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Abstract

In this paper, we consider the task of answering linear queries under the constraint of differ-
ential privacy. This is a general and well-studied class of queries that captures other commonly
studied classes, including predicate queries and histogram queries. We show that the accuracy
to which a set of linear queries can be answered is closely related to its fat-shattering dimension,
a property that characterizes the learnability of real-valued functions in the agnostic-learning
setting.

1 Introduction

The administrator of a database consisting of sensitive, but valuable information faces two con-
flicting objectives. Because the data is valuable, she would like to make statistical information
about it available to the public. However, because the data is sensitive, she must take care not
to release information that exposes the data of any particular individual in the data set. The
central question in the field of private data analysis is how these two objectives can be traded
off, and more specifically, how many queries of what type can be answered to given degrees of
accuracy, while still preserving privacy.

Recent work on differential privacy provides a mathematical framework to reason about
such questions. Informally, a probabilistic function f from a database D to some range R
is α-differentially private if adding or removing a single individual from the dataset does not
change the probability that f(D) = r for any outcome r ∈ R by more than an eα factor. The
intuition behind this definition is that an individual’s privacy should not be considered to have
been violated by some event r, if r would have been almost as likely to occur even without the
individual’s data.

In this paper, we consider databases D which are real valued vectors, and the class of queries
that we consider correspond to linear combinations of the entries of D. Formally, we consider
databases D ∈ Rn+, and queries of the form q ∈ [0, 1]n. The answer to query q on database
D is simply the dot-product of the two vectors: q(D) = q ·D. This model has previously been
considered ([DN03, DMT07, DY08, HT10]), and generalizes the class of count queries or predicate
queries, which has also been well studied ([DMNS06, BLR08, DNR+09, RR10, UV10]).

The fat-shattering dimension (FSD) of a class of real-valued functions C over some domain
is a generalization of the Vapnik-Chervonenkis dimension, and characterizes a distribution-free
convergence property of the mean value of each f ∈ C to its expectation. The fat-shattering
dimension of a class of functions C is known to characterize the sample complexity necessary to
PAC learn C in the agnostic framework [ABDCBH97, BLW94]: that is, ignoring computation,
the sample complexity that is both necessary and sufficient to learn C in the agnostic framework
is polynomially related to the fat-shattering dimension of C.
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Our main result is a similar information theoretic characterization of the magnitude of the
noise that must be added to the answer to each query in some class C in terms of the fat-
shattering dimension of C, FSD(C). We show polynomially related information theoretic upper
and lower bounds on the noise that must be added to each query in C in terms of FSD(C).
This generalizes the results of [BLR08] to linear queries, and to our knowledge gives the first
analysis of generic linear queries using some parameter other than their cardinality. This yields
the first mechanism capable of answering a possibly infinite set of generic linear queries, and the
first non-trivial lower bound for infinite classes of non-boolean linear queries. As a consequence,
we extend results of Kasiviswanathan et al. and Blum et al. [?, BLR08] relating the sample
complexity necessary for agnostic PAC learning and private agnostic PAC learning from classes
of boolean valued functions to classes of real valued functions.

1.1 Related Work and Our Results

Dinur and Nissim studied the special case of linear queries for which both the database and
the query are elements of the boolean hypercube {0, 1}n [DN03]. Even in this special case,
they showed that there cannot be any private mechanism that answers n queries with error
o(
√
n), because an adversary could use any such mechanism to reconstruct a 1 − o(1) fraction

of the original database, a condition which they called blatant non-privacy. This result was
strengthened by several subsequent papers [DMT07, DY08].

Dwork et al. gave the original definition of differential privacy, as well as the Laplace mecha-
nism, which is capable of answering any k “low sensitivity” queries (including linear queries) up
to error O(k). A more refined analysis of the relationship between the laplace mechanism and
function sensitivity was later given by [NRS07].

