Skip to main content

Polynomial Time Computation in the Context of Recursive Analysis

  • Conference paper
Book cover Foundational and Practical Aspects of Resource Analysis (FOPARA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6324))

Abstract

Recursive analysis was introduced by A. Turing [1936], A. Grzegorczyk [1955], and D. Lacombe [1955] as an approach for investigating computation over the real numbers. It is based on enhancing the Turing machine model by introducing oracles that allow the machine to access finitary portions of the real infinite objects. Classes of computable real functions have been extensively studied as well as complexity-theoretic classes of functions restricted to compact domains. However, much less have been done regarding complexity of arbitrary real functions. In this article we give a definition of polynomial time computability of arbitrary real functions. Then we present two main applications based on that definition. The first one, which has already been published, concerns the relationships between polynomial time real computability and the corresponding notion over continuous rational functions. The second application, which is a new contribution to this article, concerns the construction of a function algebra that captures polynomial time real computability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellantoni, S., Cook, S.: A New Recursion-Theoretic Characterization of the Polytime Functions. Computational Complexity 2, 97–110 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blondel, V., Tsitsiklis, J.: A Survey of Computational Complexity Results in Systems and Control. Automatica 36(9), 1249–1274 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blum, L., Shub, M., Smale, S.: On a Theory of Computation Over the Real Numbers; NP Completeness, Recursive Functions and Universal Machines. Bulletin of the American Mathematical Society 21(1), 1–46 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bournez, O., Campagnolo, M.: A Survey on Continuous Time Computations. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) New Computational Paradigms. Changing Conceptions of What is Computable, pp. 383–423. Springer, Heidelberg (2008)

    Google Scholar 

  5. Bournez, O., Campagnolo, M., Graça, D., Hainry, E.: Polynomial Differential Equations Compute All Real Computable Functions on Computable Compact Intervals. Journal of Complexity 23(3), 317–335 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bournez, O., Hainry, E.: Recursive Analysis Characterized as a Class of Real Recursive Functions. Fundamenta Informaticae 74(4), 409–433 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Campagnolo, M.: Computational Complexity of Real Valued Recursive Functions and Analog Circuits. PhD thesis, Instituto Superior Técnico (2001)

    Google Scholar 

  8. Campagnolo, M., Moore, C., Costa, J.: Iteration, Inequalities, and Differentiability in Analog Computers. Journal of Complexity 16(4), 642–660 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Campagnolo, M., Moore, C., Costa, J.: An Analog Characterization of the Grzegorczyk Hierarchy. Journal of Complexity 18(4), 977–1000 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Campagnolo, M., Moore, C., Costa, J.: An Analog Characterization of the Subrecursive Functions. In: 4th Conference on Real Numbers and Computers, pp. 91–109. Odense University Press (2000)

    Google Scholar 

  11. Campagnolo, M., Ojakian, K.: Characterizing Computable Analysis with Differential Equations. Electronic Notes in Theoretical Computer Science 221, 23–35 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Campagnolo, M., Ojakian, K.: The Elementary Computable Functions over the Real Numbers: Applying Two New Techniques. Archives for Mathematical Logic 46(7-8), 593–627 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cobham, A.: The Intrinsic Computational Difficulty of Functions. In: Bar-Hillel, Y. (ed.) Proc. of the 1964 International Congress for Logic, Methodology, and the Philosophy of Science, Amsterdam, pp. 24–30 (1964)

    Google Scholar 

  14. Gakwaya, J.: A Survey of the Grzegorczyk Hierarchy and its Extension through the BSS Model of Computability. Technical report, Royal Holloway, University of London, NeuroCOLT Technical Report Series (1997)

    Google Scholar 

  15. Gomaa, W.: A Survey of Recursive Analysis and Moore’s Notion of Real Computation (submitted)

    Google Scholar 

  16. Gomaa, W.: Characterizing Polynomial Time Computability of Rational and Real Functions. In: Cooper, B., Danos, V. (eds.) Proceedings of DCM 2009. Electronic Proceedings in Theoretical Computer Science, vol. 9, pp. 54–64 (2009)

    Google Scholar 

  17. Grzegorczyk, A.: Computable functionals. Fundamenta Mathematicae 42, 168–202 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kawamura, A.: Differential Recursion. ACM Transactions on Computational Logic 10(3), 1–20 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ko, K.: Complexity Theory of Real Functions. Birkhäuser, Basel (1991)

    Book  MATH  Google Scholar 

  20. Kreitz, C., Weihrauch, K.: Theory of Representations. Theoretical Computer Science 38, 35–53 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kreitz, C., Weihrauch, K.: A Unified Approach to Constructive and Recursive Analysis. In: CADE 1996. Lecture Notes in Mathematics, vol. 1104, pp. 259–278. Springer, Heidelberg (1984)

    Chapter  Google Scholar 

  22. Lacombe, D.: Extension de la Notion de Fonction Récursive aux Fonctions d’une ou Plusieurs Variables Réelles III. Comptes Rendus de l’Académie des sciences Paris 241, 151–153 (1955)

    MathSciNet  MATH  Google Scholar 

  23. Loff, B., Costa, J., Mycka, J.: Computability on Reals, Infinite Limits and Differential Equations. Applied Mathematics and Computation 191(2), 353–371 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Meer, K., Michaux, C.: A Survey on Real Structural Complexity Theory. Bulletin of the Belgian Mathematical Society 4(1), 113–148 (1997)

    MathSciNet  MATH  Google Scholar 

  25. Moore, C.: Recursion Theory on the Reals and Continuous-Time Computation. Theoretical Computer Science 162(1), 23–44 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Orponen, P.: A Survey of Continous-Time Computation Theory. Advances in Algorithms, Languages, and Complexity, 209–224 (1997)

    Google Scholar 

  27. Turing, A.: On Computable Numbers, With an Application to the Entscheidungsproblem. Proceedings of the London Mathematical Society 2(42), 230–265 (1936) (correction ibid. 43, pp 544–546, 1937)

    MathSciNet  MATH  Google Scholar 

  28. Weihrauch, K.: Computable Analysis: An Introduction, 1st edn. Springer, Heidelberg (2000)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gomaa, W. (2010). Polynomial Time Computation in the Context of Recursive Analysis. In: van Eekelen, M., Shkaravska, O. (eds) Foundational and Practical Aspects of Resource Analysis. FOPARA 2009. Lecture Notes in Computer Science, vol 6324. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15331-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15331-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15330-3

  • Online ISBN: 978-3-642-15331-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics