F(h,m) = P (f(h,m))⊕ f(h,m). (1)

2.2 Indifferentiability

The indifferentiability framework introduced by Maurer et al. [17] is an extension
of the classical notion of indistinguishability. It proves that if a construction CG
based on an ideal subcomponent G is indifferentiable from an ideal primitive R,
then CG can replace R in any system.

Definition 1. A Turing machine C with oracle access to an ideal primitive G is
said to be (tD, tS , q, ε) indifferentiable from an ideal primitive R if there exists
a simulator S, such that for any distinguisher D it holds that:

Advpro
C,S(D) =

∣∣∣Pr
(
DC
G ,G = 1

)
− Pr

(
DR,SR = 1

)∣∣∣ < ε.

The simulator has oracle access to R and runs in time at most tS. The distin-
guisher runs in time at most tD and makes at most q queries.

In the remainder, we refer to CG ,G as the ‘real world’, and to R,SR as the ‘sim-
ulated world’; the distinguisher D converses either with the real or the simulated
world and its goal is to tell both worlds apart. D can query both its ‘left oracle’
L (either C or R) and its ‘right oracle’ R (either G or S). In the remainder, R has
four interfaces, corresponding to forward and inverse queries to permutations P
and Q. These interfaces are denoted by RP , RP−1 , RQ, RQ−1 .

3 Differentiability of Grøstail

A recent result by Dodis et al. [14] prescribes how to prove indifferentiabil-
ity of hash functions by ways of preimage awareness. Loosely speaking, Dodis
et al. proved that if H : Z∗2 → Zl

2 is a preimage aware hash function and
RO : Zl

2 → Zl
2 is a random function, then the composition RO ◦H is indifferen-

tiable from a random oracle. One might be tempted to consider this approach for

2 We stress that, for the purpose of the proof, injectivity is the only property required
from the padding function.

the indifferentiability analysis of Grøstl, i.e., by assuming that the output trans-
formation is a random oracle and then proving the Grøstl hash function (without
the output transformation) to be preimage aware. However, the behavior of the
output transformation P (x) ⊕ x deviates significantly from a random function:
similarly to the Davies-Meyer construction [19], fixed points P (x) ⊕ x = x are
easy to compute by making the inverse query P−1(0) = x. A second attempt is
to go one step backwards in the iteration and view the last compression function
together with the output transformation, i.e., Grøstail (1), as a random function.
We show that this approach also fails since Grøstail is easily differentiable from
a random function.

Proposition 1. Let P,Q be two random l-bit permutations, let F be the Grøstail
compression function (1), and let RO : Zl

2×Zl
2 → Zl

2 be a random function. For
any simulator S that makes at most q queries to RO, there exists a distinguisher
D that makes at most 3 queries to its oracle, such that Advpro

F,S (D) ≥ 1− q/2l.

Proof. Let S be any simulator that makes at most q queries to RO. We construct
a distinguisher D that with overwhelming probability distinguishes Grøstail from
a random function in 3 oracle queries. The distinguisher proceeds as follows.
First, it makes inverse queries x2 = RQ−1(0) and x1 = RP−1(x2). Then, it
makes a query to the left oracle to obtain y = L(x1 ⊕ x2, x2). If D converses
with (FP,Q, (P,Q)), then y = FP,Q(x1 ⊕ x2, x2) = P (x1) ⊕ x1 = x1 ⊕ x2. If
D converses with (RO, SRO), this equation holds only if the simulator can find
x1, x2 such that RO(x1 ⊕ x2, x2) = x1 ⊕ x2, i.e., only if the simulator can find a
fixed point for RO. As the probability for the simulator to find fixed points for
RO is upper bounded by q/2l, the advantage for D to distinguish, Advpro

F,S (D),

is lower bounded by 1− q/2l. ut

If the final truncation is included in Grøstail as well, a lower bound 1− q/2n can
be obtained similarly.

4 Indifferentiability of Grøstl

In this section, we present the main result of this paper: we show that the Grøstl
hash function is indifferentiable from a random oracle, under the assumption
that the underlying permutations P,Q are ideal. Intuitively, we demonstrate
that there exists a simulator such that no distinguisher can differentiate the real
world GrP,Q, (P,Q) from the simulated world RO, SRO, except with negligible
probability.

Theorem 1. Let P,Q be two random l-bit permutations, let Gr be the Grøstl
hash function (Sect. 2.1), and let RO be a random oracle. Let D be a distinguisher
that makes at most qL left queries of maximal length (K−1)l bits, where K ≥ 1,
qP right queries to P and qQ right queries to Q, and runs in time t. Then:

Advpro
Gr,S(D) ≤ 58(qP + (K + 1)qL)2(qQ +KqL)2

2l
, (2)

where S makes qS ≤ qP queries to RO and runs in time O(max{qP , qQ}4).

The simulator S used in the proof mimics the behavior of random permutations
P and Q such that queries to S and queries to RO are ‘consistent’, which means
that relations among the query outputs in the real world hold in the simulated
world as well. To this end, the construction of the simulator is based on several
designing decisions. In what remains, the simulator used in the proof (Fig. 2) is
introduced and explained in more detail. Then, Thm. 1 is proven in Sect. 4.3.

4.1 Initialization of the Simulator

The simulator maintains two, initially empty, lists LP ,LQ that represent the
permutations it simulates. These lists consist of tuples (x, y) ∈ Zl

2×Zl
2, where y

denotes the (simulated) image of x under P or Q. Abusing notation, we denote
by dom(LP) (resp. rng(LP)) the set of first (resp. second) elements in LP , and
similar for LQ. The simulator has four interfaces, denoted by SP ,SP−1 ,SQ,SQ−1 ,
and access to RO. Furthermore, the simulator maintains a graph (V,E), initially
({IV }, ∅). The edges e ∈ E are labeled by messages in Zl

2: any (x1, y1) ∈ LP

and (x2, y2) ∈ LQ define an edge x1 ⊕ x2
x2−→ x1 ⊕ x2 ⊕ y1 ⊕ y2 in (V,E). Intu-

itively, an edge in (V,E) corresponds to an evaluation of the Grøstl compression

function f , and if there is a path IV
M1−→ s1

M2−→ · · · Mk−→ sk in (V,E), then

f(. . . f(f(IV,M1),M2) . . . ,Mk) = sk. Abusing notation, we denote by s
M−→ t

that there is a path from s to t in (V,E) with the edges labeled by M ∈
(
Zl

2

)∗
.