In a different setting, Blum Ligett and Roth considered the question of answering predicate
queries over a database drawn from some domain X [BLR08]. This can be viewed as a special
case of linear queries in which the queries are restricted to lie on the boolean hypercube, and the
database must be integer valued: D ∈ Zn+. They give a mechanism for answering every query
in some class C with noise that depends linearly on the VC-dimension of the class of queries.
This is a quantity that is at most log |C| for finite classes C, and can be finite even for infinite
classes. Roth and Roughgarden later gave a mechanism which achieved similar bounds in the
online model, in which the mechanism does not know the set of queries that must be answered
ahead of time, and instead must answer them as they arrive [RR10]. We generalize the technique
of [BLR08, RR10] to apply to general linear queries. VC-dimension is no longer an appropriate
measure of query complexity in this setting, but we show that a quantity known as Fat-Shattering
dimension plays an analogous role.

Hardt and Talwar give matching upper and lower bounds on the noise that must be added
when answering k ≤ n linear queries of roughly Θ(

√
k log(n/k)

α ), and [KRSU10] give similar lower
bounds. In contrast, we prove bounds in terms of different parameters, and can handle arbitrarily
(even infinitely) large values of k. For finite sets of k queries, our mechanism adds noise roughly

O

(
||D||2/31 ·

(
log k logn

α

)1/3
)

. Note that this is significantly less noise than even the lower bound

of [HT10] for k ≥ Ω(||D||4/31 ), and to achieve low relative error η (i.e. error ε = η||D||1), our
mechanism requires only that ||D||1 be poly-logarithmic in k, rather than polynomial in k. For
infinite classes of queries |C|, the log k in our bound can be replaced with the fat shattering
dimension of the class C. We also show a lower bound in terms of the fat shattering dimension
of the class C, which is the first non-trivial lower bound for infinite classes of non-boolean linear
queries.
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2 Preliminaries

A database is some vector D ∈ Rn+, and a query is some vector q ∈ [0, 1]n. We write that the
evaluation of q on D is q(D) = q · D. We write ||D||1 =

∑n
i=1Di to denote the `1 norm of D,

and note that for any query q, q(D) ∈ [0, ||D||1]. We let C denote a (possibly infinite) class of
queries. We are interested in mechanisms that are able to provide answers ai for each qi ∈ C
so that the maximum error, defined to be maxi∈C |qi(D) − ai| is as small as possible. Without
loss of generality, we restrict our attention to mechanisms which actually output some synthetic
database: mechanisms with range R = Rn+. That is, if our mechanism outputs some synthetic
database D′, we take ai to be qi(D′) for each i.1

We formalize our notion of utility and relative utility for a randomized mechanism M :

Definition 2.1 (Usefulness and Relative Usefulness). A mechanism M : Rn+ → Rn+ is (ε, δ)-useful
with respect to a class of queries C if with probability at least 1 − δ (over the internal coins of
the mechanism), it outputs a synthetic database D′ such that:

sup
qi∈C

|qi(D)− qi(D′)| ≤ ε

For 0 < η ≤ 1, M is (η, δ)-relatively useful with respect to C if there exists a finite m such that
it is (η||D||1, δ)-useful with respect to C for all input databases D with ||D||1 ≥ m.

That is, useful mechanisms should have low error for each query in C. We now define differ-
ential privacy:

Definition 2.2 (Differential Privacy [DMNS06]). A mechanism M : Rn+ → Rn+ is α-differentially
private, if for any two databases D1, D2 such that ||D1 −D2||1 ≤ 1, and for any S ⊆ Rn+:

Pr[M(D1) ∈ S] ≤ eα Pr[M(D2) ∈ S]

The standard notion of differential privacy need only hold for mechanisms defined over integer
valued databases D1, D2 ∈ Nn, which is a weaker condition. Our upper bounds will hold for the
stronger notion of differential privacy, and our lower bounds for the weaker notion. A useful ob-
servation is that arbitrary (database independent) functions of differentially private mechanisms
are also differentially private:

Fact 1. If M : Rn+ → Rn+ is α-differentially private, and if f : Rn+ → Rn+ is a (possibly random-
ized) function, then f(M) is α-differentially private.

