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Abstract. An important application of resource analysis is to improve
the performance of parallel and distributed programs. In this context key
resources are time, space and communication. Given the spectrum of cost
models and associated analysis techniques available, what combination
should be selected for a specific parallel or distributed context?
We address the question as follows. We outline a continuum of coordi-
nation cost models and a range of analysis techniques. We consider six
representative parallel/distributed applications of resource analysis tech-
niques, and aim to extract general principles governing why the combi-
nation of techniques is effective in its context.

1 Introduction

Parallel and distributed programs must specify both the computation to be per-
formed, and how this is to be coordinated across multiple locations. Effective
resource analyses enable better coordination, for example scheduling can be im-
proved with accurate estimates of the computational cost for units of work. The
resource analyses need to build on realistic cost models to reflect the resource
consumption incurred during execution. Furthermore, an appropriate analysis
technique must be used to predict resource consumption to the required accu-
racy. Finally, there are many possible uses of such resource information.

Section 2 classifies coordination cost models, focusing on the level of abstrac-
tion over the hardware that is provided. The PRAM model is extremely simple
and abstract. More refined models use a fixed structure of the execution of the
code to produce an accurate cost model: Bulk Synchronous Processes (BSP) is
one such example. Finally, there is a rich class of models that take hardware
details such as caches and processor pipelines into account to produce a very
accurate model: for example the processor model used by AbsInt’s aiT analysis
for (sequential) worst case execution time.

Section 3 classifies the analysis techniques. We start by outlining several rep-
resentative systems that use resource bounds to improve coordination: design-
time cost analysis through the use of structured program notations such as
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the Bird-Meertens-Formalism (BMF) or Bulk Synchronous Processes (BSP);
compile-time cost analysis through the use of type inference, abstract interpreta-
tion, or constraint system solving; run-time cost analysis through the (abstract)
execution of (abstracted) input based on a costed semantics.

Section 4 outlines six applications of resource analysis techniques in a par-
allel/distributed context. The applications are selected to be effective, i.e. they
improve parallel/distributed coordination, and representative. The applications
are representative in utilising a range of analyses from the most abstract to the
most concrete, and in using the resource information for a range of coordination
purposes including resource-safe execution, compiler optimisations, optimising
parallel execution and enabling mobility.

Section 5 investigates in the impact of the choices made for the cost model
and analysis technique on the concrete application domain. Section 6 summarises
the general principles governing why combinations of cost model and analysis
technique are effective, and speculates on future trends for resource analysis in
the parallel/distributed arena.

2 Coordination Cost Models

Coordination cost models provide tractable abstractions of the performance of
real parallel or distributed systems. They cover a well populated continuum from
the most simple and abstract, through to the highly detailed and concrete. A
detailed survey of parallel cost models is given in [25]. For our purposes we
note four well-known and representative examples that are used in the analysis
methodologies presented subsequently. As we shall see in Section 4, classical
sequential cost models are also useful, e.g. using predicted execution time for
tasks to inform scheduling.

2.1 PRAM

The Parallel Random Access Machine (PRAM) model [12] is the most abstract
parallel cost model. PRAM is the fundamental parallel machine and cost model
within the parallel algorithms and complexity research community. In its sim-
plest form, it models stepwise synchronous, but otherwise unrestricted access
to a shared memory by a set of conventional sequential processors. At each
synchronous step, each processor performs one operation from a simple, con-
ventional instruction set. Each such step is costed at unit time, irrespective of
the operations involved, and in particular, irrespective of which shared memory
locations are accessed.

For example, given the problem of summing an array of n integers on a p
processor machine, a simple algorithm A might propose that each processor first
sums a distinct sub-array of size n

p items, then a single processor sums the n
p

partial results of the first phase. An informal PRAM cost analysis would capture
the cost of this algorithm as

TA(n) = Θ(
n

p
+ p)



A more sophisticated algorithm B might suggest summing the partial results
in a parallel tree-like structure (usually known as ”parallel reduction”). The
corresponding analysis would suggest a run-time of

TB(n) = Θ(
n

p
+ log p)

The designer is thus alerted to the coarse-grain observation that the more
sophisticated algorithm may be asymptotically faster, but only for large p.

The PRAM model ignores a number of important issues such as contention,
memory hierarchy, underlying communication infrastructure and all processor
internal issues. Nevertheless, it has provided a durable and sound basis for at
least the initial phases of asymptotically analysed parallel algorithm design. A
plethora of variants aim to introduce more pragmatic cost issues. For example,
the EREW-PRAM disallows steps in which any shared memory location is ac-
cessed by more than on processor (algorithms A and B both satisfy this require-
ment). In contrast, the CRCW-PRAM removes this restriction, with sub-variants
defining behaviour when clashes occur.

2.2 BSP

The Bulk Synchronous Parallel (BSP) model [4] occupies a less abstract position
in the cost model spectrum than PRAM. In contrast to PRAM it recognises
that synchronisation is not free, that sharing of data involves communication
(whether explicitly or implicitly), and that the cost of this communication, both
absolutely and relative to that of processor-local computation can be highly
machine dependent. To tame this complexity BSP introduces a constrained op-
erational model. Thus, a BSP computer consists of processors connected by a
communication network. Each processor has a fast local memory, and may follow
its own thread of computation.

A BSP computation proceeds in a series of supersteps comprising three stages.
Independent concurrent computation on each processor using only local values.
Communication in which each processor exchanges data with every other. Bar-
rier synchronisation where all processes wait until all other processes have fin-
ished their communication actions.

The BSP cost model has two parts: one to estimate the cost of a superstep,
and another to estimate the cost of the program as the sum of the costs of
the supersteps. The cost of a superstep is the sum of the cost of the longest
running local computation, the cost of the maximum communication between the
processes, and the cost of the barrier synchronisation. The costs are computed
in terms of three abstract parameters which respectively model the number of
processors p, the cost of machine-wide synchronisation L, and g, a measure of
the communication network’s ability to deliver sets of point-to-point messages,
with the latter two normalised to the speed of simple local computations.

For example, the array summing algorithms above, translated for BSP, would
have asymptotic run-times of

TA(n) = Θ(
n

p
+ p + pg + 2L)



with the first two terms contributed by computation, the third by communication
and the fourth by the need for two supersteps, and

TB(n) = Θ(
n

p
+ log p + 2g log p + L log p)

with the first time corresponding to local computation, and the other three terms
to computation, communication and synchronisation summed across the log p
supersteps of the tree-reduction phase. The analysis reveals the vulnerability of
the algorithm B to architectures with expensive synchronisation.

The constrained computational model allows BSP implementations to pro-
vide a benchmark suite which derives concrete, machine-specific values for g and
L. These can then be inserted into the abstract (architecture independent) cost
already derived for a given program, to predict its actual run-time.

While BSP makes no attempt to account for processor internals or memory
hierarchy (other than indirectly through benchmarking) or specific communica-
tion patterns (indeed, classical BSP implementations rely on randomisation to
deliberately obliterate patterns in the interests of predictability), a considerable
literature testifies to the pragmatic success of the approach [4].

2.3 Cost Semantics

Cost semantics occupy a more concrete position in the cost model spectrum
than BSP. A cost semantics is a non-standard semantics defining computational
costs, rather than result values, for program expressions. To this end costs are
assigned to primitive operations, and language constructs combine the costs of
their subterms, e.g. the cost of a adding two values in the array sum example
above might be one plus the cost of evaluating the left and right operands. The
cost semantics thus defines the exact costs incurred when running the program.
In general, this requires knowledge of run-time values. The role of compile-time
analyses, as discussed in the next section, is to abstract over run-time values
and deliver a static approximation of this value. The costs of coordination op-
erations like communication latency, or synchronisation, are accounted as some
architecture dependent value, possibly using some coordination cost model.

Concrete cost semantics aim to provide precise cost estimates by assigning
accurate costs to terms, often based on careful profiling of a target architec-
ture [5] or by explicitly modelling low-level architecture aspects such as the
contents of the cache. In contrast an abstract cost semantics, as the one sketched
above, assigns unit costs to terms and hence is both simpler and architecture
independent.

2.4 Accurate Hardware Models

Accurate hardware models occupy the most concrete position in the cost model
spectrum. These models provide precise cost information of low-level code, for
example by providing time information in clock cycles for each machine instruc-
tion. Such level of detail is required for industry strength worst-case execution



time (WCET) analyses. These analyses must be safe in the sense of always pro-
ducing upper bounds. They also have to be precise to be of any practical use.
One example of a WCET analysis that combines these features is AbsInt’s aiT
tool for sequential code [11].

3 Resource Analyses

Resource analysis has a role to play in each of the three phases of a program’s
lifetime: design, compilation and execution (run-time).

3.1 Design Time Analysis

Abstract cost models based around PRAM, BSP and Bird-Meertens-Formalism
(BMF) enable the programmer to reason about costs during program design, as
shown by the example in the previous section. The models often require that the
program is expressed using a specific structure, e.g. as a sequence of supersteps
for BSP analysis. A significant advantage of these techniques is that, guided
by the model, the programmer can relatively cheaply transform the program
design to reduce the consumption of a specific resource, before committing to
an implementation.

3.2 Compile Time Analysis

In the area of compile time analyses many techniques have been developed to
statically infer information of the behaviour of the program at runtime. The
best known techniques are type inference, abstract interpretation, and constraint
system solving, and they may be used in combination.

Type Inference: Based on the observation that type inference can be separated
into two phases, collecting constraints on type/resource variables and solving
these constraints [22], several type-inference based analyses have been developed
that extend Hindley-Milner type inference to collect and solve constraints on
resources.

Abstract Interpretation: Abstract interpretation [7] defines an abstract domain
of values and executes the program on this domain. Functions are mapped to
abstracted functions that operate over the abstract domain. The analysis then
proceeds by executing these abstract functions, and in particular finding fixpoints
for recursive functions. Traditionally, this is used to infer qualitative information.
By using a richer abstract domain quantitative information can be modelled, too.
Many practically useful techniques have been developed for this process, and
therefore well-developed inference engines exists that can be used for resource
analysis.



Constraint System Solving: This approach is related to the type inference ap-
proach. In the former, constraints are collected during type inference and then
solved separately. In the (pure) constraint system solving approach the collec-
tion of constraints is not tied to type inference. An example of this approach is
control flow analysis [30].

Examples: A concrete example of an analysis based on abstract interpretation
is AbsInt’s aiT tool. It operates on machine code for a range of embedded sys-
tems processors, and produces sequential worst case execution (WCET) bounds.
In order to obtain accurate bounds, the analysis models details of the hard-
ware architecture, in particular the cache behaviour and the possible pipeline
structure of the processor. Another analysis using abstract interpretation is the
COSTA [1] system. It is generic in the definition of “resources”, produces high-
quality bounds that are not restricted to a particular complexity class and builds
on a high-performance inference engine. A combination of this static approach
with a run-time, profiling approach is presented in [26].

3.3 Run-Time Analysis

Run-time cost analysis typically entails the abstract execution with some ab-
stracted input. It differs from profiling in that the execution and resources are
abstract rather than real. It is often used in conjunction with a static resource
analysis, for example to approximate the sizes of key data structures, e.g. [17,
26].

4 Parallel/Distributed Resource Analysis Applications

This section outlines six representative parallel/distributed applications of re-
source analysis techniques. The applications are ordered from those applying
the most abstract analysis (BMF-PRAM) to the most concrete (Type-based
Analysis with a Precise Model).

It is well known that performance analysis within conventional programming
models is undecidable. Pragmatic progress can be made by relaxing the extent to
which we hope for computable analysis for example by requiring oracular insight
from the programmer and/or by constraining the programming model in some
way.

For each system we outline how resource information is obtained and ap-
plied. Each representative model is effective, i.e. the cost information improves
coordination and hence performance.

4.1 BMF-PRAM

The Bird-Meertens Formalism (BMF) [2] is a calculus for deriving functional pro-
grams from specifications, with an emphasis on the use of bulk operations across
collective data-structures such as arrays, lists and trees. While independent of



any explicit reference to parallelism, many of its operations clearly admit po-
tentially efficient parallel implementation. A number of projects have attempted
to exploit this opportunity by adding parallel cost analyses to BMF inspired
programming models.

In [31] Cai and Skillicorn present an informal PRAM based cost model for
BMF across list-structured data. Each operation is provided with a cost, param-
eterised by the costs of the applied operations (for example, the element-wise
cost of an operation to be mapped across all elements of a list) and data structure
sizes, and rules are provided for composing costs across sequential and concur-
rent compositions. The paper concludes with a sample program derivation for
the maximum segment sum problem. In conventional BMF program-calculation
style, an initially “obviously” correct but inefficient specification is transformed
by the programmer into a much more efficient final form.

In [19], Jay et al. build a formal cost calculus for a small BMF-like language
using PRAM as the underlying cost model. In order to aid implementation, the
language is further constrained to be shapely, meaning that the size of inter-
mediate bulk data-structures can be statically inferred from the size of inputs.
The approach is demonstrated by automated application to simple matrix-vector
operations.

These approaches can be characterised as being of relatively low accuracy (a
property inherited from their PRAM foundation), offering a quite rich, though
structurally constrained source language, being entirely static in nature and with
varying degrees of formality and support.

4.2 BMF-BSP

Building on Jay and Skillicorn’s seminal work, a number of projects have sought
to inject more realism into the costing of BMF inspired parallel programming
frameworks. The primary vehicle to this end was the substitution of BSP for
PRAM as the foundational cost model [19, 15]. In particular, [15] defines and
implements a BMF-BSP calculus and compares the accuracy of its predictions
with the runtime of equivalent (but hand-translated) BSP programs. Using max-
imum segment as a case study, the predictions exhibit good accuracy and would
lead to the correct decision at each stage of the program derivation.

Meanwhile, in a more informal setting reflecting the approach of [31], [3] re-
ports upon a BSP based, extended BMF derivation of a program for the solution
of tridiagonal systems of linear equations. Once again good correlation between
(hand generated) predictions and real implementation is reported, with no more
than 12% error across a range of problem sizes.

These developments can be characterised as offering enhanced accuracy (and
for the first time, experimentally validated), while retaining similarly structured
models and support. As a by-product of the use of BSP, analyses are now tar-
get architecture specific, once instantiated with the machine’s BSP constants,
though still static with respect to any particular instance.



4.3 Skeleton-based Approaches

The skeleton based approach to parallel programming [6] advocates that com-
monly occurring patterns of parallel computation and interaction be abstracted
as library or language constructs. These may be tied to data-parallel bulk op-
erations, in the style of BMF, or used to capture more task oriented process
networks (for example, pipelines). Various projects have sought to tie cost mod-
els to skeletons and to use these, either explicitly or implicitly to guide program
development and implementation.

For example, based around a simple model of message passing costs, [14]
uses meta-programming to build cost equations for a variety of skeleton imple-
mentations into an Eden skeleton library, allowing the most appropriate imple-
mentation to be chosen at compile-time given instantiation of target machine
specific parameters (i.e. in the style of, but distinct in detail from, BSP). Dis-
crimination between four possible variants of a farm skeleton, used to implement
a Mandelbrot visualisation is reported.

Meanwhile, [13] describes an attempt to embed the BSP model directly into a
functional programming language, ML. At the level of parallelism, the program-
ming model is thus constrained to follow the BSP superstep constraints (which
might be viewed as relatively loose skeleton), while computation within a super-
step is otherwise unconstrained. Analysis is informal, in the conventional BSP
style, but the language itself has a robust parallel and distributed implementa-
tion. A reported implementation of an N-body solver once again demonstrates
close correlation between predicted and actual execution times.

The approach proposed by [32] presents the programmer with imperative
skeletons, each with an associated parallel cost model. The models are defined
in a performance enhanced process algebra [16], parameterised by a small num-
ber constants derived by running benchmark code fragments. As in [14] models
of competing implementation strategies are evaluated and the best selected. In
a novel extension, designed to cater for systems in which architectural perfor-
mance characteristics may vary dynamically, the chosen model is periodically
validated against actual performance. Where a significant discrepancy is found,
the computation can be halted, re-evaluated and rescheduled.

These approaches are strong in terms of language support, offering essentially
a two-layer model in which parallelism is constrained by the available skeleton
functions but local computation is free and powerful. The cost foundations are
of middling accuracy, sometimes augmented by the use of real code profiling.
They employ a range of static and dynamic analysis.

4.4 Using Statically Inferred Granularity Information for Parallel
Coordination

This section outlines several systems that apply cost information in the context
of parallel computation to decide whether a parallel thread should be generated
for some computation. In particular, it should become possible to identify very
small pieces of computation, for which the overhead of generating a parallel



thread is higher than the actual computation itself. Hence the characteristic
feature of the cost information here is that while it must be accurate for small
computations, it can be far less accurate for larger computations. Potentially all
computations beyond a certain threshold can be mapped to an abstract value of
infinity.

Static Dependent Costs: Reistad and Gifford [29] define the notion of static
dependent costs for the analysis of a strict, higher-order functional language
with imperative features. These costs describe the execution time of a function
in terms of the size of its input by attaching cost information to the type of a
function. Thereby it becomes possible to propagate cost information from the
definition of a function to its use, enabling the static, type-based analysis of
higher-order programs. The static inference of cost expressions is combined with
runtime calculation that instantiate cost expressions for concrete sizes to gain
concrete estimates. Runtime measurements of the system show that their cost
estimates are usually within a factor of three of the real costs. This information
is used in a dynamic profitability analysis, that compares the cost estimate of an
expression with the thread creation overhead, and generates parallelism only if it
is profitable. A game of life program, based on a parallel map operation exploiting
this profitability analysis, achieved a speedup of more than two compared to a
naive version of a parallel map on a four processor SGI shared-memory machine.

Dynamic Granularity Estimation: Another instance of this approach is [17],
where a technique of dynamic granularity estimation for strict, list-based, higher-
order languages is developed. This technique comprises two components: A
compile-time (static) component, based on abstract interpretation to identify
components whose complexity depends on the size of a data structure; and a
run-time (dynamic) component, for approximating sizes of the data structures
at run-time. Based on the results of the static component, the compiler inserts
code for checking the size of parameters at certain points. At runtime the result
of these checks determine whether a parallel task is created or not. The dynamic
component is implemented on a Sequent Symmetry shared-memory machine on
top of a parallel SML/NJ implementation. It is stated that the runtime over-
head for keeping track of approximations (one additional word per cons cell) is
very low. For the quicksort example an efficiency improvement of 23% has been
reported.

