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Abstract

Long Code testing is a fundamental problem in the area of property
testing and hardness of approximation. In this paper, we study how small
the soundness s of the Long Code test with perfect completeness can be
by using non-adaptive q queries. We show that s = (2q+3)/2q is possible,
where q is of the form 2k − 1 for any integer k > 2.

Key words: Long Code test, dictatorship test, influence of variables, amor-
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1 Introduction

Testing basic properties of Boolean functions is a well studied subject in the area
of property testing, complexity theory and learning theory [19, 40]. Examples of
such properties include: Linear functions, singleton functions, juntas, low-degree
polynomials, and several other concise representations [12, 8, 2, 38, 3, 17, 10, 11].
In property test setting, our goal is, given oracle access to Boolean function(s)
of the form f : {−1, 1}n → {−1, 1}, to decide whether the functions satisfy a
certain property, or are far from the property, where the definition of farness
varies according to the property of interest and intended applications of the test.
There are several parameters that characterize testers: Completeness, denoted
by c, is the lower bound on the probability that the tester accepts functions
which satisfy the property. Soundness, denoted by s, is the upper bound on
the probability that the tester accepts functions that are far from the property.
Query complexity, denoted by q, is the total number of oracle accesses in one
execution of the tester. An adaptive tester means that the tester can make
queries that depend on the answers of previous queries. Otherwise the tester is
said to be non-adaptive.

The property of our interest in this paper is the Long Code. Long Code
is a function of the form f(x) = xi for some index i. In the multi-function

∗Graduate School of Informatics, Kyoto University tamak@kuis.kyoto-u.ac.jp.
†National Institute of Informatics and Preferred Infrastructure, Inc. yyoshida@nii.ac.jp.
An extended abstract of this paper has appeared in Proceedings of the 14th International

Workshop on Randomization and Computation (RANDOM 2010), pp. 738–751.

1



Long Code testing problem, the task is, given oracle access to a collection of
Boolean functions {f1, f2, . . . , ft}, to distinguish the following two cases: (i)
there exists an index i such that f1(x) = f2(x) = · · · = ft(x) = xi, or (ii)
for every index i and every fj ̸= fk, either fj or fk is far from f(x) = xi.
The notion of Long Code was introduced by Bellare et al. [9] in the context of
Probabilistically Checkable Proofs (PCPs) (also studied by Parnas et al. [38] in
name of “dictatorship function”). We quickly review the use of (multi-function)
Long Code test in PCPs and hardness of approximation. From now on, when we
say just PCP, it means a PCP for some NP-complete language. Recall that most
efficient PCP constructions today such as the celebrated work of H̊astad [23]
follow the paradigm of composing “outer verifier” and “inner verifier.”

An outer verifier is a certain kind of two prover one round games (or equiv-
alently label cover problems); e.g., the combination of the PCP theorem [6, 4]
and Raz’s parallel repetition theorem [39] (we often call the combination Raz
verifier), or Unique Games or d-to-1 Games [29]. An inner verifier is essentially
a multi-function Long Code tester. By composing outer and inner verifiers, we
obtain a PCP, which often has the same parameters of the underlying Long
Code tester. Therefore improving the quality of Long Code testers yields better
constructions of PCPs. Here we note that criterion for soundness used in a Long
Code tester/inner verifier may restrict the type of an outer verifier to ensure
that they can be composed. We elaborate on this issue later.

The use of PCP constructions in hardness of approximation is quite stan-
dard. The acceptance criteria of Long Code testers/PCPs correspond to specific
optimization problems and the ratio of completeness and soundness s/c gives
the inapproximability ratio of the corresponding problems. For more details on
the relation between Long Code tests, PCPs and hardness of approximation,
see [30] for the general framework and [36] for constraint satisfaction problems
(CSPs).

With the connection between Long Code testers and PCPs in mind, we some-
times compare the parameters of them at the same time without distinction.
There are several interesting trade-offs between parameters as follows:

Criteria for soundness The definition of farness is quite an important issue
in the composition paradigm. Several possible criteria for rejection are; dis-
tance from any Long Codes or any juntas, quasi-randomness, and low-degree
influences. Which criterion is used in Long Code test poses some restriction on
an outer verifier, e.g., if we use quasi-randomness, the tester can be composed
with Raz verifier, but if we use low-degree influences, it is hard to combine
the tester with Raz verifier though it may be composed with Unique Games. It
may also affect the lowest possible value of the soundness with other parameters
fixed.

Perfect completeness vs. almost perfect completeness It is known
that the soundness of PCPs with perfect completeness (c = 1) can be worse
than that of PCPs with almost perfect completeness (c = 1 − ε). H̊astad [23]
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designed a non-adaptive 3-query PCPs with almost perfect completeness and
s = 1/2. Zwick [45] showed that any non-adaptive 3-query PCPs with perfect
completeness must have soundness s ≥ 5/8. He conjectured s = 5/8 is optimal.
H̊astad [23] showed s = 3/4 is possible and Khot and Saket [31] improved this
to s = 20/27. Finally, O’Donnell and Wu [37] showed s = 5/8 under Khot’s
d-to-1 Games conjecture. We remark that perfect completeness is important for
several reasons: First, it is natural to require that testers should always accept
correct objects. Second, it is required to show the inapproximability results for
certain problems such as satisfiable CSPs and approximate coloring problems.
Third, it is robust when we compose testers with other protocols.

Adaptive vs. non-adaptive queries It is also known that adaptive queries
are more powerful than non-adaptive queries. Guruswami et al. [20] showed
adaptive 3-query PCPs with c = 1, s = 1/2. As mentioned previously, Zwick
showed non-adaptive 3-query PCPs with c = 1 have s ≥ 5/8. Non-adaptivity is
crucial in applications for inapproximability; we need queries to be non-adaptive
to relate the parameters of PCPs to the inapproximability ratio of optimization
problems.

