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Abstract. Lossy counter machines (LCM’s) are a variant of Minsky counter ma-
chines based on weak (or unreliable) counters in the sense that thdgaaase
nondeterministically and without notification. This model, introduced by RytMa
[TCS 297:337-354 (2003)], is not yet very well known, even thoiiphas already
proven useful for establishing hardness results.

In this paper we survey the basic theory of LCM’s and their verificatiobigms,
with a focus on the decidability/undecidability divide.

1 Introduction

Lossy counter machinemre a weakened version of Minsky counter machines. They
were introduced by Richard Mayr [38, 39] as a simpler versibfossy channel sys-
tems, using counters holding numerical values rather thanmels recording sequences
of messages in transit. Mayr proved that finiteness and umifermination are undecid-
able for lossy counter machines and used this to derive watiodecidability results,
e.g. in [11].

Lossy counter machines are har&ince then, lossy counter machines have been used
in a variety of situations, sometimes under the guiseafnter automata with incre-
mentation errorg19]. Mostly, they have been used in reductions proviaginessi.e.,
complexity lower bounds. This relies on two kinds of resufisstly, some problems
that are undecidable for Minsky machines remain undeod& the weaker lossy
counter machines. This can be used for undecidability groosituations where it is
easier to encode lossy counters than reliable ones, e.ig. [88, 16]. Secondly, some
problems that are decidable for lossy counters machinestiirackermann-hard, i.e.,
they require nonprimitive-recursive time and space [4}, #4is can be used to show
Ackermann-hardness of problems that are decidable buteniclugh to encode lossy
counters, see [18, 19, 32, 24, 46] for examples.

A survey for lossy counter machinem this paper, we survey the main decidability
and undecidability results on lossy counter machines. Mosas have not yet been
investigated deeply, and some have only been superficialited. As a consequence,
our survey looks sometimes more like a road map for futureaneh than as a record
of past achievements.

* Work supported by the Agence Nationale de la Recherche, grant AN&=TIN-001.
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We strove for simplicity. Most decidability results can beyen by elementary ar-
guments, relying only on generic properties like strong atonicity of steps (Fact 2.1),
the wgo property (Fact 2.3) and basic features of semilisets. These proofs are sim-
pler and more versatile than the algorithms provided in, §6¢28]. For undecidability,
all our proofs share a single and very simple gadget, “pyitiltMinsky machine on a
budget”, making them conceptually simpler.

In this “survey” we do not always point to the earliest exigtreference for each
and every stated theorem. Mostly this is because thesdagesalnew, or presented in
a new and extended form, or with a new and simplified proof.dnggal, the results
come from [11, 42, 39] when they are specific to lossy countehimes. Some results
have been first shown for lossy channel systems [15, 7, 6]em @xell-structured sys-
tems [25, 26, 5, 28, 29].

Outline of the paperWe define counter machines, both reliable and lossy, in @e2ti
We handle reachability properties in Section 3, termimaéind inevitability properties
in Section 4, liveness properties in Section 5, finitenespgmties in Section 6. All the
decidability results given in these first sections are pmoakng the way, while the
proof of the undecidability results are delayed until Satr where they are handled
uniformly. Finally, we gather in Section 8 a few extra resun issues that are less
central, or more recent, in the theory of lossy counter nrashiFinally, and for the sake
of completeness, the complexity of decidable problemsiélipdiscussed in Section 9.

2 Counter machines

Counter machineare a model of computation where a finite-state control got$ &
finite number ofcountersi.e., storage locations that hold natural numbers. The-com
putation steps are usually restricted to simple tests andtep. For Minsky counter
machines, the tests are zero-tests and the updates armémtegions and decremen-
tations. Formally, g§Minsky) counter machinis a tupleM = (Loc,C,A) whereLoc=
{l1,...,0m} is finite set oflocations C = {cy,...,cq} is a finite set ofcounters and

A C Locx OP(C) x Locis a finite set of transition rules carrying operations frosea

OP(C) E'C x {++,--,=07).

In pictorial representations, a counter machine is usuddlgicted as a directed
graph where transition rules af@P(C)-labeled edges between control locations, see
Fig. 1 for a simple example. An operation of the foert denotes the incrementation
of counterc, while c- - denotes its decrementation. Decrementations are onlydirab
when the counter at hand holds a strictly positive values ésrmally stipulated in the
operational semantics. Operations of the fard? are tests used to restrict transition
steps.

2.1 Operational semantics

LetM = (Loc,C,A) be a counter machine. éonfigurationof M is someo = (¢,a) €

Conf % Locx NC, i.e., acurrent control locatior? and aC-indexed vectoa of natural

numbers (oneurrent valuefor each counter i€). If we assume, as we shall do from
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Fig. 1. M: a counter machine that enumerates all pisay) € N2.

now on, thaC = {cy,...,cn}, we may identifyN® with N" and writea under the form
(¢,a,...,an). We sometimes use counter names as positional indexes Wwaemnis a
need for disambiguation, e.g., writif@, ck : 1,0) for thek-th unit vector.

The operational semantics bf is given under the form of transitions between its

configurations. Formally, there isteansition (also called astep o istd o' if, and only
if, ois some(l,ay,...,an), 0’ is some(l’, &y, ...,a,), d= (¢,0p,¢') and either:

—opis cx=0? (zero test)a, = 0, anda] = g; foralli=1,...,n, or

—opis ck-- (decrementationy, = ax— 1, andal = g for all i #k, or

—opis cxt+ (incrementation)a) = ax+ 1, anda; = & for all i # k.

. Pe) .
As usual, we writer —stg 0’ wheno —stg0’ for somed € A. Chainsog —stg01 —std
.- —gd Ok Of consecutive steps, also calleshs are denotedsy — g Ok, and also

0o istd ok whenk > 0. For exampleM from Fig. 1 has a run:

<£07 07 0> —std <€17 Oa 0> —std <£27 07 O> —std <€0a 17 0> —std <£37 07 O> —std <€0a 07 1>
—std <€1, 0) l> —std <€4a 07 0> —std <€1, la O> —std <€2a 17 0> —std <€0, 2; O> —std <€3a 17 0>
Foravectoma= (ay,...,an), Or a configuratiomw = (¢,a), we let|a| = |0] d:Efzi”:la;
denote itssize ForN € N, we say that a rugg —stg 01 —std - - - —std Ok IS N-bounded
if |oi)| <Nforalli=0,...,k

The above definitions use a “std” subscript when writing stepemphasize that
they rely on the usual, standard, operational semanticewfter machines, where the
behavior isreliable. We now introduce lossy counter machines as counter machine
with a different semantics.

