

An Efficient, High-throughput Adaptive NoC Router for Large-scale Spiking Neural
Network Hardware Implementations

Carrillo, S., Harkin, J., McDaid, L., Pande, S., & Morgan, F. (2010). An Efficient, High-throughput Adaptive NoC
Router for Large-scale Spiking Neural Network Hardware Implementations. In Unknown Host Publication
Springer. http://www.ices2010.org/

Link to publication record in Ulster University Research Portal

Published in:
Unknown Host Publication

Publication Status:
Published (in print/issue): 05/09/2010

Document Version
Author Accepted version

General rights
Copyright for the publications made accessible via Ulster University's Research Portal is retained by the author(s) and / or other copyright
owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these
rights.

Take down policy
The Research Portal is Ulster University's institutional repository that provides access to Ulster's research outputs. Every effort has been
made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in
the Research Portal that you believe breaches copyright or violates any law, please contact pure-support@ulster.ac.uk.

Download date: 28/03/2024

http://www.ices2010.org/
https://pure.ulster.ac.uk/en/publications/93e35430-ef62-4d30-8b4b-72301cbbdbd9

An Efficient, High-Throughput Adaptive NoC Router

for Large Scale Spiking Neural Network

Hardware Implementations

S Carrillo1, J Harkin1, L McDaid1, S Pande2 and F Morgan2

1 Intelligent Systems Research Centre (ISRC),

University of Ulster, Magee Campus, Derry, Northern Ireland.

carrillo_lindado-s@email.ulster.ac.uk
2 Bio-Inspired Electronics and Reconfigurable Computing Research Group (BIRC),

National University of Ireland, NUI Galway, Galway, Ireland.

sandeep.pande@nuigalway.ie

Abstract. Recently, a reconfigurable and biologically inspired paradigm based

on network-on-chip (NoC) and spiking neural networks (SNNs) has been

proposed as a new method of realising an efficient, robust computing platform.

However the use of the NoC as an interconnection fabric for large scale SNN

(i.e. beyond a million neurons) demands a good trade-off between scalability,

throughput, neuron/synapse ratio and power consumption. In this paper

an adaptive NoC router architecture is proposed as a way to minimise network

delay across varied traffic loads. The novelty of the proposed adaptive NoC

router is twofold; firstly, its adaptive scheduler combines the fairness policy of

a round-robin arbiter and a first-come first-served priority scheme to improve

SNN spike packet throughput; secondly, its adaptive routing scheme

(verified using simulated SNN traffic) allows the selection of different NoC

router output ports to avoid traffic congestion. The paper presents

the performance and synthesis results of the proposed adaptive NoC router

operating within the EMBRACE architecture. Results illustrate that

the high-throughput, low area and low power consumption of the adaptive NoC

router make it feasible for use in large scale SNN hardware implementations.

Keywords: Adaptive Router Architecture, Spiking Neural Networks,

Network-on-Chip, EMBRACE.

1 Introduction

In the last sixty years, several computational models such as the Hodgkin and Huxley,

the leaky integrate & fire and the Izhikevich have been proposed to mimic to a certain

degree the biological behaviour of real neurons. These computational neuron models

have led to the creation of the interesting and powerful bio-inspired Spiking Neural

Network (SNN) computational paradigm [1]. The challenge is to develop a complex

high-performance synapse/neuron interconnection pattern, implemented in an

electronic device that exhibits low power consumption, reconfigurable capabilities,

intrinsic parallelism and a high level of scalability.