Query complexity vs. soundness The trade-off between query complexity
and soundness is also formalized as amortized query complexity, which is defined
as q

log2(c/s)
. Observe that repeating the tester t times independently, we can

reduce the soundness to st while query complexity grows as t · q. In this case,
the amortized query complexity of the repeated tester remains the same as that
of the original one. Hence this can be thought as a good and non-trivial measure
for such trade-offs. Thus, constructions of testers that achieve better amortized
query complexity is an interesting problem.

In this paper, we study the trade-offs between query complexity and sound-
ness in the Long Code testing problem. Our focus is on non-adaptive testers
with perfect completeness (c = 1).

1.1 Previous Work

The study of amortized query complexity in PCPs was initiated by Trevisan [44]
and many works followed it [41, 42, 27, 26, 18]. One of the most notable earlier
work is due to Samorodnitsky and Trevisan [42]: They constructed q-query non-
adaptive PCPs with almost perfect completeness and s = 22

√
q/2q for infinitely

many q. Later Engebretsen and Holmerin [18] improved this to s = 2
√
2q/2q.

H̊astad and Khot constructed PCPs with perfect completeness and s = 24
√
q/2q.

All these constructions use the distance from juntas in soundness condition,
which allows them to compose Raz verifier as an outer verifier. Hence the
resulting PCPs are unconditional.

Samorodnitsky and Trevisan [43] observed that the trade-offs achieved by
these works are essentially tight if the soundness criterion is with respect to
the distance from juntas. (Similar limitations were shown by [14, 32].) To
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break the s = 2Θ(
√
q)/2q barrier, they reworked the problem under the relaxed

soundness criterion, i.e., low-degree influences. They proposed and analyzed
the Hyper Graph Long Code test, that achieves almost perfect completeness
and s = 2q/2q (or even (q + 1)/2q for infinitely many q), and combined it with
Unique Games to construct conditional PCPs with the same parameters. They
use a novel technique from additive combinatorics, namely, Gowers uniformity
norm, in the analysis. Later Austrin and Mossel [5] improved the soundness to
s = (q + o(q))/2q (or even (q + 4)/2q assuming the famous Hadamard Conjec-
ture) for any q. Their technique is completely different from [43] and based on
the Invariance Principle, which was developed by Mossel et al. [33, 34]. Sim-
ilar constructions were also given in [24, 1, 21] where the emphasis is on the
hardness of CSPs over “random predicates” or predicates of non-Boolean do-
mains. However, all these works are affected by the loss of perfect completeness.
Recently, Chen [16], building on the work of Samorodnitsky and Trevisan [43]
and H̊astad and Khot [26], showed q-query “adaptive” Long Code testers with
perfect completeness and s = q3/2q for infinitely many q.

1.2 Our Contribution

In this paper, we prove the following theorem:

Theorem 1.1. For every k > 2, there exists a non-adaptive Long Code tester
that makes q = 2k − 1 queries, has completeness 1 and soundness (2q + 3)/2q.

1.3 Our Method

Our tester and its analysis is based on a natural but non-trivial extension of
O’Donnell and Wu’s analysis for hardness of satisfiable 3-CSPs over Not-Two
(NTW) predicates [37]. The most technical part of O’Donnell-Wu’s work is to
bound the term of the form E[f(x)g(y)g(z)] where x,y, z are drawn from the
“NTW”-distribution. We extend this to the case of the product of large number
of functions with more complex distribution.

First we need to define suitable test distributions to make queries. To achieve
good query complexity-soundness trade-offs, we adopt the Hyper Graph test
introduced by Samorodnitsky and Trevisan [43]. The Hyper Graph test can
only test linearity; for testing Long Code, we need to perturb the Hyper Graph
test with some “noise” distribution.

Most often, the noise distribution is the uniform distribution. A mixture
of the distribution for linearity test and uniform distribution with sufficiently
small probability often yields a desired Long Code test. However, this forces
the loss of perfect completeness because possible query-answers supports all
over the domain, and any “yes-instance” can be rejected with small probabil-
ity. To avoid this, Chen [16] introduced a noise distribution based on H̊astad
and Khot’s query-efficient PCPs with perfect completeness [26]. His analysis is
based on Fourier analysis and Gowers norm as Samorodnitsky and Trevisan did.
Although his test achieves good query-soundness trade-offs, one drawback is its
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adaptivity. In this paper, we use a different noise distribution, a modification
of the All-Equal noise. Previously, the All-Equal noise was used by O’donnell
and Wu [36] combined with 3-bit linearity test to achieve c = 1, s = 5/8, non-
adaptive Long Code test based on NTW predicate. The analysis is based on
Fourier analysis and hypercontractivity inequality. Later the same authors [37]
managed to construct PCPs with the same parameters c = 1 and s = 5/8 un-
der Khot’s d-to-1 Games conjecture [29]. The analysis is based on Invariance
Principle style argument [33, 34]. The crucial point is bounding the correlation
of probability spaces.

We follow the approach of [37]. Basically our analysis becomes complicated
because we have to bound terms of the form E[f1f2 · · · fq] instead of a “cubic”-
term, but some analysis becomes easier because we only work with functions over
the same domain (or functions with “unique” constraints) rather than functions
with d-to-1 constraints as in the case of [37].

1.4 Organization of Paper

In Section 2, we introduce notations and definitions needed throughout this
paper. Also, we describe backgrounds on correlated spaces. In Section 3, we
define our multi-function Long Code testing problem formally, then we describe
our test distribution and Long Code test. In Section 4, we present completeness
and soundness analysis of our tester. Finally, we notice some future work in
Section 5.

2 Preliminaries

Let [k] = {1, 2, . . . , k}, 2[k]≥1 = {S ⊆ [k] : |S| ≥ 1} and 2
[k]
≥2 = {S ⊆ [k] : |S| ≥ 2}.