Sized Time Systems: The sized time system in [24] develops a type-based infer-
ence of execution time and combines it with sized types [18], a static type system
for inferring bounds on the size of data structures. Thus, in contrast to the pre-
vious systems, no run-time analysis is required. As in the previous systems, the
analysis of time information is restricted to non-recursive functions. As tradi-
tional, the inference is separated into a phase of collecting constraints, inequali-
ties over natural numbers, and a separate phase of solving these constraints. A
simulator for the parallel execution of Haskell programs has been used to imple-
ment several scheduling algorithms that make use of granularity information. In



its most naive instance all potential parallelism below a fixed granularity thresh-
old is discarded. In a second variant, granularity information is used to always
pick the largest item when generating new parallelism. In a final version, gran-
ularity information is used by the scheduler to favour the largest thread upon
re-scheduling. The results with these three version showed [23][Chapter 5], that
the most naive version of a fixed granularity threshold performed best, since
the management overhead of the more refined policies dominated the gains in
execution time.

In summary, all three systems discussed here are based on an abstract,
architecture-independent cost model, and use a static, type-based cost analy-
sis to determine size-dependent bounds. Two of the three systems combine these
with a very simple run-time analysis, which mainly supplies size information.
The languages covered are predominantly functional, although the static de-
pendent cost system also covers imperative constructs. The run-time techniques
that use the provided cost information are very simple: in most cases a binary
decision on the profitability of a potential parallel thread is made. Arguably
the use of the cost information is a priori limited by the choice of an abstract
cost model, which cannot provide precise bounds. However, measurements of
the system show that even with the abstract cost model, cost predictions, where
possible, are reasonably accurate.

4.5 Abstract Cost Semantics: Autonomous Mobile Programs

Autonomous mobile programs (AMPs) periodically use a cost model to decide
where to execute in a network [9]. The key decision is whether the predicted time
to complete on the current location is greater than the time to communicate to
the best available location and complete there.

The AMP cost model is an abstract cost semantics for a core subset of the
Jocaml mobile programming language including iterating higher-order functions
like map. Rather than predicting the time to evaluate a term the model predicts
the continuation cost of every subterm within a term. This information is used
to estimate the time to complete the program from the current point in the
execution.

The AMP continuation cost model is generated statically, and is then pa-
rameterised dynamically to determine movement behaviour. Key dynamic pa-
rameters include the current input size, execution speed on the current location,
predicted execution speeds of alternative locations.

In summary the AMP abstract costed operational semantics is applied to
a core mobile functional language with higher-order functions. The model is
statically generated but dynamically parameterised. While such an abstract cost
semantics provides low accuracy, empirical results show that the information
adequately informs mobility decisions [9].



4.6 Type-based Analysis (Precise Model): Resource-safe Execution
in Hume

The goal of resource-safe execution is to statically guarantee that available re-
sources are never exhausted. This is highly desirable in many contexts, e.g. to
provide resource guarantees for mobile code, or in embedded systems where re-
sources are highly constrained.

With multi-core architectures entering the main-stream of computer archi-
tectures, embedded system designers are looking into exploiting the parallelism
provided on such platforms. Thus, the new challenge is to combine resource-safe
execution with a model for parallel execution that can effectively, and safely
exploit the parallelism. One aspect to this challenge is to best use the special
nature of the resource bounds, required for resource-safe execution, to guide
parallel execution.

In order to meet safety requirements on embedded systems, the resource pre-
dictions, and hence the cost model, have to be upper bounds on the concrete
resource consumption rather than simple predictions. These bounds don’t nec-
essarily have to be precise, however they must be concrete enough to assure
that no concrete evaluation exceeds them. Furthermore, formal guarantees of
the validity for these bounds are highly desirable.

The resource analysis for Hume [20], together with the infrastructure for ex-
ecuting Hume code on embedded systems, is an instance of such resource-safe
execution. The source language, Hume, has two layers. The box layer defines
a network of boxes that communicate along single-buffer one-to-one wires. The
expression layer is a strict, higher-order functional language. The resource anal-
ysis is a static, type-based analysis, building on the concept of amortised costs.
It produces, where possible, linear bounds on the resource consumption. Some
supported resources are heap- and stack-space consumption, and worst case ex-
ecution time.