2.2 Lossy counter machines

In lossy counter machines, the contents of the counters meedse non-determinis-
tically (the machine can “leak”, or “lose data”). This belmnis not under the control
of the machine, i.e., it can be seen as some inherent nomdetem. Furthermore, the
lossy machine does not have any direct way of noticing iffwadoss occurs. Hence
lossy counter machines are less powerful than standaiables| counter machines.

Technically, it is more convenient to see lossy machinesaster machines with
a different operational semantics (and not as a specias cdasachines): thus it is
possible to use simultaneously the two semantics and tteréslam.
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Formally, this is defined via the introduction of a partialering between the con-
figurations ofM:

/ def

<€7a17"'7an> < <£l7a€b"'7aﬂ> A éiélAalé all/\/\an < a;‘l

One way to read < ¢’ is to seeo as the result of some losses (possibly noney in

Now “lossy” steps, denoted imssyo’, are given by the following definition:

o E’Iossyol & 36,6 :(c>618 E>std o A0 >0). (1)

Note that reliable steps are a special case of lossy steps:
O —std OJ Imp|IeSO —>|053y0_/. (:t)
An immediate corollary of (1) is the so-called “monotonyoilf steps” property:

Fact 2.1 ((Strong) Monotonicity)
1. ASSUM@ —ossyT. Thena’ —iossy T forall o > o and allt’ <.

2. ASSUM® SigssyT. Thena’ Siossy for all o > o and allt’ <.

Remark 2.2.Here the adjective “strong” emphasizes the fact that thetemce of some
stepo —ossy T implies the existence af’ —iossy T for all o’ > o, (rather tharsome
0’ —10ssyT') and, symmetrically, the existence®f—ossy T for all T < 1. O

2.3 Dickson’s Lemma

The configuration ordering enjoys the following key progert

Fact 2.3 (Wqgo) (Conf, <) is a well-quasi-ordering.

This is otherwise known as Dickson’s Lemma. It means that iafigite sequence
0o, 01,02, ... of configurations contains an infinite increasing subsecgier < cj, <
0i, < ---. Equivalently, not only is the ordering well-founded (thes no infinite de-
creasing sequena® > 01 > 02 > ---) but every linearisation is well-founded. In par-
ticular, there is no infinite set of pairwise incomparabl@fagurations. See [34] for
more information.

Itis the combination of monotonicity of steps with the waeyperty that turns lossy
counter machines into what are calledll-structured transition systenfi28, 5].

2.4 Semilinear sets of configurations
A set of configuration® C Confis linear if it can be written under the form
R={({¢,a+ki.bi+-+kmnbm) | ki,...,km € N}

for somebase configuratior{¢,a) and some finite set of incremerlts, ..., by, € N".
For example the upward-closufe d:ef{e € Conf | 8 > a} of a single configuration is
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linear, witho itself as the base, andunit vectors, one per counter, as increments. A
second example is the singleton §et}, linear too, with same base but no increments.
A setR C Conf is semilinearif it is a finite unionR= L, U---U Ly of linear sets.

In particular, the empty set is semilinear (tdke- 0) andConf itself is semilinear as
UeeLoc W, 0> :

It is well-known that semilinear sets are exactly the set& ttan be denoted by
Presburger formulae (effective translations betweenwierépresentations exist) and
that they are closed under complement, intersection, giojg etc., all this in an effec-
tive way [33, 37]. Slightly abusing notations, we shall ustiédrs likeX, Y, ... to denote
semilinear sets of configurations and, at the same time,rtotdeheir finitary descrip-
tions (e.g., Presburger formulae, or basesiincrements) that can be given as input to
algorithms.

Not all sets of configurations are semilinear but many irstiing sets can be de-
noted by Presburger formulae (e.g., the set of all configamatwhose size satisfy a
Presburger constraint) and thus are semilinear.

The following is even more important for our purposes:

Fact 2.4 (Order-closed sets are semilinear)f R C Conf is upward-closed or down-
ward-closed, it is semilinear.

Indeed, by the wqgo-property, an upward-clogehasfinitely manyminimal elements,
hence can be writteR = Ugeminr) 10 Which is semilinear. For a downward-closBd
we observe that its complement is upward-closed, hencdisernri and rely on the fact
that the complement of a semilinear set is semilinear.

3 Reachability and safety

From now on, we omit the “lossy” subscript and wrie— o’ instead 0fo —1ossy 0’
This is because the lossy steps are our main objects. We eréytito the fully explicit
notation when it is necessary to consider both reliable agsy steps at the same time
(for example in Section 7).

3.1 Post-sets and Pre-sets
For R C Conf, we letPos{R) der {0’ | 30 € R: 0 — ¢’} denote the set admmediate
successorsf configurations irR. Similarly, we letPost' (R) andPost" (R) denote the set
of configurations reachable froRithrough an arbitrary number (resp. strictly positive
number) of steps. Similarlyere(R), Pre*(R), andPre’ (R) denote sets gfredecessors
configurations, from which a configurationfihcan be reached.

A consequence of monotonicity (Fact 2.1) is the followinderclosure property:

Fact 3.1 For any RC Conf, PosftR) and Post (R) are downward-closed sets, while
Pre(R) and Pre" (R) are upward-closed sets.
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Corollary 3.2. For any RC Conf, PréR), Pret(R), PostR) and Post (R) are semi-
linear.
Furthermore, if R itself is semilinear, then Pod@R) and Pre (R) too are semilinear.

Here the first point is just an applications of Fact 2.4 whilke $econd point stems from
Post (R) = RUPost" (R) and symmetrically foPre* (R).

Note that, ifRis semilinear, one can compwRes{R) andPre(R) uniformly fromR
(andM). This has little to do with lossiness: counter machinesl@alevel computa-
tional model with simple operational semantics for singéps. For counter machines,
the one-step relationssig and —1ossy, S€€N a subsets @fonf x Conf, are semilinear
(and easily read out d¥l).

3.2 Reachability problems

The main question is the decidability of a general form othedility questions, that
we callgeneral reachabilityn order to distinguish it from its less general variants.