We say that (V,E) contains colliding paths if there exists an s ∈ V such that

IV
M−→ s and IV

M ′−→ s are two paths in (V,E), for different M,M ′ ∈
(
Zl

2

)∗
.

Furthermore, by Vout, Vin we denote the set of vertices in V with an outgoing
or ingoing edge, respectively. Observe that if LP ,LQ are of size qP , qQ, respec-
tively, the sets Vout, Vin are of size at most qP qQ. By r(V), we denote the set of all

‘rooted’ nodes in V , i.e.: r(V) =
{
v ∈ V

∣∣ ∃ M ∈ (Zl
2

)∗
such that IV

M−→ v
}

.

By construction, r(V) ⊆ Vin. Finally, we introduce a specific subset of r(V):

r̄(V) =
{
v ∈ V

∣∣ ∃ M ∈ (Zl
2

)∗
such that IV

M−→ v and depad(M) 6= ⊥
}
.

For simplicity, V, r(V) and r̄(V) are updated by the simulator implicitly.

4.2 Intuition Behind the Simulator

In this section we take a closer look at the simulator of Fig. 2 by starting with
an example. Consider the case that a node x is a member of both r̄(V) and

dom(LP). This means that (1) there exists an M such that IV
M−→ x and

depad(M) 6= ⊥, and (2) there exists a y ∈ rng(LP), such that y = SP (x). In
the real world (where the left oracle is the Grøstl hash function), these values
satisfy Gr(depad(M)) = chopl−n(x ⊕ y) by construction. If the simulator does
not answer its queries wisely, this equality would hold with negligible probability
in the simulated world. More generally, the simulator can guarantee that this
equation holds only if x is added to dom(LP) after it was added to r̄(V) (reflected

in requirement R3 below)3. Maintaining consistency, however, becomes harder
when |r̄(V)| and |dom(LP)| increase. The idea behind the simulator is to answer
its queries such that it can control the growth of r(V), and in particular the
growth of r̄(V) as a subset of r(V), while still maintaining consistency in its
answers. Intuitively, the simulator responds to its queries, such that the following
requirements are satisfied:

R1. There are no colliding paths in (r(V), E). Observe that two different paths
to the same node may lead to distinguishability for D as the simulator can
be consistent with only one of the paths. This requirement is satisfied if
r(V) is never increased with a node that has two incoming edges in the
updated4 graph;

R2. S increases r(V) only if it is forced to do. In particular, r(V) is never in-
creased with a node that has an outgoing edge in the updated graph. Ob-
serve that each path in (r(V), E) leads to a potential node in r̄(V);

R3. S never increases r̄(V) with a node in the updated dom(LP);
R4. S increases dom(LP) with a node in r̄(V) only if it is forced to. Observe

that in case of inverse queries to SP−1 , the simulator can avoid outputting
elements in r̄(V). In forward queries to SP , the simulator may be forced to
increase r̄(V)∩ dom(LP). In this case, it consults its oracle RO to generate
the answer.

The first two conditions are regarding the growth of r(V), and the second two
concern the growth of r̄(V) ∩ dom(LP). We show how these conditions occur in
the description of the simulator in Fig. 2. We first consider requirements R1 and
R2, then we look at R3 and R4.

Restricting the growth of r(V)
Inverse queries. Consider an inverse query y1 to SP−1 . It is easy to see that
both R1 and R2 are satisfied if the simulator outputs its answer x1, such that
none of the newly added vertices {x1 ⊕ x2 | x2 ∈ dom(LQ)} to Vout is already
rooted. A similar observation holds for queries to SQ−1 . These requirements
translate to lines 3e and 4c in the description of the simulator in Fig. 2.

Forward queries. In forward queries to SP ,SQ, the simulator may be forced to
increase r(V). Consider a query x1 to SP , and consider any x2 ∈ dom(LQ) such

that x1⊕ x2 ∈ r(V). Then, the edge x1⊕ x2
x2−→ x1⊕ x2⊕ y1⊕ y2 will be added

3 Observe that RO(depad(M)) = chopl−n(LP (x) ⊕ x) should hold for IV
M−→ x. If

x ∈ dom(LP) before it is added to r̄(V), this means that LP (x) ⊕ x is fixed before
RO(depad(M)) is known.

4 This requirement should hold for the ‘updated’ graph, which can be seen as follows:
suppose the distinguisher makes a forward query x1 to SP such that x1⊕x2, x1⊕x′2 ∈
r(V) for different x2, x

′
2 ∈ dom(LQ), and both x1⊕x2⊕y1⊕y2 and x1⊕x′2⊕y1⊕y′2

are not in V yet. By construction, these nodes have zero incoming edges in the non-
updated (V,E), but it may accidentally be the case that these nodes are equal, in
which case they have two incoming edges in the updated graph.

to (V,E) by construction. Denote by V ′ the multiset of updated nodes after the
query. Then, we require that x1 ⊕ x2 ⊕ y1 ⊕ y2 does not occur twice in V ′in (in
order to establish R1), and moreover that it does not occur in V ′out (in order to
establish R2). If we define Vnew = {x1⊕x′2, x1⊕x′2⊕ y1⊕ y′2 | (x′2, y′2) ∈ LQ} to
be the multiset of newly added nodes to V in the query to SP , both requirements
are satisfied if x1 ⊕ x2 ⊕ y1 ⊕ y2 6∈ V ∪ (Vnew\{x1 ⊕ x2 ⊕ y1 ⊕ y2}) holds for all
(x2, y2) ∈ LQ such that x1 ⊕ x2 ∈ r(V). A similar condition can be derived for
queries to SQ. These requirements translate to lines 1k and 2e in the description
of the simulator in Fig. 2.

Restricting the growth of r̄(V) ∩ dom(LP)
Inverse queries. As explained, S never increases r̄(V) ⊆ r(V) in inverse
queries. Hence, requirement R3 is naturally satisfied. Furthermore, R4 is guaran-
teed if queries to SP−1 are never answered with a node in r̄(V). This requirement
translates to line 3c from Fig. 2.