The underlying cost model is an accurate hardware model obtained by per-
forming machine-code-level worst-case execution time analysis on the operations
of the underlying abstract machine. Thus, it is a concrete cost model , taking into
account hardware characteristics such as cache and pipeline structure. It is a safe
cost model in the sense that all costs are upper bounds. The results of the re-
source analyses for space and time have been validated against measurements
obtained on real embedded systems hardware for a range of applications [21].

The Hume compiler currently uses the resource information only in determin-
ing sizes of buffers etc, needed to assure resource-safe, single processor execution.
In the longer term this information will also be used in other components of the
system, for example in the scheduler on the box layer. The decomposition of
the program into boxes provides a natural model for parallel execution on multi-
core machines. In this context, the number of threads, namely boxes, is statically
fixed. The main usage of the resource information is therefore in statically map-
ping the threads to the available cores and in dynamically deciding which thread
to execute next. Since on box layer the execution of a program is an alternating



sequence of compute- and communicate-steps, the mapping process is akin to
the process of developing a parallel program in a BSP model.

5 Cost Model & Analysis Critique

Given the spectrum of cost models and associated analysis techniques, what
combination should be selected for a specific parallel or distributed application?
This section investigates why a specific cost model and analysis technique proves
effective in the specific parallel/distributed context.

5.1 BMF-PRAM

In common with their PRAM base, the techniques discussed in Section 4.1
are most appropriate in the early phases of algorithm design, rather than de-
tailed program development. The techniques enable the designer to quickly com-
pare coarse performance estimates of alternative approaches. An informal, even
asymptotic flavour predominates.

5.2 BMF-BSP

The BMF-BSP approaches discussed in Section 4.2 are more appropriate when
a reasonably detailed algorithm already exists, allowing more refined, machine-
sensitive cost modelling as a concrete program is refined. They are most appro-
priate in (indeed, almost constrained to) contexts which provide a BSP library
implementation, with its associated benchmark suite.

5.3 Skeleton-based Approaches

Since the skeleton techniques outlined in Section 4.3 largely aim to absolve the
programmer of responsibility for the detailed expression and exploitation of par-
allelism, resource analysis techniques are typically exploited in the library im-
plementation itself, both statically and even dynamically. With the exception of
the work in [13], the programmer is unaware of the cost model’s existence.

5.4 Using Statically Inferred Granularity Information for Parallel
Coordination

The three granularity estimation systems outlined in Section 4.4 share the fol-
lowing notable features. The inference engine is simple and cheap, but limited
to non-recursive functions. Most of the information is inferred statically, but in
some cases a light-weight run-time analysis is applied, too. The inferred quan-
titative information is mostly used in a qualitative way (whether a thread is
profitable, i.e. large enough to be evaluated in parallel).
For an application domain where imprecise, mostly qualitative information is
sought, ad hoc techniques or light-weight, type-inference based techniques work
very well. The mostly static nature of the analysis avoids run-time overhead.



5.5 Abstract Cost Semantics: Autonomous Mobile Programs

The rather simple Abstract Costed Operational Semantics used by AMPs is ef-
fective for a combination of reasons. It compares the relative cost of completing
at the current location with the cost of completing at an alternative location.
It requires only coarse grain execution time estimates. That is, rather than at-
tempting to predict the execution time of small computational units, it compares
the time to complete the entire program on the current location with the time
to complete on an alternative location. It incorporates dynamic information into
the static model, i.e. parameterising the model with current performance.

5.6 Type-based Analysis (Precise Model): Resource-safe Execution
in Hume

The following characteristics of the resource analysis for Hume make it an effec-
tive tool for delivering guaranteed resource information. The analysis is purely
static and thus resource-safe execution can be guaranteed before executing the
code. To deliver such guarantees, the type-based analysis builds on strong formal
foundations and the type system is proven sound. Through its tight integration
of resource information into the type system, using numeric annotations to types,
it is natural to base the static analysis on a type inference engine. To guarantee
that the analysis delivers bounds, we must start with a precise and safe cost
model, itself representing upper bounds. To facilitate tight upper bounds the
analysis uses an accurate hardware model.
The key requirement in this application domain is safety, and thus the emphasis
is on the formal aspects of the analysis. Beyond these aspects the following
practical aspects contribute to the usability of the inferred resource information.
Through the generic treatment of resources, the analysis can be easily re-targeted
for other (quantitative) resources. By using a standard linear program solver in
the constraint solving stage, we achieve an efficient analysis.