For a vector x ∈ {−1, 1}n, xi denotes the ith element of x. Write the all-ones
vector as 1 = (1, 1, . . . , 1) and denote by 1−i a vector obtained by flipping the ith
coordinate of 1 to −1. A set {i} is sometimes written as i. We denote by |S| the
cardinality of a set S. A Boolean function is a function f : {−1, 1}n → {−1, 1}.

2.1 Fourier Expansion

Definition 2.1 (Fourier expansion). The Fourier expansion of a function f :
{−1, 1}n → R is

f(x) =
∑
S⊆[n]

f̂(S)χS(x),

where
χS(x) =

∏
i∈S

xi, f̂(S) = E
x
[f(x)χS(x)] ,

and expectation is with respect to uniform distribution.

It is easy to see that for any S, T ⊆ [n], Ex[χS(x)χT (x)] = 1 if S = T and 0
otherwise. From this, we have
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Lemma 2.2 (Parseval’s theorem).

E
x
[f(x)2] =

∑
S⊆[n]

f̂(S)2.

For more on Fourier expansion and Fourier analysis see, e.g., [35].

2.2 Influences

In this section we recall basic notions from Fourier analysis, influence and the
Bonami-Beckner operator. We first define a notion of the influence of a coordi-
nate on a function f :

Definition 2.3. For a function f : {−1, 1}n → R, we define the influence of
i ∈ [n] on f to be

Infi(f) =
∑
S∋i

f̂(S)2.

We also define the degree-w influence of i ∈ [n] on f to be

Inf≤wi (f) =
∑

S∋i:|S|≤w

f̂(S)2.

Next we define the cross-influence of a coordinate on a collection of functions.

Definition 2.4. Let f1, . . . , ft be a collection of Boolean functions. Then the
cross-influence of i for them is defined as

XInfi(f1, . . . , ft) = max
j ̸=k

min(Infi(fj), Infi(fk)).

Similarly,

XInf≤wi (f1, . . . , ft) = max
j ̸=k

min(Inf≤wi (fj), Inf
≤w
i (fk)).

Note that XInfi is the second highest value of Infi(fj) among all functions fj.

We next recall the Bonami-Beckner operator Tρ acting on Boolean functions:

Definition 2.5. Let 0 ≤ ρ ≤ 1. The Bonami-Beckner operator Tρ is a linear
operator mapping functions f : {−1, 1}n → R into functions Tρf : {−1, 1}n → R
via

(Tρf)(x) = E[f(y)],

where in the expectation, y is formed from x by setting yi = xi with probability
ρ and setting yi to be a uniformly random bit with probability 1− ρ.

The following lemma is useful.

6



Lemma 2.6. (Hypercontractive inequality [13, 22]) Let p, q, γ be real numbers

such that 1 ≤ p ≤ q and 1−γ ≤
√

p−1
q−1 , Then it holds that for all f : {−1, 1}n →

R,
||T1−γf ||q ≤ ||f ||p.

The operator Tρ can alternately be defined by the following formula:

Lemma 2.7.
Tρf =

∑
S⊆[n]

ρ|S|f̂(S)χS .

We need the following lemmas.

Lemma 2.8. For any function f : {−1, 1}n → [−1, 1] and 0 < γ < 1/2,

n∑
i=1

Infi(T1−γf) ≤
1

2γ
.

Lemma 2.9. Let f be a Boolean function and γ > 0. Suppose Infi(T1−γ/2f) ≥
τ , then there exists a constant w which only depends on γ and τ such that
Inf≤wi (f) ≥ τ

2 .

Proof. Set w such that (1− γ
2 )
w ≤ τ

2 , then

τ ≤ Infi(T1−γ/2f) =
∑
S∋i

(1− γ

2
)|S|f̂(S)2

=
∑

S∋i,|S|≤w

(1− γ

2
)|S|f̂(S)2 +

∑
S∋i,|S|>w

(1− γ

2
)|S|f̂(S)2

≤
∑

S∋i,|S|≤w

f̂(S)2 + (1− γ

2
)w ≤ Inf≤wi (f) +

τ

2
,

where the second inequality is by Parseval’s theorem.

2.3 Correlated Spaces and Noise

We now recall the definition of correlation for correlated probability spaces, as
introduced by Mossel [34].

Definition 2.10. Let (Ω,Ψ, µ) be a (finite) correlated probability space, meaning
that µ is a distribution on the finite product set Ω × Ψ and that the marginals
of µ on Ω and Ψ have full support. Define the correlation ρ(Ω,Ψ;µ) between Ω
and Ψ to be

max

{
Cov

(ω,ψ)∼µ
[f(ω), g(ψ)] | f : Ω → R, g : Ψ → R, Var

(ω,ψ)∼µ
[f(ω)] = Var

(ω,ψ)∼µ
[g(ψ)] = 1

}
It is clear that in the definition of ρ(Ω,Ψ;µ), we can equivalently maximize

|E[fg]| over f restricted to have E[f ] = 0,E[f2] ≤ 1 under µ’s marginal on Ω;
or, over similarly restricted g (or both).
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Definition 2.11 (Markov Operator). Let (Ω,Ψ, µ) be a correlated probability
space. Markov Operator associated with the probability space is the operator
mapping f ∈ Lp(Ψ, µ) to Uf ∈ Lp(Ω, µ) by

(Uf)(x) = E [f(Y )|X = x]

for x ∈ Ω where (X,Y ) ∈ (Ω,Ψ) is distributed according to µ.

Lemma 2.12. (Lemma 2.9 of [34]) Let (Ω,Ψ, µ) be two correlated spaces and
let α be the minimum probability in the support of µ. Define a bipartite graph
G = (Ω,Ψ, E) where (a, b) ∈ Ω × Ψ satisfies (a, b) ∈ E if µ(a, b) > 0. If G is
connected then

ρ(Ω,Ψ;µ) ≤ 1− α2/2.

Efron-Stein Decomposition is an analogue of Fourier expansion for (non-
Boolean) functions over general domains.