Forward queries. First consider requirement R3. Let the distinguisher make
a query to SP or SQ, such that r̄(V) gets increased. By construction and the

fact that requirement R2 is satisfied, this means that an edge x1 ⊕ x2
x2−→

x1 ⊕ x2 ⊕ y1 ⊕ y2 is added to (V,E), such that IV
M−→ x1 ⊕ x2 for some

M ∈
(
Zl

2

)∗
, and x2 ∈ Z(M). The simulator needs to be designed such that

the newly added value to r̄(V), x1 ⊕ x2 ⊕ y1 ⊕ y2, is not a member of (the
updated) dom(LP). This requirement translates to lines 1l and 2f in Fig. 2. Re-
quirement R4 is clearly not applicable to queries to SQ. Consider a query x1 to
SP , where x1 ∈ r̄(V). Then, the simulator is forced to increase r̄(V)∩dom(LP).

As x1 ∈ r̄(V), there exists an M such that IV
M−→ x1 and depad(M) 6= ⊥. The

output of the simulator needs to be consistent with its random oracle, such that
RO(depad(M)) = chopl−n(SP (x1) ⊕ x1). This requirement translates to lines
1b-1e in the description of the simulator in Fig. 2.

4.3 Proof of Thm. 1

Thm. 1 will be proven via a game-playing argument, where the games are used
to simulate one of the worlds (left or right). It is inspired by the proofs of [11],
but differs in several aspects. Let S be the simulator of Fig. 2, and let D be any
distinguisher that makes at most qL left queries of maximal length (K−1)l bits,
where K ≥ 1, qP right queries to P and qQ right queries to Q. Recall from Def. 1
that the goal is to bound:

Advpro
Gr,S(D) =

∣∣∣Pr
(
DGrP,Q,(P,Q) = 1

)
− Pr

(
DRO,SRO

= 1
)∣∣∣ . (3)

Game 1 (Fig. 3). The left oracle L1 of game 1 is a lazily-sampled random oracle,
and the four interfaces of the right oracle are the simulator of Fig. 2, except for
the inclusion of some failure conditions badi (i = 0, . . . , 4). In other words, we

have G1 = (RO,SRO), and in particular, Pr
(
DRO,SRO

= 1
)

= Pr
(
DG1 = 1

)
.

On query SP (x1):

1a if x1∈dom(LP) ret y1 = LP (x1)

1b if x1∈ r̄(V) for IV
M−→ x1 :

1c h ← RO(depad(M))

1d w
$← Zl−n

2
1e y1 ← x1⊕ (h‖w)

1f if y1∈ rng(LP) :

1g GOTO 1d

1h else y1
$← Zl2\rng(LP)

1i Vnew ← {x1⊕x′2, x1⊕x′2⊕y1⊕y′2 | (x′2, y′2)∈LQ} multiset

1j ∀ (x2, y2)∈LQ s.t. x1⊕x2∈r(V) for IV
M−→ x1⊕x2 :

1k if x1⊕x2⊕y1⊕y2∈V ∪ (Vnew\{x1⊕x2⊕y1⊕y2}) or

1l
(
x2∈Z(M) and x1⊕x2⊕y1⊕y2∈dom(LP) ∪ {x1}

)
:

1m GOTO 1b

1n ret LP (x1) ← y1

On query SQ(x2):

2a if x2∈dom(LQ) ret y2 = LQ(x2)

2b y2
$← Zl2\rng(LQ)

2c Vnew ← {x′1⊕x2, x′1⊕x2⊕y′1⊕y2 | (x′1, y′1)∈LP } multiset

2d ∀ (x1, y1)∈LP s.t. x1⊕x2∈r(V) for IV
M−→ x1⊕x2 :

2e if x1⊕x2⊕y1⊕y2∈V ∪ (Vnew\{x1⊕x2⊕y1⊕y2}) or

2f
(
x2∈Z(M) and x1⊕x2⊕y1⊕y2∈dom(LP)

)
:

2g GOTO 2b

2h ret LQ(x2) ← y2

On query S
P -1 (y1):

3a if y1∈ rng(LP) ret x1 = L-1
P (y1)

3b x1
$← Zl2\dom(LP)

3c if x1∈ r̄(V) :

3d GOTO 3b

3e ∀ x2∈dom(LQ) : if x1⊕x2∈r(V) :

3f GOTO 3b

3g ret L-1
P (y1) ← x1

On query S
Q-1 (y2):

4a if y2∈ rng(LQ) ret x2 = L-1
Q (y2)

4b x2
$← Zl2\dom(LQ)

4c ∀ x1∈dom(LP) : if x1⊕x2∈r(V) :

4d GOTO 4b

4e ret L-1
Q (y2) ← x2

Fig. 2. The simulator S for P and Q used in the proof of Thm. 1.

Game 2 (Fig. 3). Game 2 only differs from game 1 in the left oracle: L1

is replaced by a relay oracle L2 that simply passes the queries made by the
distinguisher to L1. The right oracle remains unchanged, and still queries the
subroutine L1. The distinguisher has identical views in G1 and G2. Formally, we
obtain Pr

(
DG1 = 1

)
= Pr

(
DG2 = 1

)
.

Game 3 (Fig. 4). Game 3 differs from game 2 in the fact that the left oracle L2

is replaced by the Grøstl hash function, which makes queries to the right oracle.
The right oracle itself remains unchanged, and still queries subroutine L1. It is
proven in Prop. 2 that, until bad :=

∨4
i=0 badi occurs in any of the two games,

both are identical. Formally, we obtain:∣∣Pr
(
DG2 = 1

)
− Pr

(
DG3 = 1

)∣∣ ≤ Pr
(
DG2 sets bad

)
+ Pr

(
DG3 sets bad

)
.

Game 4 (Fig. 5). Game 4 differs from game 3 in the fact that the right oracle
does not query subroutine L1 anymore, but rather, it generates the outcomes it-
self. Concretely, in line 1c, h is now randomly sampled from Zn

2 . The distinguisher
cannot notice the difference: as the padding rule is injective, in game 3 the right
oracle RP will never query its left oracle twice on the same value, and hence it

will always receive h
$← Zn

2 . Formally, we obtain Pr
(
DG3 = 1

)
= Pr

(
DG4 = 1

)
.

Game 5 (Fig. 5). Game 5 only differs from game 4 in the fact that the GOTO-
statements are removed. In other words, game 5 and game 4 proceed identically
until bad occurs. As a consequence:∣∣Pr

(
DG4 = 1

)
− Pr

(
DG5 = 1

)∣∣ ≤ Pr
(
DG4 sets bad

)
.