General_Reachability:
Givert a LCM M, two semilinear sets of configuratioXsandy.

Question does there exist; € X andao, € Y such thato; = 6,? In such a case,

we write X = Y.
Equivalently DoesPost (X)NY # @? DoesPre*(Y) N X # &?

In the literature, reachability problems often appear hreoforms:

Configuration_Reachability: doesog = o for given starting configuratioap and tar-
get configuratioro;?

Location_Reachability: is there some e N" such thatop — (¢, a) for given ag and
target locatior’ € Loc?

Coverability: is there some > oy such thatoy — o for givenag and target configura-
tion to be coveredy?

Safety: doesPost (Xg) C Xs for given semilinear set of starting configuratiotsand
semilinear set of “safe” configurationg?

Obviously, all these problems are special caseSedkral_Reachability (or of its com-
plement in the case &hfety), hence are easier. We observe that location reachalsility i
a special case of coverability, and that coverability andlsi-configuration reachability
almost coincide since, thanks to Fact 2.1, one can coyérom oy if, and only if, oy

is reachable fronmy or is already covered by it (i.e5p > ag).

3.3 Decidability of reachability

Theorem 3.3. General_Reachability is decidable for lossy counter machines.

First observe that general reachability is r.e. (it is efoiegguess a run and check it,
which amounts to simulatingl) so that there only remains to show that non-reachability
is r.e. too.
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For this, we rely on semilinear invariants. Arductive invariantor just “an invari-

ant”, is a set of configuratiorissuch thafos{1) C | or, equivalentlyPre(J) C J letting

J% conf1.

Classically, invariants are used to prove safety propertying on the following
fact: if RC | for some invariant, thenPost(R) C |. They can be used as negative
witnesses for general reachability: finding an invariattiat containsX and does not
intersectY proves that one cannot rea¢trom X, written —(X = Y) for short.

This method iscompletesince, if —(X 5 Y), this is certainly witnessed by invari-
ants, the smallest one beifgst (X) and the largest beinGonf~ Pre*(Y) [45]. The
method can be madsfectiveby restricting to semilinear invariants. Only considering
semilinear invariants allows enumerating candidatesisatsl it allows checking that
a candidatd is indeed an invariant, that it contaiXs and does not interse¥t Re-
stricting to semilinear invariant does not hinder compiets since, e.gPost (X) and
Conf~ Pre*(Y) are semilinear (by Coro. 3.2).

Finally, general reachability is co-r.e., and being r.e, ie decidable.

Remark 3.4.We observe that the key ingredient for the above proof is liriat the
reachability set®ost (X) are “regular” in some sense (for LCM'’s, they are semilinear)
and that the one-step imaBest(X), or the pre-imag®re(X), is semilinear too and can
be computed effectively fronX. This proof technique is quite general and applies to
many different situations. For example, the same argumastused for reversible Petri
nets in [14], or for 3-dim VASS’s in [36]. O

Corollary 3.5. Configuration_Reachability, Location_Reachability, Coverability, and
Safety are decidable for lossy counter machines.

3.4 Reachability logic

The reachability problems we just proved decidable can alstated in a first-order
logic of reachability, where the basic predicates sre t, s t, ands e X for X a
semilinear set.

For exampleSafety is written

Vse Xo: Wt e Xs: (s> t), (dsap)

while configuration reachability and coverability are wait, respectively,

Jsc{og}:tec{o}:s>t, (dcr)
Jse{op}:Ftelor:s>t. (dcov)

These examples show that it is convenient to allow a simpiguage of terms de-
noting semilinear sets, like singleton§d?}” or upward-closure fX". Below we also
use Boolean operations, e.gX {Y”, and order-theoretic constructions e.g., writing
“min(X)” to denote the set of minimal configurations ¥ In any case we only use
Presburger-definable operations: they always denote iseanilsets that can be com-
puted effectively from their semilinear operands.
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The model-checking problem for reachability logic is a matwgeneralization of
the reachability problems we considered in Section 3.2s phoblem is undecidable
in general but identifying the decidable fragment is ceftaan interesting question
that is still very open. The question is even more intergssince there is ample room
for refining and extending the logic in meaningful ways (seet®n 8.1 for related
guestions).

Regarding some of the simplest non-trivial formulae, we @la@ady provide a few
results:

JseX:3teY:sSt decidable (one-to-one)
VseX:3teY:s5t decidable (from-all)
JseX:vteY:s5t undecidablezg-complete (one-to-all)
VseX:VteY:sot undecidablel‘l‘l)—complete (all-to-all)
VteY:3se X:st undecidablelT g-complete (to-all)
JteY:VseX:s>t decidable (all-to-same)

The undecidability results in the above list will be provatel, in Section 7. We
mention them now because they are an indication that we @i the decidability
results a bit surprising.

Regarding the decidability results, one-to-one formulagast general reachability
and have been shown decidable above. Observe that thitsséhtadecidability of

FseX:FteY:sht. (one-to-one’)

Indeed this formula, also writteX = Y, is equivalent to botPos(X) = Y andX =
Pre(Y), andPost{X) andPre(Y) are semilinear sets that can be computed effectively
from X andY (andM), see Coro. 3.2.

Regarding from-all formulae, they reduce to conjunctiohsimple reachability
guestions with the following reasoning:

VseX:JteY:sot (from-all)
& vse(X\Y):dteY:sht
& Vsemin(X\Y):JteY:sht
where the last step of the reduction relies on monotoniditipssy steps (Fact 2.1).
Now, min(X \Y) is some finite sefoy,...,0x} (Fact 2.3) that can be computed effec-
tively from X andY. Thus we have reduced a from-all formula to a finite conjurcti
of one-to-one’ formulae.

We now turn to all-to-same formulae. The main idea is easiemderstand if we
consider a version wheré is used:

JdeY:vseX:sht. (all-to-same’)
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One can simplify this by using monotonicion both sides of the steps
deY:vseX:sht & Jtemin(Y):Vsemin(X):sht.

Hence, letting mi(X) = {o4,...,0k} and min(Y) = {0,...,0p,}, we have reduced
all-to-same’ tov’jnzl/\ﬁ‘:lci hA o’j, a finite disjunction of conjunctions of decidable
questions.