Definition 2.13 (Efron-Stein Decomposition). Let (Ω1, µ1), . . . , (Ωn, µn) be
discrete probability spaces (Ω, µ) =

∏n
i=1(Ωi, µi). The Efron-Stein decompo-

sition of f : Ω → R is given by

f(x) =
∑
S⊆[n]

fS(x), (1)

where
fS(x) =

∑
S′⊆S

(−1)|S\S
′|
E[f(X)|(Xi)i∈S′ = (xi)i∈S′ ].

From the definition of fS(x), fS depends only on (xi)i∈S , and it is known
that for all S ̸⊆ S′ and (xi)i∈S′ it holds that E[fS |(Xi)i∈S′ = (xi)i∈S′ ] = 0 [34].

Proposition 2.14. (Proposition 2.11 of [34]) Let (Ωi,Ψi, µi) be correlated prob-
ability spaces and let Ui be the Markov operator associated with Ωi and Ψi for
1 ≤ i ≤ n. Let

Ω =

n∏
i=1

Ωi,Ψ =

n∏
i=1

Ψi, µ =

n∏
i=1

µi, U =

n⊗
i=1

Ui.

Suppose f ∈ L2(Ψ) has Efron-Stein decomposition (1). Then the Efron-Stein
decomposition of Uf satisfies

(Uf)S = U(fS).

Proposition 2.15. (Proposition 2.12 of [34]) Assume the setting of Proposi-
tion 2.14 and that further for all i it holds that ρ(Ωi,Ψi, µi) ≤ ρi, Then for all
f it holds that

||U(fS)||2 ≤

(∏
i∈S

ρi

)
||fS ||2.

Proposition 2.16. (Proposition 2.13 of [34]) Assume the setting of Proposi-
tion 2.14. Then

ρ (Ω,Ψ;µ) = max ρ (Ωi,Ψi, µi) .
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3 Long Code Test

Definition 3.1. For i ∈ [n], the ith Long Code is the function f(x) = xi

Now let us define a t-function Long Code Test. Suppose we are given oracle
access to a collection of Boolean functions f1, f2, . . . , ft. We want to make as
few queries as possible into these functions to decide if all the functions are
the same Long Code, or no two functions have some common structure. More
precisely, we have the following definition:

Definition 3.2. We say that a test T = Tf1,f2,...,ft is a t-functions Long Code
test with completeness c and soundness s if T is given oracle access to a family
of t functions f1, f2, . . . , ft : {−1, 1}n → {−1, 1}, such that

• if there exists some i ∈ [n] such that for all a ∈ [t], fa(x) = xi, then T
accepts with probability at least c, and

• for every ε > 0, there exist a constant τ > 0 and a fixed positive integer
w such that if T accepts with probability at least s + ε, then there exists
some i ∈ [n] such that XInf≤wi (f1, . . . , ft) ≥ τ .

3.1 Folding

As introduced in [9], we assume that the functions are folded. We do so by
requiring our Long Code test to make queries in a special manner. Suppose the
test wants to query f at point x ∈ {−1, 1}n. If x1 = 1, then the test queries
f(x) as usual. If x1 = −1, then the test queries at the point −x and use −f(−x)
as the evaluation of x. Folding ensures that f(−x) = −f(x) and f̂(∅) = 0.

3.2 The Test Distribution

We now view fS : {−1, 1}n → {−1, 1} as a function over an n-fold product set
X 1
S ×X 2

S × · · · × Xn
S where each X i

S = {−1, 1}{i}.
For each integer k > 2, we construct Tk as a product probability distribution

over the n-fold product set

n∏
i=1

∏
S∈2

[k]
≥1

X i
S =

n∏
i=1

X i
1 ×

n∏
i=1

X i
2 × · · · ×

n∏
i=1

X i
n ×

n∏
i=1

X i
{1,2} × · · · ×

n∏
i=1

X i
{1,2,...,k}.

For each i we have a distribution T i
k on

∏
S∈2

[k]
≥1

X i
S and we think of this as a

“correlated space.”
The first distribution is the “Hyper Graph Test” distribution which is a

slight modification of the one used by Samorodnitsky and Trevisan [43].

Definition 3.3. Define distribution Hk generating (x1,x2, . . . ,x{1,2,...,k}) ∈∏
S∈2

[k]
≥1

X i
S as follows: The bits {xj}j∈[k] are independent and uniformly at

random; then for each S ∈ 2
[k]
≥2, xS is set to be −

∏
j∈S xj.
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Note that under Hk, the marginal distribution on xS for each S ∈ 2
[k]
≥2 is

also uniformly random. The second distribution is the “Noise” distribution.

Definition 3.4. Let p, q, r > 0 be such that

p+ q + (2k − 1)r = 1,

p+ r = q + (2k − 2)r = 1/2,

q = r,

i.e., p = (2k − 2)/(2k+1 − 2), q = r = 1/(2k+1 − 2). Define distribution Nk

generating x = (x1,x2, . . . ,x{1,2,...,k}) ∈
∏
S∈2

[k]
≥1

X i
S as follows: (i) With proba-

bility p, set x = 1, (ii) with probability q, set x = −1, and (iii) with probability

(2k−1)r, first pick S ∈ 2
[k]
≥1 uniformly at random, then set x = −1−S, i.e, all −1

everywhere except the coordinate indexed by S is 1. Additionally, for 0 < δ < 1,
define distribution Hk,δ to be the mixture distribution Hk,δ = (1− δ)Hk + δNk;
i.e., one draws from Hk with probability 1− δ and from Nk with probability δ.

Again note that under Nk (also Hk,δ), the marginal distribution on xS for

each S ∈ 2
[k]
≥1 is uniformly random.