Game 6 (Fig. 6). The left oracle of game 6 is the Grøstl algorithm, and the
four interfaces of the right oracle perfectly mimic two lazily-sampled random

permutations P and Q. In other words, we have G6 = (GrP,Q, (P,Q)), and thus

Pr
(
DG6 = 1

)
= Pr

(
DGrP,Q,(P,Q) = 1

)
. The only difference between games 6 and

5 is in the forward queries to RP : in game 5, some queries to RP are answered
with uniform random samples from Zl

2. Therefore, distinguishing game 6 from
game 5 is at least as hard as distinguishing a random permutation from a random
function. As RP will be queried at most qP + (K + 1)qL =: rP times, we obtain:

∣∣Pr
(
DG5 = 1

)
− Pr

(
DG6 = 1

)∣∣ ≤ r2
P

2l
.

As we have Pr
(
DG2 sets bad

)
≤ Pr

(
DG3 sets bad

)
= Pr

(
DG4 sets bad

)
, we

conclude that (3) reduces to:

Advpro
Gr,S(D) ≤ r2

P

2l
+ 3 · Pr

(
DG4 sets bad

)
. (4)

Game 7 (Fig. 7). Game 7 is used to simplify the computation of the probability
that DG4 sets bad. In game 7, the failure conditions for bad0, . . . ,bad4 of game
4 are rewritten into sets A0, . . . , A4. By the straightforward definition of A0, A3

and A4, it is clear that for i = 0, 3, 4, DG4 sets badi if and only if DG7 sets badi.
Now, suppose DG4 sets bad1. This means that for some (x2, y2) ∈ LQ such that
x1 ⊕ x2 ∈ r(V) either one of the following two cases occurred:

y1 =

{
x1 ⊕ x2 ⊕ y2 ⊕ s, for some s ∈ V ∪ (Vnew\{x1 ⊕ x2 ⊕ y1 ⊕ y2}) ,
x1 ⊕ x2 ⊕ y2 ⊕ x′1, for some x′1 ∈ dom(LP) ∪ {x1}.

By definition of A1, this means that y1 ∈ A1. In other words, DG7 sets bad1

if DG4 sets bad1. A similar observation holds for bad2. As a consequence,
Pr
(
DG4 sets bad

)
≤ Pr

(
DG7 sets bad

)
, and therefore (4) reduces to:

Advpro
Gr,S(D) ≤ r2

P

2l
+ 3 · Pr

(
DG7 sets bad1 | ¬bad0

)
+ 3

4∑
i=0
i 6=1

Pr
(
DG7 sets badi

)
.

In the remainder, we concentrate on the computation of these probabilities.
Observe that the distinguisher makes at most qP + (K + 1)qL =: rP queries to
RP , RP−1 and qQ +KqL =: rQ queries to RQ, RQ−1 .

Pr
(
DG7 sets bad0

)
. Consider the jth query to RP , 1 ≤ j ≤ rP . The probability

that bad0 is set in this query, badj
0, equals the probability that y1 hits A0.

But as y1 is taken uniformly at random from a set of size 2l, and A0 is of size
at most rP , badj

0 occurs with probability at most rP
2l . By the union bound,

Pr
(
DG7 sets bad0

)
≤ r2

P

2l ;

Pr
(
DG7 sets bad1 | DG7 sets ¬bad0

)
. Consider the jth query to RP , 1 ≤ j ≤

rP . The probability that bad1 is set in this query, badj
1, equals the prob-

ability that y1 hits A1. But as y1 is taken uniformly at random from a set

of size at least 2l − rP (because DG7 sets ¬bad0), and A1 is of size at most

rQ(2rP rQ + rP), badj
1 occurs with probability at most

rP rQ(2rQ+1)
2l−rP . By the

union bound, Pr
(
DG7 sets bad1 | DG7 sets ¬bad0

)
≤ r2

P rQ(2rQ+1)
2l−rP ;

Analogously, bad2 is set with probability at most
r2
P rQ(2rQ+1)

2l−rQ , bad3 with proba-

bility at most
r2
P rQ(rQ+1)

2l−rP , and bad4 with probability at most
r2
P r2

Q

2l−rQ . Concluding,

under the assumption that rP , rQ < 2l−1, we obtain:

Advpro
Gr,S(D) ≤ 58(qP + (K + 1)qL)2(qQ +KqL)2

2l
.

This completes the proof of Thm. 1.

Proposition 2. Until bad occurs in game 2 or 3, both games are identical.
Formally: Pr

(
DG2 = 1

∣∣ DG2 sets ¬bad
)

= Pr
(
DG3 = 1

∣∣ DG3 sets ¬bad
)
.

Proof. We need to prove that the query outcomes in game 2 and 3 are identically
distributed, until the distinguisher sets bad in either one of the games. As the
right oracles of the games are the same, D can differentiate game 2 and 3 only if
it discovers any inconsistencies in the answers by the left oracles (L2 for game 2
and L3 for game 3), given any list of queries made by D to the right oracle. Recall
that LP ,LQ denote the query history to the right oracles RP , RQ, and (V,E)
the graph defined by these queries (cf. Sect. 4.1). Denote any query history to
Li (i = 2, 3) by L. Furthermore, denote by L̃P , L̃Q the set of queries to the

right oracles that are observed by the distinguisher5, and denote by (Ṽ , Ẽ) the
subgraph defined by these. We focus on the outcomes of the left oracle: we need
to prove that given the views L̃P , L̃Q, and given query history L, the outcomes
of new queries to the left oracle are identically distributed in game 2 and 3.
Concretely, for α ∈ Zn

2 , we analyze the probability

Pr
(
Li(M) = α in Gi | L̃P , L̃Q,L; M 6∈ dom(L); DGi sets ¬bad

)
. (5)

Define M ′ = (M ′1, . . . ,M
′
k) = pad(M) to be the padding of M . The query

Li(M) is called ‘evaluatable’ by L̃P , L̃Q if there exists an hk in r̄(Ṽ) such that

IV
M ′−→ hk, and hk ∈ dom(L̃P). We will show that for both games the following

holds: if Li(M) is evaluatable by L̃P , L̃Q, the query answer can be obtained
deterministically from this history. On the other hand, if it is not evaluatable
by L̃P , L̃Q, (5) holds with probability 1/2n only. In other words, this probability
is the same in both games i = 2, 3, which proves the claim that the answers by
L2, L3 are identically distributed.
For the purpose of the proof, we also consider evaluatability by LP ,LQ, which is
defined similarly as before. Observe that Hi(M) is evaluatable by LP ,LQ if it is

5 In game 3, the right oracles RP , RQ are also queried in each call to the left oracle,
via lines 6d, 6e and 6g, but the distinguisher does not observe these queries.

evaluatable by L̃P , L̃Q. We now analyze (5). First we consider the case Li(M) is

evaluatable by L̃P , L̃Q. Then we consider the case it is not evaluatable by these
views (but it may be evaluatable by LP ,LQ).