One can now show the decidability of all-to-same formulaebgpting the above
idea. One possible way is to rely on, e.g.,

; . i .
JeY vseX:sht o ( Jt e min(Y) :Vse min(X) :s—t )

vV 3temin(X)NY:Vse min(X):s>t

Again, we end up with a finite combination of decidable re&drtg questions.

3.5 Computing co-reachability sets
One can go beyond Theorem 3.3 and compute the co-reachakiig.

Theorem 3.6 Pre* is effective).For semilinear XC Conf, Pre(X) can be computed
effectively as a function of X and M.

Indeed, we know tha®re*(X) is a semilinear seXy that satisfies both

Xo C Pre"(X), ie.vseXp:dteX:sot, (1)
and
Xo D Pref(X), ie,~(Is¢X:FteX:sSt). )

These two formulae are decidable for givérandXo: (1) is a from-all formula while
(2) is a negated one-to-one formula. Thus we can effectiratpgnize when a given
Xo coincides withPre*(X). There only remains to enumerate all semilinggauntil we
encountePre*(X), which is bound to eventually happen.

ComputingPre*(X) is useful in many situations where just deciding reachigbili
questions would be insufficient. For example, Theo. 3.6Uslsst, or count, the number
of starting configurations that do not satisfy a given safebperty.

3.6 Computing reachability sets

Surprisingly, it is not possible to compuBest (X) effectively. This is captured more
precisely by the following statement:

Theorem 3.7 (On computingPost*).
1. The question whether, for semilinear X and Y, Ro6x C Y is decidable.
2. The question whether, for semilinear X and Y, Ro§t O Y isM9-complete.

1 Here it is crucial that the source is universally quantified upon and thndéon is existen-
tially quantified upon. It would not work the other way around.
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Indeed, Point 1 is the decidability S&fety, and Point 2 is the undecidability of to-all
formulae (Section 3.4).

There is a troubling lack of symmetry here, between the cdaipelPre* and the
non-computabldlost’. We stress that this situation has little to do with the Sipexi
of counter machines. Indeed, most of the proofs above omyyar® monotonicity of
steps, on Dickson’'s Lemma, and basic assumptions on thatigeal semantics (e.g.,
Presburger-definable one-step relation) that are fulfilgdnmany models. The bot-
tom line is that most decidability proofs above rely on thesadre properties stated
in Coro. 3.2 where the asymmetry appears: upward-closechset a finite basis (on
which one can base algorithms), while downward-closeddseteot?

4 Termination and inevitability

In this section, we consider termination and more geneeafiability properties.

4.1 Termination
Consider the following problems:

Termination:
Given a LCM M and an initial configuratiow,
QuestiondoesM terminate?
Equivalently are all runs starting frong finite?

Looping:
Given a LCM M and an initial configuratiow,
Question may the system loop? I.e., is there a configuratiant. 6y — o 507

Of course, looping is a special case of non-terminationt They coincide is less
usual!

Lemma 4.1. A lossy counter machine is looping if, and only if, it doesteainate.

Indeed, assume there is an infinite mH— 01 — 62 — .... The wqo property entails
that there must be positiotks< | along this run withox < g. Sinceak 5 0|, mono-
tonicity (Fact 2.1) entailsy %, o and we have a loop.

Theorem 4.2. Termination and looping are decidable for lossy counter hiraes.

2 Finite representations of upward-closed sets exist but they use sordeokitilimits
points” [27]. For lossy counter machines, the limit points are extendafigtoations where
some counters conta. These behave like directed sets of configurations, not like real indi-
vidual configurations.
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The proof of Theorem 4.2 is much simpler than one would expect

First, we observe that termination is r.e.: since the ttamwsirelation is finitely
branching, we know (Bnig’s Lemma) that if all runs fronag are finite, then the tree of
all runs is finite and an exhaustive simulation algorithm weéifminate after examining
finitely many runs.

On the other hand, looping too is r.e.: one just has to guasspérlg runog — oy 5
Ok, Which can be represented finitely and checked in finite time.

Now since looping and non-termination coincide, the twdoytems are r.e. and co-
r.e., hence decidable.

Remark 4.3.The beauty of this proof is that termination and looping ae/ery gener-
ally. Thatis to say, termination is r.e. for most sensible comiport models, e.g., Turing
machines or Minsky counter machines, and the same is trueopfrig. Thus that part
of the proof is totally generic. What &pecific to lossy counter machinissthat non-
termination and looping coincide. Indeed, they do not ugwalincide for other models
where a system may have infinite runs but no looping ones. ad

4.2 Inevitability

Inevitability means that all runs will eventually stumbigd something. We consider a
slightly more general form:

Strong_Inevitability:
Givert a LCM M, an initial configuratiorog, and two semilinear sek¥§ , X, C Conf
of configurations,
Questiondo all runs fromog stay withinX; until they eventually visi,?
Equivalently does theCTL formulaA[Xy U Xz] hold in gp?

Observe that termination is a special case of strong ina@litia(by letting X, = Halt def

Conf Pre(Conf) be the set of all “dead” configurations, from which no moveds
sible).

Theorem 4.4. Strong inevitability is decidable for lossy counter maesn

The reasoning is similar to what we did for termination: Eisgrong inevitability is
r.e. There remains to see that it is also co-r.e., i.e. thexketlre finite witnesses for
non-inevitability. So assume that there is a run that vesatrong inevitability, that run
is either finite or infinite. If it is finite, it is a finite witnes If it is infinite, then the
LCM has an infinite run that remains insidde \. X. By the wqo property, there are two
configurationso; < g; along this run. By the monotonicity property, there is a iogp

run oy - oj + 0i. This looping run remains insid§ . Xz and is the finite withess we
need.
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4.3 Undecidability

The decidability of termination and inevitability is versafjile. We only give two ex-
amples:

Uniform_Termination:
Given aLCM M,
QuestiondoesM terminate from all starting configuratiooss Conf?

Repeated_Inevitability:
Given a LCM M, an initial configurationog, and a semilinear set C Conf of
configurations,
Questiondo all runs fromog visit X infinitely many times?
Equivalently does theeCTLformulaAF*X hold in gg?

Theorem 4.5. Uniform_Termination and Repeated_Inevitability are M9-complete for
lossy counter machines.

For these two problems, membershirﬂﬁ is a consequence of the results we already
saw. Indeed, the complement dfiform_Termination can be writterdo, o’ € Conf :

025 o' 5 o, or evendo € Conf: 6 5 o, which is in =9, while the complement of
Repeated_Inevitability is 3 a rungg — o %, 0 such thatX is not visited along the
o= o loop. N%-hardness is shown as Coro. 7.2 in Section 7.