We are now ready to define the test distribution T i
k :

Definition 3.5. For each i ∈ [n] we define T i
k to be Hk,δ, with δ = ( ε

9·|2[k]
≥1

|
)2,

where the domain of Hk,δ is appropriately identified with the domain
∏
S∈2

[k]
≥1

X i
S

of T i
k . Tk is the product distribution of these distributions Tk = ⊗ni=1T i

k

Definition 3.6. For any positive integer k and S0 ∈ 2
[k]
≥1, we define distribution

Ik,S0 generating (x1,x2, . . . ,x{1,2,...,k}) ∈
∏
S∈2

[k]
≥1

X i
S as follows: First draw

from Hk; then uniformly rerandomize xS0 .

Definition 3.7. For 0 < δ < 1, define distribution Ik,S0,δ to be the mixture
distribution Ik,S0,δ = (1− δ)Ik,S0 + δNk.

3.3 A Query Efficient Long Code Test

Let k > 2 be an integer and {fS}S∈2
[k]
≥1

be a collection of Boolean functions. We

define the following Long Code test based on distribution Tk:
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� �
Long Code Test Tk: with oracle access to {fS}S∈2

[k]
≥1

1. Pick (x1,x2, . . . ,x{1,2,...,k}) ∈
∏
S∈2

[k]
≥1

∏n
i=1 X i

S from Tk.

2. For each S ∈ 2
[k]
≥1, query fS(xS).

3. Accept iff either of the followings holds:

(a) (Hyper Graph) For every S ∈ 2
[k]
≥2,

∏
s∈S fs(xs) ̸= fS(xS), or

(b) (Noise) (f{1}(x1), f{2}(x2), . . . , f{1,2,...,k}(x{1,2,...,k})) is either 1

or −1 or −1−S for some S ∈ 2
[k]
≥1.� �

Theorem 3.8 (main theorem restated). For every integer k > 2, there exists a
non-adaptive Long Code test Tk that makes q = 2k−1 queries, has completeness
1 and soundness (2q + 3)/2q.

We briefly explain the idea behind our Long Code test.
First, the test is “approximation resistant” in the sense that random func-

tions pass the test with probability (2q + 3)/2q, i.e., the soundness of the test.
Therefore, to obtain the soundness claimed above, we examine the Fourier ex-
pansion of the acceptance probability and show that all non-constant terms are
sufficiently small for random functions.

Second, since our goal is to test whether functions are Long Codes or not, we
have to be able to test whether functions are linear functions or not efficiently.
To do so, we employ the distribution based on the Hyper Graph Test. Note
that arbitrary linear functions such as parity functions pass the test using only
this distribution with probability one.

Third, to test Long Code instead of linear functions, we need noise distri-
bution to kill “large” linear functions, i.e., linear functions which depend on
many input variables. Our noise distribution achieves the purpose well. If we
sample from our test distribution, roughly (1 − δ) fraction of indices sample
from the Hyper Graph Test distribution and δ fraction of indices sample from
the Noise distribution, and large linear functions cannot pass the test with high
probability.

4 Proof of Theorem 3.8

Completeness Analysis: The completeness analysis is entirely standard.

Soundness Analysis: We prove that for every ϵ > 0, there exist a constant
τ > 0 and a positive integer w such that if for every i, XInf≤wi (f1, . . . , f[k]) < τ ,
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then the accepting probability is at most

2|2[k]≥1|+ 3

2|2
[k]
≥1

|
+ ϵ.

We arithmetize the probability thatTk accepts. Let ZS = −fS(xS)
∏
s∈S fs(xs).

Then

Pr[Tk accepts] = E
Hn

k,δ

 ∏
S∈2

[k]
≥2

1 + ZS
2

+
∏

S∈2
[k]
≥1

1− fS(xS)

2
+
∏

S∈2
[k]
≥1

1 + fS(xS)

2

+
∑

S′∈2
[k]
≥1

1 + fS′(xS′)

2

∏
S∈2

[k]
≥1

\{S′}

1− fS(xS)

2

 .
This can be written as

= E
Hn

k,δ

 1

2|2
[k]
≥2

|

∑
S⊆2

[k]
≥2

∏
S∈S

ZS +
1

2|2
[k]
≥1

|

∑
S⊆2

[k]
≥1

(−1)|S|
∏
S∈S

fS(xS) +
1

2|2
[k]
≥1

|

∑
S⊆2

[k]
≥1

∏
S∈S

fS(xS)

+
∑

S′∈2
[k]
≥1

1 + fS′(xS′)

2|2
[k]
≥1

|

∑
S⊆2

[k]
≥1

\{S′}

(−1)|S|
∏
S∈S

fS(xS)


≤ 1

2|2
[k]
≥2

|

∑
S⊆2

[k]
≥2

E
Hn

k,δ

[∏
S∈S

ZS

]
+

2 + |2[k]≥1|

2|2
[k]
≥1

|

∑
S⊆2

[k]
≥1

∣∣∣∣∣ EHn
k,δ

[∏
S∈S

fS(xS)

]∣∣∣∣∣ .
We obtain the bounds

1

2|2
[k]
≥2

|

∑
S⊆2

[k]
≥2

E
Hn

k,δ

[∏
S∈S

ZS

]
=

1

2|2
[k]
≥2

|
+

1

2|2
[k]
≥2

|

∑
S⊆2

[k]
≥2

:S̸=∅

E
Hn

k,δ

[∏
S∈S

ZS

]
≤ 1

2|2
[k]
≥2

|
+ ε/3

and

2 + |2[k]≥1|

2|2
[k]
≥1

|

∑
S⊆2

[k]
≥1

∣∣∣∣∣ EHn
k,δ

[∏
S∈S

fS(xS)

]∣∣∣∣∣ =
2 + |2[k]≥1|

2|2
[k]
≥1

|
+

2 + |2[k]≥1|

2|2
[k]
≥1

|

∑
S⊆2

[k]
≥1

:S ̸=∅

∣∣∣∣∣ EHn
k,δ

[∏
S∈S

fS(xS)

]∣∣∣∣∣
≤

2 + |2[k]≥1|

2|2
[k]
≥1

|
+ 2ε/3

using the following lemma.
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Lemma 4.1. For any ε > 0, there exists τ, δ, w such that if XInf≤wi (f1, . . . , f[k]) <

τ for any i then, for any S ⊆ 2
[k]
≥1, S ̸= ∅,∣∣∣∣∣ EHn

k,δ

[
∏
S∈S

fS(xS)]

∣∣∣∣∣ ≤ ε

3 · |2[k]≥1|
.