(1) Li(M) (i = 2, 3) is evaluatable by L̃P , L̃Q. In both games, this means

that there exists an hk in r̄(Ṽ) such that IV
M ′−→ hk, and hk ∈ dom(L̃P). By

Claim 2 below, there are no colliding paths and in particular the described
path M ′ is unique. Furthermore, due to Claim 3 below, hk had been added
to dom(L̃P) in a forward query, after it was added to r̄(Ṽ). Therefore, by
line 1c, we have RP (hk) = hk⊕(h‖w), where h = L1(M). As a consequence,
L1(M), and thus L2(M) and L3(M), is fully determined by L̃P , L̃Q, which
means that the outcomes in game 2 and 3 are identically distributed;

(2) Li(M) (i = 2, 3) is not evaluatable by L̃P , L̃Q, but it is evaluatable

by LP ,LQ. This event is excluded for game 2 as (L̃P , L̃Q) = (LP ,LQ) in
this game. In game 3, LP ,LQ also includes queries made to the right oracle
via the left oracle L3. We will show, however, that (5) holds with probability
1/2n then. Similarly to case (1), there exists an hk in r̄(V)∩ dom(LP) such

that IV
M ′−→ hk and RP (hk) = hk ⊕ (h‖w), where h = L1(M). But L3(M)

is not evaluatable by L̃P , L̃Q, which means that hk had been queried to RP

independently of L̃P , L̃Q. Furthermore, L3(M) is also independent of L.6

Concluding, (5) holds with probability 1/2n in this case;
(3) Li(M) (i = 2, 3) is not evaluatable by LP ,LQ. As a consequence, there

either exists no hk ∈ r̄(V) such that IV
M ′−→ hk, or there exists such hk, but it

is no element of dom(LP). For game 2, M 6∈ dom(L) implies that M had not
been queried to L1 before (L1 is queried in lines 6a and 1c only). Therefore,
in this case L2(M) outputs a value h randomly sampled from Zn

2 . For game

3, let j ≤ k be the maximal index such that IV = h0
M ′1−→ · · ·

M ′j−→ hj is a
path in (V,E). We consider the following cases:

(i) j = k. Then, there exists an hk ∈ r̄(V) such that IV
M ′−→ hk, but as

L3(M) is not evaluatable, we have hk 6∈ dom(LP). In line 6h of the
oracle query of L3(M), RP (hk) will then be computed via lines 1b-1e:

RP (hk) = hk ⊕ (h‖w) for h
$← Zn

2 . The outcome L3(M) thus equals
L3(M) = chopl−n(RP (hk)⊕ hk) = h. As a consequence, the outcomes
of L2 and L3 are identically distributed in this case;

(ii) j < k. Then, there exists a path IV → hj labeled by (M ′1, . . . ,M
′
j),

but (V,E) contains no edge hj → hj+1 labeled by M ′j+1. By virtue

of Claim 2, in the (j + 1)th iteration of lines 6c-6f, a new node hj+1

will be added to r(V) such that hj+1 was not rooted yet and there is
no outgoing edge from hj+1 in the updated graph. The same holds for

6 Observe that in game 3, L consists of pairs (M̄, h̄) such that h̄ = chopl−n(RP (h̄k)⊕
h̄k) for some h̄k ∈ r̄(V)∩ dom(LP), where, by Claim 3, RP (h̄k) had been generated
via lines 1b-1e. As there are no colliding paths in (V,E) by Claim 2, hk differs from
all such h̄k’s, and in particular L reveals nothing about L3(M).

all subsequent iterations, and in particular hk will be newly added to
r̄(V) in the kth iteration. Due to Claim 3, this newly added note is not
an element of dom(LP) after this last round. Now, the same analysis
as in (3i) applies. ut

Claim 2. Suppose DGi sets ¬bad (for i = 2, 3). Consider a node s ∈ r(V),
and a right oracle query in which an edge (s, t) will be added to (V,E). Denote
by (V ′, E′) the updated graph (after the query). Then, t has no incoming or
outgoing edge in (V ′, E′\{(s, t)}). As a consequence, after the execution of Gi,
the final graph contains no colliding paths.

Proof. In a right query to RP−1 or RQ−1 , none of the newly added edges have a
rooted node as starting point, by ¬(bad3 ∨ bad4) (lines 3f and 4c). Consider a
query x1 to RP , and let (V,E) be the graph before the query. An outgoing edge
from s ∈ r(V) will only be added if s = x1 ⊕ x2 for some x2 ∈ dom(LQ). By
construction, the end node of the edge is x1 ⊕ x2 ⊕ y1 ⊕ y2 =: t. By line 1l and
¬bad1, we have (a) t 6∈ V , (b) none of the newly added edges will leave from t
and (c) apart from (s, t), none of the newly added edges will arrive at t. As a
consequence, t is an isolated node in (V ′, E′\{(s, t)}). A similar argument holds
for queries to RQ, by line 2e and ¬bad2.
We prove that the final graph contains no colliding paths by mathematical induc-
tion. Before the first query is made, E = ∅ and hence no colliding paths occur.
Assume (V,E) contains no colliding paths and consider a right oracle query. We
can sequentially apply the above reasoning and discard all newly added edges
(s, t) for s ∈ r(V), in order to observe that colliding paths in (V ′, E′) imply
colliding paths in (V,E). By the induction hypothesis, these do not occur. ut

Claim 3. Suppose DGi sets ¬bad (for i = 2, 3). Consider a right oracle query
in which a node t will be added to r̄(V). Then, t is no element of (the updated)
dom(LP). Furthermore, r̄(V)∩dom(LP) will only be increased in forward queries
to RP .