Corollary 4.6. The set Halt of configurations from which M must terminatencdte
computed.

Note that, for lossy counter machinésalt is both downward-closed and an invariant,
and it has a decidable membership problem (Theorem 4.2).

5 Bichi and liveness

Here we consider the following problems:

Buchi:
Given a LCM M, a configuratiorog, and a locatiorf € Loc,
Question:is there a run starting fromy that visits¢ infinitely many times?

Looping_on_location:
Given: a LCM M, a configuratiorog, and a locatiorf € Loc,

Question: s there a looping run of i.e., doessy = (£,a) = (¢, a) for somea?

At first glance, the situation witBuchi andLooping_on_location appears very sim-
ilar to what we encountered in Section 4. Now, instead of¢osisidering the existence
of infinite runs, we ask for infinite runs that visit a givéinfinitely many times. Still,
we can adapt Lemma 4.1:
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Lemma 5.1. Buchi and Looping_on_location coincide.

Proof. Obviously, Looping_on_location entails Buchi. For the reverse direction, as-
sume there exists an infinite run visitiignfinitely often:

00 = (Cay) > (0, a0) > (C,ag) > -

By the wqo property, there exists some< a; for somei < j. Hence(/, a;j) S, aj)
by the monotonicity property. Finally, we have proven this&nce of a run looping on
L. O

From there, we cannot prove decidability by claiming tBathi is both r.e. and
co-r.e., as we did for non-termination, It is r.e. since liogpon ¢ is. But the absence
of Buichi runs does not have finite withesses, as the abseriofirgfe runs has. (For
Minsky machines, non-termination Is‘l’—complete whileBuchi is Z%-complete).

Finally Buchi is undecidable:

Theorem 5.2. Buchi andLooping_on_location are Zg—complete for lossy counter ma-
chines.

For these two equivalent problems, membershiﬁcl’il'rs cIear.Z?—hardness is shown as
Coro. 7.4 in Section 7.

6 Finiteness of the reachability sets

Here we consider the following problems:

Finiteness:
Given a LCM M and an initial configuratiowg,
Question s the reachability s€®ost (ap) finite?
Equivalently (Boundedness) is there ebound Be N such thato| < B for all reach-
ablec?

Unbounded_Run:
Given a LCM M and a configuratiooy,
Questionis there an infinite run fronmg that visits ever larger configurations?
Equivalently is there a run that visits infinitely many different configtions?

The two problems are complementary since a system is unleduficand only if,
it has an unbounded run. To see this, which is not specificdgylocounter machines,
assume thaPost (0p) is infinite. Since every reachable configuration is reachalal a
purerun, i.e., a run that does not visit any configuration twice,a@nclude that there
are infinitely many pure runs. By arranging them in a tree amdking Kénig's lemma,
we conclude that there exists an infinite pure run (sincesfinite prefixes are pure).
HenceM has an unbounded run.
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6.1 Undecidability
Finiteness is undecidable for LCM’s:

Theorem 6.1. Finiteness is Zg’-complete andnbounded_Run is I'I‘lJ—compIete for lossy
counter machines.

When it first surfaced (in [39]), undecidability dfiniteness was a bit surprising in
a way that is difficult to explain in retrospect. The resulh@v well-known and we
give a direct proof in Section 7. Before undecidability waswn, there were two lines
of reasoning pointing to a conjecture of decidability: firsthe fact thatPost (op)
is regular suggested that one could compute it, and secomutyexpected Karp and
Miller's procedure to extend to all monotonic systems, lirifgg an unbounded run from

an increasing prefigy - 01 - 0, With 01 < 0.

6.2 Uniform finiteness
Uniform finiteness is to finiteness what uniform terminati®to termination:

Uniform_Finiteness:
Given a LCM M,
Question are all the reachability seBost (o) finite?
Equivalently does every run itV visit only finitely many different configurations?

Mayr showed that uniform finiteness is undecidable for lossynter machines.
This result is perhaps not surprising in view of the unddgility of finiteness. However
the proof is still delicate since, in the encoding showingdhass, one cannot easily
anchor the considered behaviors on some given naturahgtadnfiguration.

Theorem 6.2. Uniform_Finiteness is I'Ig—complete for lossy counter machines.

Here, membership ifld is obvious since finiteness is &}. For M%-hardness, we refer
to Section 7.

7 Proving undecidability

Undecidability, and more generally hardness, results lanest always established by
reductions. This means taking some hard computationalgmaband encoding it in
LCM’s. This encoding can be tricky since, as we noted, LCMs hard to control
because of the possibly adversarial losses. Early undatbitgaroofs for lossy systems
(e.g. [6, 39, 1]) are sometimes hard to understand and thaaeiot to related problems.

In this section we want to explain how the idea pfitting a counter machine on a
budget can be used as a simple, yet versatile and powerful, gadigetiag easy-to-
understand hardness proofs.
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7.1 Putting counter machines on a budget

With a Minsky counter machin® = (Loc,C,A) we associate a derived Minsky ma-
chine denoted/°"-budget or MP for short.

In essenceyl®"-Pudgels phtained by adding thl an extra “budget” countérand by
adapting the rules df so that any incrementation (resp. decrementation) in tigenait
counters is balanced by a corresponding decrementatisp. (recrementation) on the
new counteB. Thus,the sum of the counters remains constari¥1®. This is a classic
idea in Petri nets and counter machines. The constructidedsribed on a schematic
example (Fig. 2) that is more explicit that a formal definiti®bserve that extra in-
termediary locations (in gray) are used, and that a stéy that increments somg
will be forbidden inMP when the budget is exhausted (instelsi®, may reach a new,
terminal, bankrupt location).

M M on_budge’t akaM b
4 N )
(l)—- B
C3:0?
c1 c1
® 3 = [
<[2] “[2]
@)
C2++
03 )----- >
k® _J _J

Fig. 2. FromM to MP (schematically).

This construction enjoys a few obvious properties that we state informally
(formal statements are given in [44]).

MP simulate M: Any reliable run(/,a) Ssq (¢',@) of M can be simulated as some
(¢,B,a) Sgq (¢',B, &) in MP provided with some large enough budget N.