Note that the termEHn
k,δ

[∏
S∈S ZS

]
is also represented as±EHn

k,δ
[
∏
S∈S′ fS(xS)]

since each fS is a Boolean function.

4.1 Proof of Lemma 4.1

First note that for any S ⊆ 2
[k]
≥1, |S| ≤ 2, the LHS becomes at most δ since

the marginal distribution of Hn
k,δ on

∏
S∈S

∏n
i=1 X i

S is uniformly random and

functions are folded. We need to prove Lemma 4.1 for S ⊆ 2
[k]
≥1, |S| ≥ 3 and

actually we only prove Lemma 4.1 for S = 2
[k]
≥1; any choice of S can be handled

in almost the same way. It is easy to see that following lemmas with the triangle
inequality concludes the proof of Lemma 4.1. Note that in Definition 3.5, we
set δ to satisfy max{δ, 3

√
δ} ≤ ε

3·|2[k]
≥1

|
.

Lemma 4.2. By taking γ > 0 small enough as a function of δ, k,∣∣∣∣∣ EHn
k,δ

[∏
S∈S

fS(xS)−
∏
S∈S

T1−γfS(xS)

]∣∣∣∣∣ ≤ √
δ.

Lemma 4.3. For any S0 ∈ S, |S| ≥ 3, γ, δ, there exist τ, w such that if XInf≤wi (f1, . . . , f[k]) <
τ for any i then,∣∣∣∣∣ EHn

k,δ

[∏
S∈S

T1−γfS(xS)

]
− E

In
k,S0,δ

[∏
S∈S

T1−γfS(xS)

]∣∣∣∣∣ ≤ √
δ.

Lemma 4.4. For any S0 ∈ S, γ, δ, it holds that∣∣∣∣∣ E
In
k,S0,δ

[∏
S∈S

T1−γfS(xS)

]∣∣∣∣∣ ≤ √
δ.

Proofs of Lemmas 4.2, 4.3 and 4.4 are given in Subsections 4.2, 4.3 and 4.4,
respectively.

4.2 Proof of Lemma 4.2

We define a lexicographical order <lex between elements of 2
[k]
≥1 as

1 <lex 2 <lex · · · <lex n <lex {1, 2} <lex {1, 3} <lex · · · <lex {1, 2, . . . , k},

and let Sl ⊆ 2
[k]
≥1 be the first l elements according to <lex. It is easy to see

that the following lemma with the triangle inequality completes the proof of
Lemma 4.2.
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Lemma 4.5. By taking γ > 0 small enough as a function of δ, k, we ensure,

for any l ∈ [|2[k]≥1|],∣∣∣∣∣∣ EHn
k,δ

∏
S∈Sl

fS(xS) ·
∏

S∈S\Sl

T1−γfS(xS)−

∏
S∈Sl−1

fS(xS) ·
∏

S∈S\Sl−1

T1−γfS(xS)

∣∣∣∣∣∣ ≤ √
δ/2|2

[k]
≥1

|.

Proof. We only prove the case for l = |2[k]≥1|. Other cases can be handled in

almost the same way by changing the role of f[k] and
∏n
i=1 X i

[k] to fS and∏n
i=1 X i

S for each S ∈ 2
[k]
≥1. (Notice that we can do so by Lemma 4.6 that

ensures the correlation is strictly less than 1. This is not the case in the proof
of Theorem C.1 in [37]; they need some additional analysis for some choice of l,
i.e., the proof of Lemma C.5.) We have∣∣∣∣∣∣∣ EHn

k,δ

 ∏
S∈2

[k]
≥1

fS(xS)−
∏

S∈2
[k]
≥1

\[k]

fS(xS) · T1−γf[k](x[k])


∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣ EHn
k,δ

 ∏
S∈2

[k]
≥1

\[k]

fS(xS) · (id− T1−γ)f[k](x[k])


∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣ EHn
k,δ

 ∏
S∈2

[k]
≥1

\[k]

fS(xS) · U(id− T1−γ)f[k](x1,x2, . . . ,x{2,3,...,k})


∣∣∣∣∣∣∣ , (2)

where U is the Markov operator for the correlated probability space
(
∏
S∈2

[k]
≥1

\[k](
∏n
i=1 X i

S),
∏n
i=1 X i

[k];H
n
k,δ), which maps functions on the latter space∏n

i=1 X i
[k] into functions on the former space

∏
S∈2

[k]
≥1

\[k](
∏n
i=1 X i

S).

Now we consider the quantity inside the expectation in (2) to be a prod-
uct of two functions on

∏
S∈2

[k]
≥1

\[k](
∏n
i=1 X i

S), namely, F =
∏
S∈2

[k]
≥1

\[k] fS and

G = U(id−T1−γ)f[k]. We take the Efron-Stein decomposition of these two func-
tions with respect to the (product) distribution

∏
S∈2

[k]
≥1

\[k](
∏n
i=1 X i

S). Then by

the orthogonality of the Efron-Stein decomposition and the Cauchy-Schwartz
inequality,

(2) =

∣∣∣∣∣∣
∑
V⊆[n]

E
Hn

k,δ

[FV (x1, . . . ,x{2,...,k}) ·GV (x1, . . . ,x{2,...,k})]

∣∣∣∣∣∣
≤

√ ∑
V⊆[n]

||FV ||22
√ ∑
V⊆[n]

||GV ||22. (3)
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where the 2-norms || · ||2 are with respect to Hn
k,δ’s marginal distribution on∏

S∈2
[k]
≥1

\[k](
∏n
i=1 X i

S). By orthogonality again, the quantity
√∑

V⊆[n] ||FV ||22 is

just ||F ||2, which is precisely 1 because F ’s range is {−1, 1}. Hence we have

(3) ≤
√ ∑
V⊆[n]

||GV ||22. (4)

From Lemma 2.14, GV = UG′
V where G′ = (id − T1−γ)f[k]. Here the

Efron-Stein decomposition is with respect to Hn
k,δ’s marginal distribution on∏n

i=1 X i
[k], i.e., the uniform distribution. It is also easy to check that this Efron-

Stein decomposition of f[k] has

(f[k])V = f̂[k](V )χV .