Proof. As a direct consequence of Claim 2, r̄(V) will be increased only if an edge

x1 ⊕ x2
x2−→ x1 ⊕ x2 ⊕ y1 ⊕ y2 is added such that IV

M−→ x1 ⊕ x2 is a path in
(V,E), and x2 ∈ Z(M). Due to lines 1m and 2f, and by ¬(bad1 ∨ bad2), this
newly added node is not an element of (the updated) dom(LP). Furthermore, an
inverse query to RP will never be answered with a node already in r̄(V), by line
3c and ¬bad3, and therefore r̄(V) ∩ dom(LP) will only be increased in forward
queries to RP . ut

Acknowledgments. This work has been funded in part by the IAP Program
P6/26 BCRYPT of the Belgian State (Belgian Science Policy), and in part by
the European Commission through the ICT program under contract ICT-2007-
216676 ECRYPT II. The first author is supported by a Ph.D. Fellowship from
the Flemish Research Foundation (FWO-Vlaanderen). The second author is sup-
ported by a Ph.D. Fellowship from the Institute for the Promotion of Innovation
through Science and Technology in Flanders (IWT-Vlaanderen).

On query RP (x1):

1a if x1∈dom(LP) ret y1 = LP (x1)

1b if x1∈ r̄(V) for IV
M−→ x1 :

1c h ← L1(depad(M))

1d w
$← Zl−n

2
1e y1 ← x1⊕ (h‖w)

1f if y1∈ rng(LP) :

1g bad0 ← true

1h GOTO 1d

1i else y1
$← Zl2\rng(LP)

1j Vnew ← {x1⊕x′2, x1⊕x′2⊕y1⊕y′2 | (x′2, y′2)∈LQ} multiset

1k ∀ (x2, y2)∈LQ s.t. x1⊕x2∈r(V) for IV
M−→ x1⊕x2 :

1l if x1⊕x2⊕y1⊕y2∈V ∪ (Vnew\{x1⊕x2⊕y1⊕y2}) or

1m
(
x2∈Z(M) and x1⊕x2⊕y1⊕y2∈dom(LP) ∪ {x1}

)
:

1n bad1 ← true

1o GOTO 1b

1p ret LP (x1) ← y1

On query RQ(x2):

2a if x2∈dom(LQ) ret y2 = LQ(x2)

2b y2
$← Zl2\rng(LQ)

2c Vnew ← {x′1⊕x2, x′1⊕x2⊕y′1⊕y2 | (x′1, y′1)∈LP } multiset

2d ∀ (x1, y1)∈LP s.t. x1⊕x2∈r(V) for IV
M−→ x1⊕x2 :

2e if x1⊕x2⊕y1⊕y2∈V ∪ (Vnew\{x1⊕x2⊕y1⊕y2}) or

2f
(
x2∈Z(M) and x1⊕x2⊕y1⊕y2∈dom(LP)

)
:

2g bad2 ← true

2h GOTO 2b

2i ret LQ(x2) ← y2

On query R
P -1 (y1):

3a if y1∈ rng(LP) ret x1 = L-1
P (y1)

3b x1
$← Zl2\dom(LP)

3c if x1∈ r̄(V) :

3d bad3 ← true

3e GOTO 3b

3f ∀ x2∈dom(LQ) : if x1⊕x2∈r(V) :

3g bad3 ← true

3h GOTO 3b

3i ret L-1
P (y1) ← x1

On query R
Q-1 (y2):

4a if y2∈ rng(LQ) ret x2 = L-1
Q (y2)

4b x2
$← Zl2\dom(LQ)

4c ∀ x1∈dom(LP) : if x1⊕x2∈r(V) :

4d bad4 ← true

4e GOTO 4b

4f ret L-1
Q (y2) ← x2

On query L1(M):

5a if M∈dom(H) ret h = H(M)

5b h
$← Zn2

5c ret H(M) ← h

On query L2(M):

6a ret h ← L1(M)

Fig. 3. Game 1 (with the boxed statement removed) and game 2 (including the
boxed statement). In game 1, the distinguisher has access to L1, R

L1 . In game
2, the distinguisher has access to LL1

2 , RL1 .

References

[1] E. Andreeva, G. Neven, B. Preneel, and T. Shrimpton. Seven-property-preserving
iterated hashing: ROX. In ASIACRYPT ’07, volume 4833 of LNCS, pages 130–
146, Berlin, 2007. Springer-Verlag.

[2] M. Bellare and T. Ristenpart. Multi-property-preserving hash domain extension
and the EMD Transform. In ASIACRYPT ’06, volume 4284 of LNCS, pages
299–314, Berlin, 2006. Springer-Verlag.

[3] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for design-
ing efficient protocols. In ACM Conference on Computer and Communications
Security, pages 62–73, New York, 1993. ACM.

[4] G. Bertoni, J. Daemen, M. Peeters, and G. van Assche. On the indifferentiability
of the sponge construction. In EUROCRYPT ’08, volume 4965 of LNCS, pages
181–197, Berlin, 2008. Springer-Verlag.

[5] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Sponge functions,
ECRYPT Hash Workshop 2007.

[6] R. Bhattacharyya, A. Mandal, and M. Nandi. Security analysis of the mode of JH
hash function. In FSE ’10, volume 6147 of LNCS, Berlin, 2010. Springer-Verlag.

[7] E. Biham and O. Dunkelman. A framework for iterative hash functions – HAIFA.
Cryptology ePrint Archive, Report 2007/278, 2007.

[8] E. Bresson, A. Canteaut, B. Chevallier-Mames, C. Clavier, T. Fuhr, A. Gouget,
T. Icart, J.-F. Misarsky, M. Naya-Plasencia, P. Paillier, T. Pornin, J.-R. Reinhard,

On query RP (x1):

1a if x1∈dom(LP) ret y1 = LP (x1)

1b if x1∈ r̄(V) for IV
M−→ x1 :

1c h ← L1(depad(M))

1d w
$← Zl−n

2
1e y1 ← x1⊕ (h‖w)

1f if y1∈ rng(LP) :

1g bad0 ← true

1h GOTO 1d

1i else y1
$← Zl2\rng(LP)

1j Vnew ← {x1⊕x′2, x1⊕x′2⊕y1⊕y′2 | (x′2, y′2)∈LQ} multiset

1k ∀ (x2, y2)∈LQ s.t. x1⊕x2∈r(V) for IV
M−→ x1⊕x2 :

1l if x1⊕x2⊕y1⊕y2∈V ∪ (Vnew\{x1⊕x2⊕y1⊕y2}) or

1m
(
x2∈Z(M) and x1⊕x2⊕y1⊕y2∈dom(LP) ∪ {x1}

)
:

1n bad1 ← true

1o GOTO 1b

1p ret LP (x1) ← y1

On query RQ(x2):

2a if x2∈dom(LQ) ret y2 = LQ(x2)

2b y2
$← Zl2\rng(LQ)