6 Discussion

A key purpose of this paper is to inform the resource analysis community of
the diversity and widespread usage of resource analysis in the parallel and dis-
tributed community, and what constitute effective analyses for the community.
We have outlined a continuum of coordination cost models and a range of analy-
sis techniques for parallel/distributed programs. By critiquing six representative
resource analysis applications we identify the following general principles gov-
erning why the combination of techniques is effective in its context.

– Predominantly, the effective parallel/distributed resource analyses have been
carefully designed to deliver the right information for the specific coordina-
tion purposes, and this has a number of aspects.
• The analysis must deliver information that is sufficiently accurate. Of-

ten a surprisingly simple cost model is effective, e.g. for the AMPs in
Section 5.5.



• The analysis must combine static and dynamic components appropri-
ately. For some applications purely static information suffices, where
others require at least some dynamic information (Section 4.4).

• In many cases it is sufficient for the analysis to produce qualitative pre-
dictions, e.g. is it worth creating a thread to evaluate an expression.
However in some scenarios, such as resource-safe execution, the analysis
must produce (upper) bounds (Section 4.6).

– Highly abstract resource analyses like BMF-PRAM are informative even at
early phases of parallel algorithm design (Section 5.1).

– More refined, architecture dependant analyses can be utilised during parallel
program development (Section 5.2).

– Improving reusable coordination abstractions like algorithmic skeletons can
have a significant impact and resource analyses are commonly applied within
skeleton libraries (Section 5.3).

– Even partial cost information can prove very useful, for example in deciding
whether to generate parallelism (Section 4.4).

– Often the inferred quantitative information is mostly used in a qualitative
way. Therefore, imprecise or relative resource information is sufficient (Sec-
tion 4.4).

Clearly resource analysis will remain an important tool for parallel/distributed
systems, and we trust that the principles above will assist in the design of future
systems. We anticipate that these systems will be able to exploit the rapidly-
improving resource analysis technologies. Indeed recent advances have already
widened the range of programs for which static information can be provided
(a detailed survey of WCET analyses is given in [10]) and caused a shift from
run-time to compile-time techniques (Section 3). Some important trends that we
anticipate in the near future are as follows.

In the area of static analyses there is a general trend to type-based analysis
and to enriching basic type systems with information on resource consumption.
The standard type-inference machinery has proven to be a very flexible engine
that can be re-used to infer resource information.

Static analyses are getting increasingly complex and therefore more error-
prone. At the same time automated theorem proving techniques increasingly
mature. The combination of both, for example through formalised soundness
proofs of the analysis, is desirable in particular in safety-critical systems. Alter-
natively, proof-carrying-code [27] or abstraction carrying code, avoid the (com-
plex) soundness proof in general, and perform (formal) certificate validation on
each program instead.

Hardware, and hence precise cost models, are becoming increasingly complex.
This will push existing, low-level resource analysis to their limits and significantly
worsen the WCET bounds that are achievable. For these reasons, probabilistic
cost models are of increasing interest to the WCET community [28]. In the con-
text of parallel and distributed execution, where predictions rather than bounds
are sufficient, this trend will be even more relevant, but is currently not explored.

With respect to programming models, increasing interest in structured and
constrained approaches [8] can be seen to bring benefits in terms of simplification,



when coupled with correspondingly structured cost models. Constraining the
patterns of parallelism available to the programmer facilitates the construction
of tractable cost models, parameterised by the costs of the composed sequential
fragments.
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