2.1 Fat Shattering Dimension

Fat-shattering-dimension is a combinatorial property describing classes of functions of the form
f : X → [0, 1] for some domain X. It is a generalization of the Vapnik-Chervonenkis-dimension,
which is a property only of classes of boolean valued functions of the form f : X → {0, 1}. In
this section, we generalize these concepts slightly to classes of linear queries, where we view our
linear queries as linear combinations of functions f : X → [0, 1], where we let X be the set of
standard basis vectors of Rn.

Let B = {ei}ni=1 denote the set of n standard basis vectors of Rn (ei is the vector with a 1
in the i’th coordinate, and a 0 in all other coordinates). For any S ⊆ B of size |S| = d, we say
that S is γ-shattered by C if there exists a vector r ∈ [0, 1]d such that for every b ∈ {0, 1}d, there
exists a query qb ∈ C such that for each ei ∈ S:

qb(ei)
{
≥ ri + γ, if bi = 1;
≤ ri − γ, if bi = 0.

Note that since the range of each query is [0, 1], γ can range from 0 to 1/2.

1This is without loss of generality, because given a different representation for each answer ai to error ε, it is possible
to compute a synthetic database D′ with error at most 2ε using the linear program of [DNR+09].
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Definition 2.3 (Fat Shattering Dimension [BLW94, KS94]). The γ-fat-shattering dimension of
a class of linear queries C is:

FSDγ(C) = max{d ∈ N : C γ − shatters some S ⊆ B with |S| = d}

In the special case when γ = ri = 1/2 for all i, note that the fat shattering dimension of a
class of boolean valued functions is equal to its VC-dimension.

For finite classes C, we will let k = |C| denote the cardinality of C. The following observation
follows immediately from the definition of fat-shattering dimension:

Observation 2.4. For finite classes C, FSDγ(C) ≤ log k for all γ > 0, where k = |C|.

3 Lower Bound

In this section, we show that any α-differentially private mechanism that answers every linear
query in some class C must add noise at least linear in the fat-shattering dimension of C at any
scale.

Theorem 3.1. For any δ bounded away from 1 by a constant, let M be a mechanism M that
is (ε, δ) useful with with respect to some class of linear queries C. If M preserves α-differential
privacy, then

ε ≥ Ω

(
sup

0<γ≤1/2

γ2 · FSDγ(C)
eα

)
Given some class of linear queries C and any γ > 0, let S ⊆ B be a collection of basis-vectors

of size FSDγ(C) that are γ-shattered by C, and let r ∈ [0, 1]FSDγ(C) be the corresponding vector
as in the definition of fat-shattering dimension. We now partition S into 1/γ pieces. For each
j ∈ {1, . . . , 1/γ}, let:

Sj = {ei ∈ S : (j − 1) · γ < ri ≤ j · γ}

Since the sets {Sj} partition S, By the pigeon-hole principle, there exists some j∗ such that
|Sj∗ | ≥ γ · |S| = γ · FSDγ(C). Let d = |Sj∗ |.

We consider subsets T ⊂ Sj∗ of size |T | = d/2. For each such subset, we consider the database
DT =

∑
ei∈T ei. Let bT ∈ {0, 1}d be the vector guaranteed by the definition of fat shattering

dimension such that:

bTi =
{

1, ei ∈ T ;
0, otherwise.

Let qT ∈ C be the query that corresponds to bT as in the definition of fat shattering dimension,
and let CSj∗ = {qT : T ⊆ Sj∗ , |T | = d/2}.

We first show that each function qT takes its highest value on DT and cannot take large values
on databases DT ′ for sets T ′ that differ significantly from T .

Lemma 3.2. For all qT ∈ CSj∗ and for all T ′ ⊆ Sj∗ with |T ′| = d/2:

qT (DT )− qT (DT ′) ≥
γ

2
· |T 4 T ′|
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Proof.

qT (DT )− qT (DT ′) =
∑
ei∈T

qT (ei)−
∑
ei∈T ′

qT (ei)

=

( ∑
ei∈T∩T ′

qT (ei)− qT (ei)

)
+

∑
ei∈T\T ′

qT (ei)−
∑

ei∈T ′\T

qT (ei)

≥

 ∑
ei∈T\T ′

ri + γ

−
 ∑
ei∈T ′\T

ri − γ


≥ 2γ · |T \ T ′| −

(
max
i∈T ′\T

ri − min
i∈T\T ′

ri

)
· |T \ T ′|

≥ γ · |T \ T ′|

where the last inequality follows from the fact that T, T ′ ⊂ Sj∗ which was constructed such that:(
max
i∈Sj∗

ri − min
i∈Sj∗

ri

)
≤ γ

holds. Observing that |T 4 T ′| = 2|T \ T ′| completes the proof.