2c Vnew ← {x′1⊕x2, x′1⊕x2⊕y′1⊕y2 | (x′1, y′1)∈LP } multiset

2d ∀ (x1, y1)∈LP s.t. x1⊕x2∈r(V) for IV
M−→ x1⊕x2 :

2e if x1⊕x2⊕y1⊕y2∈V ∪ (Vnew\{x1⊕x2⊕y1⊕y2}) or

2f
(
x2∈Z(M) and x1⊕x2⊕y1⊕y2∈dom(LP)

)
:

2g bad2 ← true

2h GOTO 2b

2i ret LQ(x2) ← y2

On query R
P -1 (y1):

3a if y1∈ rng(LP) ret x1 = L-1
P (y1)

3b x1
$← Zl2\dom(LP)

3c if x1∈ r̄(V) :

3d bad3 ← true

3e GOTO 3b

3f ∀ x2∈dom(LQ) : if x1⊕x2∈r(V) :

3g bad3 ← true

3h GOTO 3b

3i ret L-1
P (y1) ← x1

On query R
Q-1 (y2):

4a if y2∈ rng(LQ) ret x2 = L-1
Q (y2)

4b x2
$← Zl2\dom(LQ)

4c ∀ x1∈dom(LP) : if x1⊕x2∈r(V) :

4d bad4 ← true

4e GOTO 4b

4f ret L-1
Q (y2) ← x2

On query L1(M):

5a if M∈dom(H) ret h = H(M)

5b h
$← Zn2

5c ret H(M) ← h

On query L3(M):

6a (M′1, . . . ,M′k) ← pad(M)

6b h0 ← IVn

6c for i = 1, . . . , k :

6d a ← RQ(M′i)

6e b ← RP (hi−1⊕M′i)

6f hi ← a⊕b⊕hi−1

6g d ← RP (hk)

6h h ← chopl−n(d⊕hk)

6i ret h

Fig. 4. Game 3. The distinguisher has access to LRL1

3 , RL1 .

C. Thuillet, and M. Videau. Indifferentiability with distinguishers: Why Shabal
does not require ideal ciphers. Cryptology ePrint Archive, Report 2009/199, 2009.

[9] D. Chang, S. Lee, M. Nandi, and M. Yung. Indifferentiable security analysis of
popular hash functions with prefix-free padding. In ASIACRYPT ’06, volume
4284 of LNCS, pages 283–298, Berlin, 2006. Springer-Verlag.

[10] D. Chang and M. Nandi. Improved indifferentiability security analysis of chopMD
hash function. In FSE ’08, volume 5086 of LNCS, pages 429–443, Berlin, 2008.
Springer-Verlag.

[11] J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damg̊ard revisited:
How to construct a hash function. In CRYPTO ’05, volume 3621 of LNCS, pages
430–448, Berlin, 2005. Springer-Verlag.

[12] I. Damg̊ard. A design principle for hash functions. In CRYPTO ’89, volume 435
of LNCS, pages 416–427, Berlin, 1990. Springer-Verlag.

[13] Y. Dodis, R. Gennaro, J. H̊astad, H. Krawczyk, and T. Rabin. Randomness
extraction and key derivation using the CBC, cascade and HMAC modes. In
CRYPTO ’04, volume 3152 of LNCS, pages 494–510, Berlin, 2004. Springer-
Verlag.

[14] Y. Dodis, T. Ristenpart, and T. Shrimpton. Salvaging Merkle-Damg̊ard for prac-
tical applications. In EUROCRYPT ’09, volume 5479 of LNCS, pages 371–388,
Berlin, 2009. Springer-Verlag.

On query RP (x1):

1a if x1∈dom(LP) ret y1 = LP (x1)

1b if x1∈ r̄(V) :

1c h
$← Zn2

1d w
$← Zl−n

2
1e y1 ← x1⊕ (h‖w)

1f if y1∈ rng(LP) :

1g bad0 ← true

1h GOTO 1d

1i else y1
$← Zl2\rng(LP)

1j Vnew ← {x1⊕x′2, x1⊕x′2⊕y1⊕y′2 | (x′2, y′2)∈LQ} multiset

1k ∀ (x2, y2)∈LQ s.t. x1⊕x2∈r(V) for IV
M−→ x1⊕x2 :

1l if x1⊕x2⊕y1⊕y2∈V ∪ (Vnew\{x1⊕x2⊕y1⊕y2}) or

1m
(
x2∈Z(M) and x1⊕x2⊕y1⊕y2∈dom(LP) ∪ {x1}

)
:

1n bad1 ← true

1o GOTO 1b

1p ret LP (x1) ← y1

On query RQ(x2):

2a if x2∈dom(LQ) ret y2 = LQ(x2)

2b y2
$← Zl2\rng(LQ)

2c Vnew ← {x′1⊕x2, x′1⊕x2⊕y′1⊕y2 | (x′1, y′1)∈LP } multiset

2d ∀ (x1, y1)∈LP s.t. x1⊕x2∈r(V) for IV
M−→ x1⊕x2 :

2e if x1⊕x2⊕y1⊕y2∈V ∪ (Vnew\{x1⊕x2⊕y1⊕y2}) or

2f
(
x2∈Z(M) and x1⊕x2⊕y1⊕y2∈dom(LP)

)
:

2g bad2 ← true

2h GOTO 2b

2i ret LQ(x2) ← y2

On query R
P -1 (y1):

3a if y1∈ rng(LP) ret x1 = L-1
P (y1)

3b x1
$← Zl2\dom(LP)

3c if x1∈ r̄(V) :

3d bad3 ← true

3e GOTO 3b

3f ∀ x2∈dom(LQ) : if x1⊕x2∈r(V) :

3g bad3 ← true

3h GOTO 3b

3i ret L-1
P (y1) ← x1

On query R
Q-1 (y2):

4a if y2∈ rng(LQ) ret x2 = L-1
Q (y2)

4b x2
$← Zl2\dom(LQ)

4c ∀ x1∈dom(LP) : if x1⊕x2∈r(V) :

4d bad4 ← true

4e GOTO 4b

4f ret L-1
Q (y2) ← x2

On query L3(M):

5a (M′1, . . . ,M′k) ← pad(M)

5b h0 ← IVn

5c for i = 1, . . . , k :

5d a ← RQ(M′i)

5e b ← RP (hi−1⊕M′i)

5f hi ← a⊕b⊕hi−1

5g d ← RP (hk)

5h h ← chopl−n(d⊕hk)

5i ret h

Fig. 5. Game 4 (including the boxed statements) and game 5 (with the boxed
statements removed). In both games, the distinguisher has access to LR

3 , R.