It follows that applying the Bonami-Beckner operator T1−γ to f[k] also commutes
with taking the Efron-Stein decomposition. Hence we have GV = UG′

V =
U(id− T1−γ)(f[k])V . Substituting this into (4) yields

(4) =

√ ∑
V⊆[n]

||U(id− T1−γ)(f[k])V ||22. (5)

From Lemma 4.6, which is proved later, the correlation

ρ

 ∏
S∈2

[k]
≥1

\[k]

X i
S ,X i

[k];Hk,δ

 ≤ ρ0 = 1− α2/2

for every i ∈ [n], where α = δ/(2k+1−2); Applying Proposition 2.15, we conclude
that for each V ⊆ [n],

||U(id− T1−γ)(f[k])V ||2 ≤ ρ
|V |
0 ||(id− T1−γ)(f[k])V ||2, (6)

where the 2-norm on the right is with respect to the uniform distribution on
{−1, 1}n.

Next, observe that

||(id− T1−γ)(f[k])V ||22 = (1− (1− γ)|V |)2f̂[k](V )2.

Substituting (6) and then into (5), we determine

(5) ≤
√ ∑
V⊆[n]

ρ
2|V |
0 (1− (1− γ)|V |)2f̂[k](V )2. (7)

We now bound

ρ
|V |
0 (1− (1− γ)|V |) ≤ max{ρ|V |

0 , (1− (1− γ)|V |)} ≤
√
δ/2|2

[k]
≥1

|.
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Set β =
√
δ/2|2

[k]
≥1

| and γ = β log ρ0/ log β. Then, if |V | ≥ log β/ log ρ0, we have

ρ
|V |
0 ≤ β. If |V | < log β/ log ρ0, (1− (1− γ)|V |) ≤ γ|V | ≤ β.
Doing so, we get

(7) ≤
√ ∑
V⊆[n]

(
√
δ/2|2

[k]
≥1

|)2f̂[k](V )2 = (
√
δ/2|2

[k]
≥1

|)
√

E[f2[k]] =
√
δ/2|2

[k]
≥1

|

where the first equality is by Parseval’s theorem.

Now, we give Lemma 4.6.

Lemma 4.6. For any i ∈ [n] and S′ ∈ 2
[k]
≥1,

ρ

 ∏
S∈2

[k]
≥1

\{S′}

X i
S ,X i

S′ ;Hk,δ

 ≤ 1− α2/2,

where α = δ/(2k+1 − 2).

Proof. We use Lemma 2.12 to show that

ρ

 ∏
S∈2

[k]
≥1

\{S′}

X i
S ,X i

S′ ;Hk,δ

 ≤ 1− α2/2 (8)

for each i. First observe that for any (a, b) ∈
∏
S∈2

[k]
≥1

\{S′} X
i
S ,×X i

S′ , either

b = 1 or b = −1 holds. Next observe that vertices (1), (−1) ∈ X i
S′ are con-

nected because there are edges (−1, 1), (−1,−1) due to the definition of the
distribution Nk. Thus we can guarantee that the bipartite graph is connected.
Easy calculation of p, q, r shows that the probability of the smallest atom is
α = δ/(2k+1 − 2).

4.3 Proof of Lemma 4.3

In this section, we prove the following.

Lemma 4.7 (Restatement of Lemma 4.3). For any S0 ∈ S, |S| ≥ 3, γ, δ, there

exist τ, w such that if XInf≤wi (f1, . . . , f[k]) < τ for any i then,∣∣∣∣∣ EHn
k,δ

[∏
S∈S

T1−γfS(xS)

]
− E

In
k,S0,δ

[∏
S∈S

T1−γfS(xS)

]∣∣∣∣∣ ≤ √
δ.

From Proposition 2.9, by setting w as a function of γ and τ , we can assume
XInfi(T1−γ/2f1, . . . , T1−γ/2f[k]) < 2τ for all i where γ is the value chosen in
Section 4.2. To prove Lemma 4.3 for the case |S| ≥ 3, we use an inductive
proof. We replace the distribution from Hn

k,δ = ⊗ni=1Hk,δ to Ink,δ = ⊗ni=1Ik,S0,δ

one component at a time. We will show the following lemma.
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Lemma 4.8. For any l ∈ [n],∣∣∣∣∣∣∣ E
⊗l−1

i=1
Ik,S0,δ

×⊗n
i=l

Hk,δ

[∏
S∈S

T1−γfS(xS)

]
− E

⊗l
i=1

Ik,S0,δ

×⊗n
i=l+1

Hk,δ

[∏
S∈S

T1−γfS(xS)

]∣∣∣∣∣∣∣ ≤ ∆l, (9)

where

∆l = (2τ)γ/2|S|2|S|
∑
S∈S

Inf l(T1−γ/2fS).

We first give the proof Lemma 4.3.

Proof of Lemma 4.3. From Lemma 4.8,∣∣∣∣∣ EHn
k,δ

[∏
S∈S

T1−γfS(xS)

]
− E

In
k,δ

[∏
S∈S

T1−γfS(xS)

]∣∣∣∣∣
≤ (2τ)γ/2|S|2|S|

∑
i∈[n]

∑
S∈S

Infi(T1−γ/2fS)

≤ |S|(2τ)γ/2|S|2|S|/γ.