MP can only simulateM: Any reliable run inMP can be seen as a runhihif we forget
about the extra budget counter.

Counters are bounded: A lossy run(/,a) ossy (¢, @) in MP has|a| < |a|, i.e., the
total sum of the counters can not increase.

Losses are visible: A lossy run{¢, a) i>|ossy (¢ ayin MP is also a reliable run if, and
only if, |a| = |&], i.e., if the total sum of the counters is unchanged (and the r
does not bankrupt).
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7.2 Undecidability of uniform termination

The above properties can be put to use immediatelyM.&e some Minsky machine
ando = (¢, a) one of its configurations.

Proposition 7.1. There is a loop(¢, a) St (¢,a@) in M if, and only if, there is a B N
and a loop(/, B, a) sy (£, B,a) in MP.

Indeed, the loop iM is simulated ifVI® by taking a large enough budget. And the loop
in MP must be a reliable run since the total sum of the countersdbamged, hence it
can be simulated iM.

Now recall that the question whether a Minsky machine haspdsoistd o (where
o is existentially quantified upon) is undecidable, more sedg Z‘l’—completé.

Corollary 7.2 (Undecidability). Uniform_Termination is I'I?-hard for lossy counter
machines.

Indeed,MP has an infinite run (starting from somewhere) if, and onlytihas a loop
(from somewhere). Hendé‘{-hardness.

7.3 Undecidability of Blichi acceptance

We now show the undecidability duchi, or equivalently, ofLooping_on_location,
for lossy counter machines. This can be obtained by elaibgrah the proof used for
Coro. 7.2 above, but we find it more instructive to presentfzraeduction that can be
adapted for the next section.

Let M be a Minsky machine with a starting locatiég;; and an accepting location
leng With M we associate a new machiiv obtained as follows (see schematics in
Fig. 3): First we putM on a budget. Then we add two extra locatiofgswhereB can
be given any value, ang] from which we can stat1 (on a budget). Finally, fromfeng
it is possible to reset all counters to zero and go back td his resetting uses tHg
(budget) counter to store the total sum the other countetsusing perhaps a few extra
intermediary locations that are of no interest.

Proposition 7.3. M has an accepting ru¢init, 0) Sstd (leng @) if, and only if, M has
a lossy run starting frong¢p, 0) and visiting¢; infinitely many times.

Here, the left-to-right implication is clear: M has an accepting run, this can be simu-
lated byM’ after it looped in¢g to start with a large enough budget. Once the accepting
run has been completely simulatdd, can reset the counters, go backtand repeat
the simulation infinitely many times.

Reciprocally, ifM’ has a run that visitg; infinitely many times, this run cannot
increase the total sum of the counters once it has/lgfHence this total sum can
only decrease or stay constant. If the run is infinite, thal tetm will eventually stay

3 This applies even if we do not restrict to configurations that are reéefraln a given starting
Op. | do not have a reference at hand but it is an easy exercise in ¢ability theory.
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B++ 1| 0

/ budget =2
WG w3

/* reset counters */ B| O
B—c1+:-4+cm, c1<0,...,cm«<0

Fig. 3. Reduction for undecidability dBuchi.

constant. Thus, after some time, the lossy run only hashlelsteps. Since it visitg
(and thus alsdinir andleng) infinitely many times, after some time its reliable steph wi
witness an accepting run bf.

Since the existence of an accepting rurkfscomplete for Minsky machines, we
deduce:

Corollary 7.4 (Undecidability). Buchi is Z(l’-hard for lossy counter machines.

7.4 Undecidability of finiteness

Our next reduction is a simple adaptation of the previous(see schematics in Fig. 4).
The modifications are as follows: (1) the resetting of thenters is not reached from
Leng but from the bankrupt Iocatiofbankruptthath reaches when its budget appears to
be too small (recall Fig. 2), and (2) the initial value®tannot be chosen as large as
one wants via a loop ofy: instead B can only be incremented in the step frédmto
Linit.-

c1| 0
) AR

M”' @ Bt @ [V on_budget
/* reset counters */ B| O

B«—ci+--4+cm, c1+0,...,cm«<0

Fig. 4. Reduction for undecidability dfiniteness.

Proposition 7.5. M has an unbounded (reliable) run starting fraiit, 0) if, and only
if, M has an unbounded (lossy) run starting frdfp, 0).

Here again the left-to-right implication is clear. The unbhded run oM can be simu-
lated byM”. This simulation is done in incremental stages. Ri#tétreachedin;; with a
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low budgetB = 1. The simulation proceeds until the budget is too low fortranng.
M” is then in the bankrupt location, resets its counters and baek tof1. ThereB is
incremented and the simulation can be started from scritichtjme withB = 2. It will
now take more steps before bankrupting, resetting the eagjr&nd starting again with a
larger budget. This simulation will reenact longer and lemgrefixes of the unbounded
run of M, leading to a run oM” that is itself unbounded.

The right-to-left implication is more subtle. Assunw’ has an unbounded run.
Necessarily, this run visitg infinitely many times since this is the only way to increase
the total sum of the counters. Let us write this unboundedimuhe following way,
isolating the places wheig is visited:

(£0,0) 5 (¢1,a1) 5 (¢1,80) 5 (¢1,85) = -

Zooming in a little bit on the part between two consecutiv@tsito/,, we see it must
be some subrum; of the form

<‘€l;ai> = <‘€l; BI70> - <€inita1+ BI;0> i) <£bankrups Bv c> i> <‘€1; Bi+lvo> = <€lvai+l>'

Now, Bi;1 < 1+ B; since “Counters are bounded” and the sequé&i¢B,, ... can only
increase by 1 at atime. It can also decrease (by losses)itg,the run is unbounded,
it must eventually increase and for evéery N, there is an indek such thaB; = k. If
now we assume that is the first such index, we deduBg, = 1+ B;,_1, hence the run
T, —1 only uses reliable steps (indeed, “Losses are visible")aRke steps simulati,

hencerg, 1 withesses a rum, = (¢init, 0) * (¢, c) for somef and some of sizek. If we
assume tha¥l is deterministic, these runs are longer and longer prefikdsednfinite
unbounded run oM. If M is non-deterministic, we usedfig’'s Lemma to extract an
unbounded run from these ever larger finite runs.

Since the existence of an unbounded ruﬁl?scomplete for Minsky machines, we
deduce:

Corollary 7.6 (Undecidability). Finiteness is Zg’-hard for lossy counter machines.