The complexity of inter-neuron connectivity is prohibiting the progress

in hardware toward biological-scale SNNs as the rapid increase in the ratio of fixed

connections to the number of neurons is limiting the size of the network. To overcome

this issue, initial research has focused on the Network-on-Chip (NoC) interconnect

paradigm as a possible mechanism to support scalability. Nevertheless, the use of

the NoC as an interconnection fabric for large scale SNNs (i.e. beyond a million

neurons) demands a good trade-off between scalability, throughput, neuron/synapse

ratio and power consumption. Consequently, the router itself plays an important role,

mostly because its hardware architecture has a major impact on the following

parameters:

• Power Consumption: the router is the communication point to which synapses

and neurons are attached; this implies that the number of routers increases

proportionally with the number of neurons. Hence, the power consumption for

large scale SNN hardware implementations increases as the major contributor for

this power consumption is the interconnection fabric (i.e. routers, index tables,

etc). The neuron model usually has a power consumption approximately six

orders of magnitude smaller than that of the interconnection fabric [2].

• Throughput: the router is also responsible for managing SNN spike events.

However the traffic pattern shown by spiking neurons is highly asynchronous and

non-uniform [1]. Hence, an effective arbitration policy is desired. This policy

should be dynamically adaptable depending on the traffic behaviour and should

also route and deliver as many SNN spike events as possible in a short period of

time without affecting the traffic performance and without incurring any

significant hardware overhead.

• Traffic Congestion: the typical firing rate for a biological neuron is between

10 ms - 30 ms [1]. However, as the number of neurons increases, the increasing

number of SNN spike events presents routers with the more difficult task of

accomplishing real-time routing without SNN spike packet loss. Therefore,

for large scale SNN hardware implementation, routing algorithms which

implement traffic congestion management features to reduce traffic congestion

impact are required.

In this paper an adaptive NoC router architecture is proposed and its feasibility for

large scale EMBRACE [3] SNN hardware implementation is presented.

The rest of this paper is organised as follows: Section 2 presents the motivation for

this research and summarises current work regarding NoC-based SNN hardware

implementation. Section 3 discusses the proposed adaptive NoC router architecture

incorporated within the EMBRACE architecture. Section 4 presents results and

analysis of the proposed adaptive NoC router architecture in term of area utilisation,

power consumption and spike packet throughput. Finally Section 5 provides a brief

discussion regarding large scale SNN hardware implementations and conclusion.

2 Motivation and Previous Works

Traditionally, software approaches are too slow to execute a long simulation of SNNs

and do not scale efficiently [4]. Thus, researchers have explored alternative hardware

SNN solutions using FPGAs and GPUs that provide a fine-grained parallel

architecture and a 2D mesh interconnect topology [5], [6]. The authors highlight [4]

that FPGA approaches have several limitations such as inefficient area utilisation and

a Manhattan style interconnect. [7] indicates that the problem of accessing memory

in a coherent manner and limited memory bandwidth, are major drawbacks for SNNs

based on GPU platforms. Moreover, neither the FPGA nor the GPU architectures

are power efficient and they have limited on-chip weight storage capabilities.

Therefore, it is necessary to look to custom hardware to provide area and power

requirements which can support large scale hardware SNN realisation with dense

neuron interconnection. Traditional approaches using a bus-shared topology offer

a simple and inexpensive channel to interconnect several neurons. However,

in [8] the authors compare the performance of the bus topology with different

interconnection networks topologies, and conclude that a bus topology does not scale

to allow interconnection of a large number of SNN processing elements (PEs).

Furthermore, a bus topology is not able to guarantee real-time execution since

the latency of the network increases proportionally to the number of PEs connected to

the shared-bus.

In [9] the Network-on-Chip (NoC) interconnect paradigm is introduced as

a promising solution to solve the on-chip communication problems experienced

in Systems-on-Chip (SoC) computing architectures, where generally high throughput

and high interconnect capability is required. In general, NoC architectures

are composed of a set of shared PEs, network interfaces, routers and channels,

which are arranged in a topology depending on the application. In the context of

SNNs, these PEs refer to the neuron models attached to the NoC routers placed

throughout the network. Channels are analogous to the synapses/axons of spiking

neurons. The SNN topology in this case refers to the way spiking neurons are

interconnected across the network.