With this lemma, we are ready to prove the main technical lemma for our lower bound:

Lemma 3.3. For any δ bounded away from 1 by a constant, let M be an (ε, δ)-useful mechanism
with respect to class C. Given as input an unknown private database DT for some T ⊆ Sj∗ with
|T | = d/2, with constant probability 1− δ, there is a procedure to reconstruct a new database DT∗

such that |T 4 T ∗| ≤ 4ε
γ .

Proof. Suppose that mechanism M is (ε, δ) useful with respect to C for some constant δ bounded
away from 1. Then by definition, with constant probability, given input DT , it outputs some
database D′ such that for all qi ∈ C, |qi(DT ) − qi(D′)| ≤ ε. For each T ′ ⊆ Sj

∗
with |T ′| = d/2

let:
v(T ′) = qT ′(DT ′)− qT ′(D′)

and let T ∗ = argminT ′ v(T ′). Therefore, we have:

v(T ∗) ≤ v(T ) = qT (DT )− qT (D′) ≤ ε (1)

where the last inequality follows from the usefulness of the mechanism. We also have:

v(T ∗) = qT∗(DT∗)− qT∗(D′)
≥ qT∗(DT∗)− qT∗(DT )− ε

≥ γ

2
· |T 4 T ∗| − ε

where the first inequality follows from the usefulness of the mechanism, and the second inequality
follows from lemma 3.2. Combining this with equation 1, we get:

|T 4 T ∗| ≤ 4ε
γ

We are now ready to prove the lower bound:
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Proof of Theorem. Let T ⊂ Sj
∗

with |T | = d/2 be some arbitrarily selected subset. Let DT =∑
ei∈T ei be the corresponding database. By lemma 3.3, given M(DT , ε), with probability 1− δ

there is a procedure P to reconstruct a database DT∗ such that |T 4 T ∗| ≤ 4ε/γ. Throughout
the rest of the argument, we assume that this event occurs. Let x ∈ T be an element selected
from T uniformly at random, and let y ∈ S \ T be an element selected from S \ T uniformly at
random. Let T ′ = T \ x ∪ {y}. Observe that:

Pr[x ∈ P (M(DT , ε))] ≥
d/2− 2ε/γ

d/2
= 1− 4ε

γ · d

Pr[x ∈ P (M(DT ′ , ε))] ≤
2ε/γ
d/2

=
4ε
γ · d

Since ||DT −DT ′ ||1 ≤ 2, we have by the definition of α-differential privacy and fact 1:

eα ≥ Pr[x ∈ P (M(DT , ε))]
Pr[x ∈ P (M(DT ′ , ε))]

≥
1− 4ε

γ·d
4ε
γ·d

=
γ · d
4ε
− 1

Solving for ε, we find that:

ε ≥ Ω
(
γ · d
eα

)
Since this holds for all choices of γ, the claim follows from the fact that d ≥ γFSDγ(C).

4 Upper Bound

We now show that (ignoring other important parameters), it is sufficient to add noise linear in
the fat shattering dimension of C to simultaneously guarantee usefulness with respect to C and
differential privacy.

We make use of a theorem of Bartlett and Long [BL95] (improving a bound of Alon et
al. [ABDCBH97]) concerning the rate of convergence of uniform Glivenko-Cantelli classes with
respect to their fat-shattering dimension.

Theorem 4.1 ([BL95] Theorem 9). Let C be a class of functions from some domain X into
[0, 1]. Then for all distributions P over X and for all η, δ ≥ 0:

Pr

[
sup
f∈C

∣∣∣∣∣ 1
m

m∑
i=1

f(xi)− Ex∼P[f(x)]

∣∣∣∣∣ ≥ η
]
≤ δ

where {xi}mi=1 are m independent draws from P and

m = O

(
1
η2

(
dη/5 ln2 1

η
+ ln

1
δ

))
where dη/5 = FSDη/5(C).