The reduction also shows undecidability for the to-all alhdcaall formulae of the
reachability logic (Section 3.4). For to-all formulae, j.®rmulae of the fornvt €Y :
Jse X :s5t, we observe that by taking = {0p} andY = {(/1,k,0) | k € N}, the
formula expresses the existence of an unbounded ri#’irSince in this reductioiX
is a singleton, the reduction also works for all-to-all fadae, of the formyse X : vt €
Y:s5t.

7.5 Undecidability of uniform finiteness

We further adapt the previous reduction (see schematicsgins. Now M”” has an
extra countek that is never modified and that is used to store a value witlchvto
reinitialize c; when looping back td;.

Proposition 7.7. M has an unbounded (reliable) run starting from sofgq, c1 : n, 0)
if, and only if, M” has an unbounded (lossy) run starting from same
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K|l nj|ci|O

c2|1 0

[* reinit cq */ N /* reset counters */
c1 K, B<—B—K\\2/B<—c1—i-~-~—i-cm7 c1<0,...,cm<0

Fig. 5. Reduction for undecidability dfiniform_Finiteness.

We reason as for the proof of Prop. 7.5, with very minor adagpia.

Again, the left-to-right implication is the easier one. As®M has an unbounded
run from (£init, N, 0). This can be simulated By"” starting from(¢init, B,X : n,c1 : n,0),
i.e., after we make sure that the extra coumt@ontains exactlyn. As with Proposi-
tion 7.5, the simulation proceeds until the budget banlsiiphen,M” loops back to
{1, where the budget is incremented. and the simulation stagw. This loop back to
{1 resets the counters with = n, using the memor¥ to find the value (truly, a Minsky
machine needs an auxiliary storage for this copy,dutan do the job). By visiting,
infinitely many times, this simulation manages to producersmunded run of1””.

For the right-to-left implication, we assume tHdt” has an unbounded run from
some arbitraryo. Since the only way to increase the total sum of the countets i
go through?;, the run must visit’; infinitely many times, and increase the total sum
of the counters by at most one between such visits. Alsogsdintan only decrease
(by losses) it will eventually stays constant. Oncés constant (say= n), we have,
for anyk € N, a run liket, _; above that increment8 from k— 1 to k, going from
(linit,B : K—1L,K : n,cq : n,0) to ({init, k,n,n,0). This run only uses reliable steps and
witnesses, inside the Minsky machine, a p&h,n,0) — (¢,a) for somea of sizek.
HenceM has an unbounded run froffnt, n, 0).

Since the question whether there exists soraeN such that a Minsky machine has
an unbounded run starting froffit, n, 0) is Z‘z’-complete, we deduce:

Corollary 7.8 (Undecidability). Uniform_Finiteness is I'Ig-hard for lossy counter ma-
chines.

The reduction also show&)-hardness of the one-to-all formulae of the reachability

logic. These have the for@ise X : Vt € Y : s t. By takingX = ConfandY = {(¢,,B:
k,0) | k e N}, the formula expresses the existence of an unbounded Mffjn.e., the
negation of uniform finiteness.

8 Further developments

We gather in this section a few results, remarks, and paimtethe literature, regarding
problems that are less central in the theory of lossy coungathines as it exists today.
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8.1 Temporal logic model-checking

Temporal logics [22] can express behavioral propertiesysfesns in general, and of
lossy counter machines in particular. It has been observétkiliterature on lossy sys-
tems that temporal logic model-checking is generally uididde (e.g., [6] shows the
undecidability of bothCTL model-checking antdTL model-checking for lossy channel
systems). However, as with the reachability logic we camrsd in Section 3.4, the pic-
ture can be more interesting if we focus on relevant fragmehgeneral logics.

For lossy counter machines, tRETL fragment of CTL has a decidable model-
checking problem. This fragment, also dendB£d U, EX), is the branching-time logic
built on two CTL modalitiesE ¢ andEX. Arbitrary nesting and Boolean combinations
are allowed, and we take all the semilinear sets as basiogitams.

Theorem 8.1 (Decidability of4CTL model-checking).
1. The problem, given a LCM M, a configurationand an3CTL formula¢, whether
M, o |= ¢, is decidable.

2. Moreover, the se¥lod(¢) d:Ef{c € Conf | M,0 = ¢} is a semilinear set that can be
computed effectively from M argd

ComputingMod(¢) is done by induction over the structure @f This uses standard
techniques like

Mod(—¢) = Conf~ Mod(¢),
Mod(¢ V ) = Mod(¢) UMod (),
Mod(EX¢) = Pre(Mod(¢)),

and relies on the fact that semilinear sets are closed undgplementation, union and
the Pre operator, all this in an effective way.
For Mod(E¢ UW), semilinearity is seen after one unfolding of the Until:

Mod(E¢ 1) = Mod( v ¢ A EXEd )
= Mod () U Mod(¢) N Pre(Mod (E¢ UW)).

The last expression denotes a semilinear set $tnefe- - ) is always semilinear.

The computability oMod(E¢ 1) can be shown with the same technique we used,
in Section 3.5, for the computability &fre*(X). Alternatively, one can use backward-
chaining algorithms whose termination is guaranteed bk$in’s Lemma (see [9]).

Remark 8.2.The same techniques can be used to enlarge decidability @t to
some existential fragment of the branching-time mu-calgulvhere regular properties
like “there exists a run along which every even-numbered contigars in X’ can be
stated. See [11, 9]. ad

Regarding other temporal modalities, we know that modetking oneAd Uy
formula is decidable wheMod(¢) andMod(y) are effectively given semilinear sets
(this is the decidability obtrong_Inevitability from Section 4.2) but it i:iot possible
to computeMod(Ad UY), nor even (by Coro. 4.6Ylod(AF—-EXT).



Lossy Counter Machines Decidability Cheat Sheet 21

As a consequence, nestAdl modalities give undecidable model-checking prob-
lems (e.g., they can easily encode uniform termination).

Model-checking is also undecidable 8€TLmodalities likeEF® (this is theBuchi
problem from Section 5) andlF* (this is repeated inevitability from Section 4.3).

8.2 Games people play on lossy counter machines

Sections 3 to 5 focused on classical reachability, ineilitgbor liveness properties,
but one is also interested in more general game-theorgifcdllems where several
opponents have conflicting goals. Branching-time templagik is only a first step
toward these new issues.