The concept of using NoCs in SNNs for large scale hardware implementations has

been reported in [10], [11], [12] (summarised in Table 1). Although a few of these

projects exhibit good throughput and some others provide a high Quality of Service

(QoS), their major drawback is that they do not provide an adequate mechanism

to deal with traffic congestion with scaling of the SNN size. This is important

in achieving efficient large scale SNN hardware implementations.

Table 1. SNN hardware implementation examples using NoCs

Project

Reference

Quality of

Service (QoS)

Congestion

Mechanism

Power

[mW]

Throughput

[Gbps]

Spinnaker [12] Best Effort No 64 14.4

Facets [11] Best/Guaranteed Effort No NA 6.1

Theocharides. et al [10] Best Effort No NA 0.1

3 Adaptive NoC Router

In previous work [3] the authors proposed EMBRACE, a custom field programmable

neural network architecture that merges the programmability features of FPGAs and

the scalable interconnectivity of NoC router strategy to implement large scale spiking

neural networks with a custom low-area/power programmable synapse cell, which has

characteristics similar to real biological synapses [13]. The proposed NoC strategy

uses individual routers to group n synapses and the associated neuron using a novel

structure referred to as a neural tile. The neural tile is viewed as a macro-block of

EMBRACE and its novelty resides in the merging of analogue synapse/neuron

circuitry with NoC digital interconnect to provide a scalable and reconfigurable neural

building block. The EMBRACE NoC architecture is a mesh-based two-dimensional

array of interconnected SNN neural tiles (each connected in N, E, S, W directions)

as illustrated in Fig. 1. Spike exchange between neural tiles is achieved by routing

packet-based spike information through NoCs connected to neural tile ports.

Moreover, the EMBRACE architecture supports the programmability of SNN

topologies on hardware, providing an architecture that enables the accelerated

prototyping and hardware in-loop training of SNNs. In this regards, a parallel research

project called EMBRACE-FPGA [14], has enabled the development of

a 32 neuron, 32-synapses per neuron hardware SNN evolution platform, executing

a range of applications, and allowing refinement of EMBRACE architecture selection.

Fig. 1. EMBRACE architecture overview [3]

Although the previous NoC router design [3] exhibits good latency and area

performance, i.e. the router can process incoming data packets every 10 clock cycles

with source packet generation requiring 12 cycles using 234 LUTs for a Virtex 4

device, its non-adaptive architecture makes it difficult to overcome the congestion

problem present in a large scale SNN implementation. Therefore, an adaptive router

architecture has been proposed and investigated as a way to route packets of spike

events efficiently throughout the network whilst trying to balance congestion in

the network (i.e. increase the throughput).

The adaptability of the proposed router can be described in two dimensions:

• An adaptive arbitration policy (AAP) module which combines the fairness policy

of a round-robin arbiter and the priority scheme of a first-come first-served

(FCFS) approach, enabling improved router throughput according to the traffic

behaviour presented across the network.

• An adaptive routing scheme (ARS) module which enables the selection of

different router paths to avoid traffic congestion, based on pattern traffic and

a channel congestion detector (CCD).

Those modules and their interconnection are explained in more detail

in the following sub-sections. Fig. 2 illustrates the proposed adaptive router and its

interconnection with the EMBRACE neural cell.

N
I

N
I

Fig. 2. EMBRACE neural cell and adaptive NoC router structure and connection

3.1 Adaptive Arbitration Policy

A key property of an arbiter is its fairness in the way that it provides equal service to

different network traffic requests. Accordingly, several arbitration policies have been

proposed [15]. However, almost all of them are either based on strong fairness

(i.e. round-robin arbiter) or weak fairness (i.e. FCFS arbiter). A round-robin arbiter

exhibits a strong fairness to service each port, because it allocates the lowest priority

to the port that has been serviced in the previous round and gives the highest priority

to the next port. This approach seems to be good for a heavy load scenario where all

router ports are busy, since it gives equal priorities to all of them. However,

this strong fairness also introduces two factors that alter the latency in the router,

namely, the number of router ports is proportional to the router latency, and the

position of the round robin arbiter when there is an incoming spike [16].