We use this theorem to prove the following useful corollary:

Corollary 4.2. Let C be a class of linear functions from Rn+ to R. For any database D ∈ Rn+,
there is a database D′ ∈ Nn with

||D′||1 = O

(
dη/5

η2
· log2

(
1
η

))
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such that for each q ∈ C, ∣∣∣∣q(D)− ||D||1
||D′||1

q(D′)
∣∣∣∣ ≤ η||D||1

where dη/5 = FSDη/5(C).

Proof. Let B = {ei}ni=1 denote the set of n standard basis vectors over Rn. Let PD be the
probability distribution over B that places probability Di/||D||1 on ei. Note that for any q ∈ C:

Eei∼PD [q(ei)] =
n∑
i=1

Di

||D||1
q(ei) =

1
||D||1

n∑
i=1

q(Diei) =
q(D)
||D||1

Let x1, . . . , xm be m = O
(

1
η2

(
dη/5 ln2 1

η + ln 2
))

independent draws from PD, and let D′ =∑m
i=1 xi. Then:

q(D′) =
n∑
i=1

q(D′iei) =
m∑
i=1

q(xi)

By lemma 4.1, we have:

Pr
[∣∣∣∣q(D′)m

− q(D)
||D||1

∣∣∣∣ ≥ η] = Pr

[∣∣∣∣∣ 1
m

m∑
i=1

q(xi)− Eei∼PD [q(ei)]

∣∣∣∣∣ ≥ η
]

≤ 1
2

In particular, there exists some D′ ∈ Nn with ||D′||1 = m that satisfies
∣∣∣ q(D′)||D′||1 −

q(D)
||D||1

∣∣∣ ≤ η.
Multiplying through by ||D||1 gives the desired bound.

Armed with Corollary 4.2, we may no proceed to instantiate the exponential mechanism over
a sparse domain, analogously to the instantiation of the exponential mechanism in [BLR08].

Definition 4.3 (The Exponential Mechanism [MT07]). Let D be some domain, and let s :
Rn+ ×D → R be some quality score mapping database/domain-element pairs to some real value.
Let

∆s ≥ max
r∈D

sup
D1,D2∈R+

n :||D1−D2||1≤1

|s(D1, r)− s(D2, r)|

be an upper bound on the `1 sensitivity of s. The exponential mechanism defined with respect
to domain D and score s is the probability distribution (parameterized by the private database
D) which outputs each r ∈ D with probability proportional to:

r ∼ exp
(
s(D, r) · α

2∆s

)
Theorem 4.4 (McSherry and Talwar [MT07]). The exponential mechanism preserves α-differential
privacy.

We letm = O
(
dη/5
η2 · log2

(
1
η

))
}, and define the domain of our instantiation of the exponential

mechanism to be:
D = {D′ ∈ Nn : ||D′||1 = m}

We note that |D| = nm. Finally, we sample each D′ ∈ D with probability proportional to:

D′ ∼ exp

− supq∈C
∣∣∣q(D)− ||D||1

||D′||1 · q(D
′)
∣∣∣α

4

 (2)
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and output the database Dout ≡ ||D||1
||D′||1 · D

′2. Observe that for any two databases D1, D2 such
that ||D1 −D2||1 ≤ 1 we have:

sup
q∈C
|q(D1)− ||D1||1

||D′||1
· q(D′)| − sup

q∈C
|q(D2)− ||D2||1

||D′||1
· q(D′)| ≤ ||D1 −D2||1 +

|||D1||1 − ||D2||1|
m

≤ 1 +
1
m

Therefore, the distribution defined in equation 2 is a valid instantiation of the exponential mech-
anism, and by [MT07] preserves α-differential privacy. It remains to show that the above instan-
tiation of the exponential mechanism yields a useful mechanism with low error:

Theorem 4.5. For any constant δ and any query class C, there is a value of η such that the above
instantiation of the exponential mechanism is (ε, δ)-useful with respect to C and α-differentially
private for:

ε ≤ Õ

(
||D||2/31 ·

(
FSD2ε/(5||D||1)(C) log n

α

)1/3
)

Such a bound gives us relatively useful mechanisms with respect to classes C for databases
that have size linear in the fat shattering dimension of C, or only logarithmic in |C| for finite
classes C. This is in contrast to the bounds of [HT10] that require databases to be of size
polynomial in |C| before giving relatively-useful mechanisms.