[15] P. Gauravaram, L. Knudsen, K. Matusiewicz, F. Mendel, C. Rechberger,
M. Schläffer, and S. Thomsen. Grøstl – a SHA-3 candidate, 2009.

[16] S. Lucks. A failure-friendly design principle for hash functions. In ASIACRYPT
’05, volume 3788 of LNCS, pages 474–494, Berlin, 2005. Springer-Verlag.

[17] U. Maurer, R. Renner, and C. Holenstein. Indifferentiability, impossibility results
on reductions, and applications to the random oracle methodology. In TCC ’04,
volume 2951 of LNCS, pages 21–39, Berlin, 2004. Springer-Verlag.

[18] R. Merkle. One way hash functions and DES. In CRYPTO ’89, volume 435 of
LNCS, pages 428–446, Berlin, 1990. Springer-Verlag.

[19] S. Miyaguchi, K. Ohta, and M. Iwata. Confirmation that some hash functions
are not collision free. In EUROCRYPT ’90, volume 473 of LNCS, pages 326–343,
Berlin, 1990. Springer-Verlag.

[20] National Institute for Standards and Technology. Announcing Request for Can-
didate Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA3)
Family, November 2007.

[21] B. Preneel, R. Govaerts, and J. Vandewalle. Hash functions based on block ciphers:
A synthetic approach. In CRYPTO ’93, volume 773 of LNCS, pages 368–378,
Berlin, 1993. Springer-Verlag.

[22] X. Wang, Y. Yin, and H. Yu. Finding collisions in the full SHA-1. In CRYPTO
’05, volume 3621 of LNCS, pages 17–36, Berlin, 2005. Springer-Verlag.

[23] X. Wang and H. Yu. How to break MD5 and other hash functions. In EURO-
CRYPT ’05, volume 3494 of LNCS, pages 19–35, Berlin, 2005. Springer-Verlag.

On query RP (x1):

1a if x1∈dom(LP) ret y1 = LP (x1)

1b y1
$← Zl2\rng(LP)

1c ret LP (x1) ← y1

On query RQ(x2):

2a if x2∈dom(LQ) ret y2 = LQ(x2)

2b y2
$← Zl2\rng(LQ)

2c ret LQ(x2) ← y2

On query R
P -1 (y1):

3a if y1∈ rng(LP) ret x1 = L-1
P (y1)

3b x1
$← Zl2\dom(LP)

3c ret L-1
P (y1) ← x1

On query R
Q-1 (y2):

4a if y2∈ rng(LQ) ret x2 = L-1
Q (y2)

4b x2
$← Zl2\dom(LQ)

4c ret L-1
Q (y2) ← x2

On query L3(M):

5a (M′1, . . . ,M′k) ← pad(M)

5b h0 ← IVn

5c for i = 1, . . . , k :

5d a ← RQ(M′i)

5e b ← RP (hi−1⊕M′i)

5f hi ← a⊕b⊕hi−1

5g d ← RP (hk)

5h h ← chopl−n(d⊕hk)

5i ret h

Fig. 6. Game 6. The distinguisher has access to LR
3 , R.

On query RP (x1):

1a if x1∈dom(LP) ret y1 = LP (x1)

1b if x1∈ r̄(V) :

1c h
$← Zn2

1d w
$← Zl−n

2
1e y1 ← x1⊕ (h‖w)

1f if y1∈A0 :

1g bad0 ← true

1h GOTO 1d

1i else y1
$← Zl2\rng(LP)

1j if y1∈A1 :

1k bad1 ← true

1l GOTO 1b

1m ret LP (x1) ← y1

On query RQ(x2):

2a if x2∈dom(LQ) ret y2 = LQ(x2)

2b y2
$← Zl2\rng(LQ)

2c if y2∈A2 :

2d bad2 ← true

2e GOTO 2b

2f ret LQ(x2) ← y2

On query R
P -1 (y1):

3a if y1∈ rng(LP) ret x1 = L-1
P (y1)

3b x1
$← Zl2\dom(LP)

3c if x1∈A3 :

3d bad3 ← true

3e GOTO 3b

3f ret L-1
P (y1) ← x1

On query R
Q-1 (y2):

4a if y2∈ rng(LQ) ret x2 = L-1
Q (y2)

4b x2
$← Zl2\dom(LQ)

4c if x2∈A4 :

4d bad4 ← true

4e GOTO 4b

4f ret L-1
Q (y2) ← x2

On query L3(M):

5a (M′1, . . . ,M′k) ← pad(M)

5b h0 ← IVn

5c for i = 1, . . . , k :

5d a ← RQ(M′i)

5e b ← RP (hi−1⊕M′i)

5f hi ← a⊕b⊕hi−1

5g d ← RP (hk)

5h h ← chopl−n(d⊕hk)

5i ret h

A0 = rng(LP);

A1 =
⋃

(x2,y2)∈LQ

({
x1 ⊕ x2 ⊕ y2 ⊕ s | s ∈ V ∪ (Vnew\{x1 ⊕ x2 ⊕ y1 ⊕ y2})

}
∪{

x1 ⊕ x2 ⊕ y2 ⊕ x′1| x
′
1 ∈ dom(LP) ∪ {x1}

})
,

where Vnew = {x1 ⊕ x′2, x1 ⊕ x′2 ⊕ y1 ⊕ y′2 | (x′2, y
′
2) ∈ LQ} is a multiset;

A2 =
⋃

(x1,y1)∈LP

({
x1 ⊕ x2 ⊕ y1 ⊕ s | s ∈ V ∪ (Vnew\{x1 ⊕ x2 ⊕ y1 ⊕ y2})

}
∪{

x1 ⊕ x2 ⊕ y1 ⊕ x′1| x
′
1 ∈ dom(LP)

})
,

where Vnew = {x′1 ⊕ x2, x
′
1 ⊕ x2 ⊕ y′1 ⊕ y2 | (x′1, y

′
1) ∈ LP } is a multiset;

A3 = r̄(V) ∪ {x2 ⊕ s | x2 ∈ dom(LQ), s ∈ r(V)} ;

A4 = {x1 ⊕ s | x1 ∈ dom(LP), s ∈ r(V)} .

Fig. 7. Game 7. The distinguisher has access to LR
3 , R.

	On the Indifferentiability of the Grøstl Hash Function
	Elena Andreeva, Bart Mennink and Bart Preneel