On the other hand, a FCFS arbiter gives the highest priority to the first event that

occurs. Thus, a FCFS arbiter would be good for those traffic scenarios where only one

port is busy (or at most a few ports are busy at the same time) since the router

does not spend extra clock cycles servicing inactive or unused ports. However,

contrary to the round robin approach, this weak fairness is not feasible for heavy

traffic load scenarios since the probability of discarded packets increases due to

the arbiter priority being given to the first port that requests its attention.

Consequently, the authors propose an adaptive arbitration policy (AAP) which

combines the strong fairness policy of the round-robin arbiter and the priority scheme

of a FCFS approach. This hybrid approach improves router throughput according to

the traffic behaviour presented across the network. The proposed AAP uses a spike

event register to store information regarding any new spike event for each port input

buffer. Five distributed control units (i.e. one for each port) allow the scheduler

to manage thread communication without incurring task-switching overhead.

Therefore only the input buffers that contain information will be serviced, avoiding

wasted clock cycles servicing those input buffers that do not contain packets.

In the same way, when a heavy load traffic scenario occurs, all of the ports will be

serviced based on a round-robin arbitration scheme. The pseudo code used for the

proposed arbitration module is illustrated in Fig. 3.

Fig. 3. Pseudo code for the adaptive arbitration policy (AAP) module

3.2 Adaptive Routing Scheme

The adaptive routing scheme module for the proposed router is composed of three

main elements. Firstly, a routing algorithm that is based on an XY routing approach

[15] and receives a default output port direction from the AAP module. Secondly,

the channel congestion detector (CCD), illustrated in Fig. 4, uses information received

from neighbouring routers to generate an alternative output port direction and passes

this information to the adaptive routing decision (ARD) module, see Fig. 5. The ARD

module takes the default output port direction given by the XY routing algorithm, and

based on the information generated by the CCD, the proposed default output port is

granted, or the alternative output port direction which is generated according to

the traffic information received from the CCD, is selected. The CCD and ARD

components are described below.

The Channel Congestion Detector (CCD): Fig. 4 illustrates the CCD module which

provides a means of detecting the current state of SNN packet traffic in any given

direction. For any given direction the CDD module can detect whether the forward N,

E, S or W channels are free, busy or congested, as follows:

a. Free: the input FIFO is empty or less than half-full.

b. Busy: the input FIFO is half-full.

c. Congested: the input FIFO is full.

The CCD module uses a combination of logical two-input AND gates and

two-input OR gates. Whenever a router FIFO buffer is full, it asserts the FIFO full

signal so that the full status can be detected by the CCD and propagates logic ‘1’ to

each of its associated AND, as illustrated in Fig 4. Similarly, if a FIFO is half-full

then it will generate logic ‘1’ to its associated OR gate. The AND and OR gates are

connected in a daisy chain between each router. The routing decision output signal of

each router appears as a two bit value, one belonging to the congested line and the

other belonging to the busy line, as shown in Fig. 4. When both lines are ‘0’ then

the channel is free. Logic ‘1’ on the busy line indicates that a FIFO can take a packet

but that it has a limited capacity. The output of this logic element will be four two-bit

outputs, i.e. two bits for each direction. The traffic information (i.e. the congested,

busy o free status per channel) generated from the CCD, is then forwarded as an input

to the adaptive routing decision (ARD, in order to select the output port direction.

N N

S S

N
S

Fig. 4. Channel congestion detector (CCD). This figure only shows the situation when looking

along the east channel for clarity purposes. However, the ‘look-ahead’ facility is replicated in

all N, E, S and W directions

The Adaptive Routing Decision (ARD): this module selects the forwarding port

direction for routing spike packet data. The ARD module considers the two bits

generated by the XY routing algorithm as the priority/default direction and the input

from the CCD. The default output port direction given by the XY routing algorithm is

used to index the routing table shown in Fig. 5. Those directions are ‘00’, ‘01’, ‘10’

and ‘11’, which correspond to N, E, W and S, respectively. The output of this table is

the two alternative adapted directions for the given input. For example, if the input

direction is north (‘00’) then the output of the lookup table is either “01” or “10”.