Corollary 4.6. For any constant δ and any query class C, there is an (η, δ)-relatively useful
mechanism that preserves α-differential privacy for any database of size at least:

||D||1 ≥ Ω̃
(
FSD2η/5(C) log n

αη3

)
Proof of Theorem. Recall that the domain D of our instantiation of the exponential mechanism
consists of all databases D′ ∈ Nn with ||D′||1 = m with m = O

(
dη/5
η2 · log2

(
1
η

))
} In particular,

by corollary 4.2, there exists a D∗ ∈ D such that:∣∣∣∣q(D)− ||D
∗||1

||D′||1
q(D∗)

∣∣∣∣ ≤ η||D||1
Let η = 2ε/||D||1. By the definition of our mechanism, such a D∗ is output with probability
proportional to at least:

D∗ ∼ exp(−εα
8

)

Similarly, any DB ∈ D such that
∣∣∣q(D)− ||D

B ||1
||D′||1 q(D

∗)
∣∣∣ ≥ 2η||D||1 is output with probability

proportional to at most:
DB ∼ exp(−εα

4
)

Let DB denote the set of all such DB . Because |D| = nm, we have that:

Pr[D′ = D∗]
D′ ∈ Pr[DB ]

≥
exp(− εα8 )

nm · exp(− ε/α4 )
= n−m · exp

(
−εα

4

)
Setting n−m · exp

(
− εα4

)
≥ 1− δ and solving, we find that Pr[D′ = D∗] ≥ 1/δ for:

ε ≤ O
(
m log n
α

)
= Õ

 1/3

√
FSD2ε/(5||D||1)(C)||D||21 · log n

α

 =

2If ||D||1 is not public knowledge, it can be estimated to small constant error using the Laplace mechanism
[DMNS06], losing only additive constants in the approximation parameter ε and privacy parameter α. This does
not affect our results.
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Õ

(
||D||2/31 ·

(
FSD2ε/(5||D||1)(C) log n

α

)1/3
)

We remark that the above mechanism is the analogue of the general release mechanism of
[BLR08], and answers linear queries in the offline setting, when all queries C are known to the
mechanism in advance. This is not necessary, however. In the same way as above, corollary
4.2 can also be used to generalize the Median Mechanism of Roth and Roughgarden [RR10], to
achieve roughly the same bounds, but in the online setting, in which queries arrive online, and
the mechanism must privately answer queries as they arrive, without knowledge of future queries.
This results in the following theorem:

Theorem 4.7. For every sequence of adaptively chosen queries q1, q2, . . . arriving online, chosen
from some (possibly infinite) set C, there exists a mechanism which is (ε, δ) useful with respect
to C and preserves (α, τ)-differential privacy3, where τ is a negligible function of n, and:

ε ≤ Õ

||D||2/31 ·

(
FSD3

2ε/(5||D||1)(C) log n
α

)1/3


Remark 4.8. Notice that for finite classes of linear queries, we may replace the fat shattering
dimension in the bounds of both theorems 4.5 and 4.7 with log |C| if we so choose.

5 Conclusion

In this paper, we have generalized the techniques used by Blum Ligett and Roth, [BLR08] and
Roth and Roughgarden [RR10] from the class of predicate queries to the more general class of
linear queries. This gives the first mechanism for answering every linear query from some class C
with noise that is bounded by a parameter other than the cardinality of C; in particular, we have
given the first mechanism for answering all of the linear queries in certain infinite classes of queries
beyond predicate queries. We have shown that the relevant parameter is the Fat-Shattering
dimension of the class, which is a generalization of VC-dimension to non-boolean valued queries.
In particular (ignoring other parameters), it is necessary and sufficient to add noise proportional
to the fat shattering dimension of C. Our results show, among other things, that the sample
complexity needed to privately agnostically learn real valued functions is polynomially related to
the sample complexity needed to non-privately agnostically learn real valued functions.