The question of checking game-theoretical propertiesssj@ounter machines has
barely been scratched. Obviously, one could expect thataidability is everywhere
since the properties are more general. One could be wrong.

Let us illustrate this on an example. We consider a readhalgiame played in
turn by two opponents on a single LCM. Starting frag Alice tries to reacteng by
picking the odd-numbered lossy steps of a growing run, widb tries to frustrate her
by choosing adversarially the even-numbered lossy stépsdécision problem is:

Reachability_Game:
Given a LCM M, an initial configuratiorop, and a goal locatiofigng.
Questiondoes Alice have a winning strategy?

Surprisingly, this problem is very easy.
Theorem 8.3. Reachability_Game is PTIME-complete for lossy counter machines.

The paradox is explained when we realize that an optimalegtyafor both players
can choose to always lose all the contents of the countersenyt step. Indeed, losing
everything can only reduce our opponent’s options (becafisgong monotonicity). It
also reduces our later options, but anyway the opponenheai# the possibility to lose
everything if it hurts us.

Finally, it is possible to solve the game by restricting te fimite graph of all con-
figurations(¢, 0) for ¢ € Loc, which isPTIME-complete.

Games on LCM's can be more interesting. We could decide tbhatdan only play
reliable steps. Or that Alice and Bob choose reliable stegkevosses in the counters
are chosen probabilistically by the environment, leadmgames with 2/2 players.
Or that the objective is more complex than just reachablitgny variations are possi-
ble, motivated by different situations. We refer to [3, 411, 2, 4] for results on such
games.

8.3 Equivalence checking

Comparing two systems is a classic decision problem. In ithelest situations, the
comparison criterion is an equivalence relation, somedienpreorder.
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When dealing with systems (like LCM’s) that give rise to infistate transition
systems, the behavioral equivalences one could use fdication purposes are often
undecidable. The main exceptionssong bisimilaritythat has been shown decidable
in many cases (and undecidable in many other cases) [13].

For lossy counter machines, equivalences are hard. OneoNayt it is to say that
all interesting relations between lossy counter machimesuadecidable, even if we
only consider lossy VAS's (i.e., lossy counter machinesiitt zero-tests). A proof for
all relations between bisimilarity and trace containmeart be obtained (see [42]) by
adapting Jatar’s classic proof for Petri nets [30]. The proof certaiektends, e.g., to
all equivalences between equality of the reachability sdtteace containment modulo
invisibility of internal steps.

On the other hand, comparison between a lossy counter neaahthdinite transi-
tion systenis very often decidable.

This line of positive results was started by Abdulla and Kahd 8] with the simu-
lation preorder and the bisimulation equivalence.

It turns out that there is a generic approach to these prabldma question whether
S=F or S= F for some finiteF can often be translated as a temporal question, whether
S ¢ for some formulap = ¢E or ¢ = ¢¢, called acharacteristic formula for F-that
states exactly what is required to beF or ~ F. We refer to [12, 31, 35] for more
details.

In the special case of lossy counter machines, comparistinfimite systems is
decidable for all the equivalences and preorders that aclmaitacteristic formulae in
JCTL. This is a direct corollary of Theorem 8.1. The equivaleremed preorders thus
covered are numerous and include, e.g., weak bisimulatidibbeanching bisimulation.

9 Decidable but hard

Problems that are decidable for lossy counter machinessaily very hard.

9.1 Lower bounds for complexity

Reachability and termination are Ackermann-hard for LCN¢e refer to [44] for a
recent and simplified proof that uses the same “counter maatm a budget” gadget
that we used in Section 7. Hardness extends, via obvioustieds, to most decidable
problems we listed in the previous sections (one major diaes the reachability
game from Section 8.2).

A finer analysis of the lower bounds shows that the most ingmbgparameter here
is thenumber of counters a lossy counter machine. The hardness proof uses a num-
ber of counters that cannot be boundegriori. For a fixed number of counters, one
only obtains lower bounds at a finite, primitive-recursil@jel in the Fast Growing
Hierarchy, see [44]. This is in accordance with what is kn@nrupper bounds.



Lossy Counter Machines Decidability Cheat Sheet 23

9.2 Upper bounds

All along this paper, we deliberately avoided giving expladgorithms for our decid-
ability proofs. However, algorithms exist in the literaguiT heir termination arguments
usually rely on the wgo property, and more precisely Dickstblemma. From these,
upper bounds can be deduced, based on the length of bad segifenthe(N", <)
wqo [40, 17].

These upper bounds lie in the Fast Growing Hierarchy. Thel g@vs is that they
closely match the known lower bounds. In particular, an Awienn upper bound holds
for most decidable problems on lossy counter machines, laisdcan be refined to
primitive-recursive upper bounds at various levels whea m@stricts attention to ma-
chines with a fixed number of counters. We refer to our upcgrpiaper for more de-
tails [23].

10 Concluding remarks

Lossy counter machines are a paradoxical computationakemeldere unreliability
brings decidability. At the moment, they have mostly beeaduas a tool for hard-
ness results (undecidability or Ackermann-hardness)y Tlage sometimes been used
under the symmetrical guise of counters with incrememagioors [19].

In a leisurely way, we surveyed the main known results on bites of the decid-
ability frontier. From this, two main conclusions emerge:

1. Most decidability results rely only superficially on sgiecfeatures of lossy
counter machines. They can be obtained by a combinationrgfgeneral properties
enjoyed by most models (e.qg., finitely branching non-deitgism, effective one-step
relation, ...) and the combination of strong monotonicitysteps with the wqo prop-
erty of configurations. As a consequence, most of our dettiygtroofs can be easily
adapted to other classes of well-structured transitiotesys. For example, they hold
mutatis mutandifor lossy channel systems [7] or Reset Petri nets [20].

2. Most hardness results can be proved with the “machine aget” gadget. For
counter systems, this gadget is used in two different waigmé@ered by [21]). It can
bound the total sum of the counters, so that this sum must@s#nstabilize along an
infinite behavior, or can only grow in controlled ways. Theten the sum is stabilized,
the behavior must be reliable and hardness can be inherdedthe Turing-powerful
Minsky machines.

AcknowledgementsWe thank Pierre Chambart, Jérdbme Leroux and Sylvain Schmitz
who greatly helped by proof-reading this paper at varioagest.
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