These two outputs represent E and W direction, respectively. These values are both

used as select lines in two individual multiplexers, which are used to compare these

values with the busy lines from the congestion detector to check if either of

these channels is busy.

The proposed ARD occupies a small area, is scalable and is a low power element.

It therefore adds very little overhead to the NoC router architecture.

Fig. 5. Adaptive routing decision (ARD) module

4 Performance Analysis

This section presents results on the throughput capability of the proposed adaptive

router for varied SNN traffic loads, and benchmarks its performance against existing

approaches. The area and power requirements of the proposed additional circuitry are

also highlighted.

4.1 Methodology

A VHDL implementation of the proposed adaptive router architecture has been

created in order to evaluate its performance. The router is characterised by its packet

throughput, area utilisation and power consumption parameters. A SystemC spike

event counter/generator testbench facilitated measurement of packet throughput.

Area and power metrics have been obtained using the Synopsys Design Compiler tool

for TSMC 90nm CMOS technology. The measurement setup was inspired by [15] and

verified in [16]. This setup proposed the attachment of terminal instruments such as

counters and generators at each router port. The spike event generator includes

a packet source module to generate spike data according to the spike packet layout

illustrated in Fig. 2. The spike event generator also defines the traffic pattern, packet

length and the spike injection rate (i.e. the time between spike events). The spike

event counter measures the SNN output spike rate and deduces the spike throughput

and the number of unsuccessfully routed (dropped) spike packet. The relationship

between the depth of the input FIFOs and their impact on the maximum throughput of

the router and the total area power consumption is analysed within the simulation

framework the depth of the input FIFOs varies between 1 up to 5. The inter-router

packets data width is 32-bits, the width of the spike packet. The router operating

frequency is 100MHz and the spike counter sample window time used is 1ms.

A pre-count stage is applied before each counter window to allow the router to reach

steady state operation.

4.2 Performance Results

Several experiments have been carried out to assess the packet throughput for

the proposed adaptive NoC router. These experiments have examined the impact of

the spike inject rate (SIR) variation on the average adaptive router packet throughput.

Router performance has been compared with that of a non-adaptive router

(i.e. a round-robin equivalent) using an input FIFO depth of 5. Fig. 6 illustrates

the packet throughput advantages in using the proposed adaptive router strategy. This

demonstrates equal throughput performance for both adaptive and non-adaptive router

when an SIR of 20 is applied (i.e. a spike packet is generated every 20 clock cycles).

However, when an SIR of 2 is applied, the adaptive router achieves almost double

the throughput of the round robin-based router. This is a typical traffic scenario for

spiking neurons in burst mode. The advantages of the proposed adaptive router

approach are as follows:

• When not all router ports are used, the adaptive router skips over idle router

ports. Several clock cycles can be saved compared to the round-robin approach

and the overall throughput can be increased. Figures 6a and 6b show the result

obtained when one and three ports are used.

• When all router ports are busy, a packet throughput advantage using

the proposed adaptive router occurs when the SIR value is less or equal to

the number of ports minus one (i.e. SIR = 4), due to the non-adaptive router

reaching the saturation level, i.e. the router is not able to deliver the packets as

fast as they are being generated [15]. Therefore it is impossible for

the round-robin arbiter to service all ports adequately since the SIR is smaller

than the time available to the router to process the incoming packets. As a result,

the unattended ports drop packets and the throughput saturates.