At a high level, the same technique can be applied for any class of queries, all of the answers
to which can be summarized by some ‘small’ object. It is then sufficient to instantiate the
exponential mechanism only over this much smaller set of objects (rather than the set of all
databases) to obtain a useful mechanism. In the case of linear queries, we have shown that the
answers to many queries can be summarized by integer valued databases with small `1 norm. An
interesting future direction is to determine what types of nonlinear (but low sensitivity) queries
have similar small summarizes from which useful mechanisms can be derived.
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where the probability is taken only over the internal coins of the mechanism.

9



References

[ABDCBH97] N. Alon, S. Ben David, N. Cesa Bianchi, and D. Haussler. Scale-sensitive di-
mensions, uniform convergence, and learnability. Journal of the ACM (JACM),
44(4):615–631, 1997.

[BL95] P.L. Bartlett and P.M. Long. More theorems about scale-sensitive dimensions
and learning. In Proceedings of the eighth annual conference on Computational
learning theory, pages 392–401. ACM, 1995.

[BLR08] A. Blum, K. Ligett, and A. Roth. A learning theory approach to non-interactive
database privacy. In Proceedings of the 40th annual ACM symposium on Theory
of computing, pages 609–618. ACM New York, NY, USA, 2008.

[BLW94] P.L. Bartlett, P.M. Long, and R.C. Williamson. Fat-shattering and the learnabil-
ity of real-valued functions. In Proceedings of the seventh annual conference on
Computational learning theory, pages 299–310. ACM, 1994.

[DMNS06] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity
in private data analysis. In Proceedings of the Third Theory of Cryptography
Conference TCC, volume 3876 of Lecture Notes in Computer Science, page 265.
Springer, 2006.

[DMT07] C. Dwork, F. McSherry, and K. Talwar. The price of privacy and the limits of LP
decoding. In Proceedings of the thirty-ninth annual ACM Symposium on Theory
of Computing, page 94. ACM, 2007.

[DN03] I. Dinur and K. Nissim. Revealing information while preserving privacy. In 22nd
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS), pages 202–210, 2003.

[DNR+09] C. Dwork, M. Naor, O. Reingold, G.N. Rothblum, and S. Vadhan. On the com-
plexity of differentially private data release: efficient algorithms and hardness
results. In Proceedings of the 41st annual ACM symposium on Symposium on
theory of computing, pages 381–390. ACM New York, NY, USA, 2009.

[DY08] C. Dwork and S. Yekhanin. New efficient attacks on statistical disclosure control
mechanisms. Advances in Cryptology–CRYPTO 2008, pages 469–480, 2008.

[HT10] M. Hardt and K. Talwar. On the Geometry of Differential Privacy. In The 42nd
ACM Symposium on the Theory of Computing, 2010. STOC’10, 2010.

[KRSU10] S. Kasiviswanathan, M. Rudelson, A. Smith, and J. Ullman. The Price of Pri-
vately Releasing Contingency Tables and the Spectra of Random Matrices with
Correlated Rows. In The 42nd ACM Symposium on the Theory of Computing,
2010. STOC’10, 2010.

[KS94] M.J. Kearns and R.E. Schapire. Efficient distribution-free learning of probabilistic
concepts*. Journal of Computer and System Sciences, 48(3):464–497, 1994.

[MT07] F. McSherry and K. Talwar. Mechanism design via differential privacy. In Pro-
ceedings of the 48th Annual Symposium on Foundations of Computer Science,
2007.

[NRS07] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity and sampling in
private data analysis. In Proceedings of the thirty-ninth annual ACM symposium
on Theory of Computing, 2007.

[RR10] A. Roth and T. Roughgarden. Interactive Privacy via the Median Mechanism. In
The 42nd ACM Symposium on the Theory of Computing, 2010. STOC’10, 2010.

[UV10] J. Ullman and S. Vadhan. PCPs and the Hardness of Generating Synthetic Data
. Manuscript, 2010.

10