4.3 Evaluation

Table 2 summarises the power consumption and area utilisation for the proposed

adaptive NoC router. These parameters have been obtained using the Synopsys

Design Compiler tool for the TSMC 90nm CMOS technology. A router clock

frequency of 100 MHz has been used and the dynamic power consumption metrics

have been obtained based on a fully loaded traffic scenario, where all neurons spike at

the same time. Table 2 also shows the trade-off between the depth of the input FIFO

and the maximum throughput per router. In addition, Tables 3 and 4 compare

the performance of the proposed router with other existing approaches [10], [11],

[12]. Table 3 highlights the routing algorithms used for the NoC routers. Table 4

highlights a high throughput of 16Gbps for the proposed adaptive NoC router whilst

exhibiting a low power overhead of 1.86mW. The adaptive NoC router achieves

a higher throughput performance than existing approaches. The authors are aware that

the proposed router does not contain any index table to implement a multicasting

scheme as in [12], which would increase the presented area and power metrics for

the proposed router. However the throughput would remain the same since

the arbitration policy would be independent of a future multicasting approach.

Fig. 6. Relationship between the spike injection rate and the throughput per router, under

different traffic load

Table 2. Synthesis summary for the proposed router obtained from Synopsys Design Compiler

tool based on the TSMC 90nm CMOS technology library

Input

FIFO

[Depth]

Dynamic

Power

[mW]

Leakage

Power

[mW]

Total

Power

[mW]

Area

[mm^2]

Avg.

Throughput

[Gbps]

1 0.82 0.13 0.95 0.039 13.44

2 1.04 0.14 1.19 0.041 14.08

3 1.24 0.15 1.39 0.045 14.72

4 1.44 0.17 1.61 0.048 15.36

5 1.67 0.19 1.86 0.054 16.00

Table 3. Comparison of the proposed router against other existing approaches

Project

Reference

Neuron

Model

NoC

Topology

Routing

Algorithm

This work LI&F 2D Mesh Adaptive XY routing

Spinnaker [12] Izhikevich 2D Triangular Torus Node table routing

Facets [11] LI&F 2D Torus Mesh iSLIP

Theocharides. et al [10] I&F 2D Mesh XY routing

Table 4. Comparison of router performance against other existing approaches

Project

Reference

Quality of

Service (QoS)

Congestion

Mechanism

Throughput

[Gbps]

Power

[mW]

This work Best Effort Yes 16.0 1.86

Spinnaker [12] Best Effort No 14.4 64

Facets [11] Best/Guaranteed Effort No 6.1 NA

Theocharides. et al [10] Best Effort No 0.1 NA

5 Summary and Discussion

The work presented here is part of a long-term vision to create EMBRACE, a mixed

signal hardware platform to advance large scale SNN implementations. Research

approaches previously discussed, i.e. [3], [10], [11] and [12] have shown promising

results in establishing the motivation to continue using the NoC paradigm as a way to

overcome the interconnection problems in hardware SNNs. Nevertheless, different

aspects of NoC architectures need to be explored in order to take full advantages of all

its capabilities and utilisation as an interconnect fabric for SNNs platforms.

In this regards, the authors have proposed a novel adaptive NoC router architecture

to alleviate the communication constraints currently experienced in the efficient

realisation of SNNs in hardware. The paper demonstrates the advantages of using an

adaptive NoC router architecture to improve throughput, area and power

consumption. The proposed adaptive NoC router contributes to the plausibility of

developing a scalable NoC-based EMBRACE SNN hardware implementation.

Although having an efficient, high-throughput adaptive router is important, it is also

vital that a balance between increased throughput and minimal area utilisation and

power consumption is achieved. Thus, the proposed adaptive NoC router is a step

forward in this direction.

Acknowledgments. Snaider Carrillo Lindado is supported by a Vice-Chancellor

Research Scholarship (VCRS) from the University of Ulster. Henry Carrillo, who

helped to setup some experiments using the Synopsys Design Compiler tool.

References

1. W. Gerstner, Spiking neuron models: Single neurons, populations, plasticity, Cambridge

Univ Pr, 2002.

2. P. Livi and G. Indiveri, "A current-mode conductance-based silicon neuron for address-

event neuromorphic systems," 2009 IEEE International Symposium on Circuits and

Systems, IEEE, 2009, pp. 2898-2901.

3. J. Harkin, F. Morgan, L. McDaid, S. Hall, B. McGinley, and S. Cawley, "A Reconfigurable

and Biologically Inspired Paradigm for Computation Using Network-On-Chip and Spiking

Neural Networks," International Journal of Reconfigurable Computing, vol. 2009, pp. 1-13.

4. L.P. Maguire, T.M. McGinnity, B. Glackin, A. Ghani, A. Belatreche, and J. Harkin,

"Challenges for large-scale implementations of spiking neural networks on FPGAs,"

Neurocomput., vol. 71, 2007, pp. 13-29.

5. H. Shayani, P. Bentley, and A. Tyrrell, "A Cellular Structure for Online Routing of Digital

Spiking Neuron Axons and Dendrites on FPGAs," Evolvable Systems: From Biology to

Hardware, Springer, 2008, pp. 273-284.

6. D. Thomas and W. Luk, "FPGA Accelerated Simulation of Biologically Plausible Spiking

Neural Networks," 2009 17th IEEE Symposium on Field Programmable Custom Computing

Machines, IEEE, 2009, pp. 45-52.

7. J.M. Nageswaran, N. Dutt, J.L. Krichmar, A. Nicolau, and A. Veidenbaum, "Efficient

simulation of large-scale Spiking Neural Networks using CUDA graphics processors," 2009

International Joint Conference on Neural Networks, IEEE, 2009, pp. 2145-2152.

8. B. Roche, T. Mc Ginnity, L. Maguire, and L. Mc Daid, "Signalling techniques and their

effect on neural network implementation sizes," Information Sciences, vol. 132, 2001, p.

67–82.

9. L. Benini and G. De Micheli, "Networks on chips: a new SoC paradigm," Computer, vol.

35, 2002, pp. 70-78.

10. T. Theocharides, G. Link, N. Vijaykrishnan, M. Irwin, and V. Srikantam, "A generic

reconfigurable neural network architecture implemented as a network on chip," IEEE

International SOC Conference, 2004. Proceedings., IEEE, 2004, pp. 191-194.

11. S. Philipp, J. Schemmel, and K. Meier, "A QoS network architecture to interconnect large-

scale VLSI neural networks," 2009 International Joint Conference on Neural Networks,

IEEE, 2009, pp. 2525-2532.

12. L.A. Plana, S.B. Furber, S. Temple, M. Khan, Y. Shi, J. Wu, and S. Yang, "A GALS

Infrastructure for a Massively Parallel Multiprocessor," IEEE Design & Test of Computers,

vol. 24, 2007, pp. 454-463.

13. L. McDaid, S. Hall, and P. Kelly, "A programmable facilitating synapse device," 2008

IEEE International Joint Conference on Neural Networks (IEEE World Congress on

Computational Intelligence), IEEE, 2008, pp. 1615-1620.

14. F. Morgan, S. Cawley, B. Mc Ginley, S. Pande, L. Mc Daid, B. Glackin, J. Maher, and J.

Harkin, "Exploring the evolution of NoC-based Spiking Neural Networks on FPGAs," 2009

International Conference on Field-Programmable Technology, 2009, pp. 300-303.

15. W.J. Dally and B. Towles, Principles and practices of interconnection networks, Morgan

Kaufmann, 2004.

16. S. Pande, S. Carrillo, F. Morgan, S. Cawley, M. B., J. Harkin, and L. McDaid,

"EMBRACE-SysC for Analysis of NoC-based Spiking Neural Network Architectures,"

Technical Report: Bio-Inspired Electronics and Reconfigurable Computing Research Group

(BIRC), National University of Ireland, NUI Galway, Galway, Ireland, 2010.