We use Lemma 2.8 for the last inequality. By choosing τ = (γ
√
δ/(|S|2|S|))O(|S|/γ),

the lemma follows.

In what follows, we show the proof of Lemma 4.8. We only show the proof
for l = 1. The case for l = 2, . . . , n is the same. Actually, we only use the
fact that the unchanged product distribution H′

k,δ =
⊗n

i=2 Hk,δ (when l = 1)
have the property that its marginals on xS for S ∈ S are uniform. Here, We
identify a set S ⊆ [k] with a vector over Fk2 , i.e., the ith element of the vector
corresponding to S is 1 iff S contains i. The following lemma holds.

Lemma 4.9. Let XS be the set of all T ⊆ S satisfying the property that S0 ∈ T
and

∑
S∈T S = 0 over Fk2 . For any functions fS : {−1, 1} → R,

E
Hk,δ

[∏
S∈S

fS(xS)

]
− E

Ik,S0,δ

[∏
S∈S

fS(xS)

]
= −(1−δ)

∑
T∈XS

(−1)|T\[k]|
∏
S∈T

f̂S({1}).

Proof. Taking Fourier expansion of each function in the left hand side, we get

∑
{US}S∈S

∏
S∈S

f̂S(US)

(
E

Hk,δ

[∏
S∈S

χUS
(xS)

]
− E

Ik,S0,δ

[∏
S∈S

χUS
(xS)

])
.

From Hk,δ = (1− δ)Hk + δNk and Ik,S0,δ = (1− δ)Ik,S0 + δNk, it follows that

E
Hk,δ

[∏
S∈S

χUS
(xS)

]
− E

Ik,S0,δ

[∏
S∈S

χUS
(xS)

]
= (1−δ)

(
E
Hk

[∏
S∈S

χUS
(xS)

]
− E

Ik,S0

[∏
S∈S

χUS
(xS)

])
.
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Notice thatHk and Ik,S0
have the same marginal distribution except XS0

. Thus,
to make the expression above non zero, S must contain S0, and US0 must be
{1}. In such a case,

E
Ik,S0

χ{1}(xS0)
∏

S∈S\S0

χUS (xS)

 = E
Ik,S0

[
χ{1}(xS0)

]
E

Ik,S0

 ∏
S∈S\S0

χUS (xS)

 = 0.

It is not hard to see that EHk

[∏
S∈S χUS (xS)

]
becomes non zero iff there exists

T ∈ XS such that US = {1} for S ∈ T and US = ∅ for S ∈ S \T, and then the
value is −1|T\[k]|.

Lemma 4.10. For any function f : {−1, 1}n → {−1, 1}, p ≥ 3 and γ > 0
satisfying 2 + 2γ ≤ p,

||T1−γf ||p ≤ ||T1−γ/2f ||
(2+γ)/p
2 .

Proof. It holds that

||T1−γf ||p = E[|T1−γf |p]1/p ≤ E[|T1−γf |2+2γ ]1/p = ||T1−γf ||(2+2γ)/p
2+2γ .

Here, we use |T1−γf | ≤ 1. Since 1− γ ≤ 1√
1+2γ

, applying the hypercontractive

inequality (Lemma 2.6) to ||T1−γf ||(2+2γ)/p
2+2γ , we have

||T1−γf ||p ≤ ||f ||(2+2γ)/p
2 .

Using this,

||T1−γf ||p ≤ ||T1−γ/2T1−γ/2f ||p ≤ ||T1−γ/2f ||
(2+γ)/p
2 .

Proof of Lemma 4.8. Let x = (x1, x
′) where x′ = (x2, . . . , xn). We divide the

Fourier expansion of fS(x) according to its dependence to x1, i.e., fS(x) =
FS,∅(x

′) + x1FS,1(x
′). Then, we note that T1−γfS(x) = T1−γFS,∅(x

′) + (1 −
γ)x1T1−γFS,1(x

′).
Using Lemma 4.9, the left hand side of (9) is equal to∣∣∣∣∣

[
E

H′
k,δ

[
E

Hk,δ

[
∏
S∈S

T1−γfS(x)]− E
Ik,S0,δ

[
∏
S∈S

T1−γfS(x)]

]]∣∣∣∣∣
=

∣∣∣∣∣(1− δ)
∑

T∈XS

(1− γ)|T|
E

H′
k,δ

[∏
S∈T

T1−γFS,1(x
′
S)

]∣∣∣∣∣
≤ (1− δ)

∑
T∈XS

(1− γ)|T|
E

H′
k,δ

[∣∣∣∣∣∏
S∈T

T1−γFS,1(x
′
S)

∣∣∣∣∣
]

≤ (1− δ)
∑

T∈XS

(1− γ)|T|
∏
S∈T

||T1−γFS,1|||T|. (10)
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The last step uses the Hölder’s inequality and the fact that the marginal of H′
k,δ

on x′
S is uniform for each S. Using Lemma 4.10,∏

S∈T

||T1−γFS,1|||T| ≤
∏
S∈T

||T1−γ/2FS,1||
(2+γ)/|T|
2

Here,

||T1−γ/2FS,1||22 =
∑
Q∋1

(1− γ/2)2|Q|f̂S(Q)2 ≤ Inf1(T1−γ/2fS).

Thus, (10) is upper bounded by∑
T∈XS

∏
S∈T

Inf1(T1−γ/2fS)
(2+γ)/2|T|. (11)

Since |T| ≥ 2 for all T ∈ XS, we have minS∈T Inf1(T1−γ/2fS) ≤ 2τ . Then,

(11) ≤
∑

T∈XS

(2τ)γ/2|T|
∏
S∈T

Inf1(T1−γ/2fS)
1/|T|

≤ (2τ)γ/2|S|
∑

T∈XS

∑
S∈T

Inf1(T1−γ/2fS) (using the AM-GM inequality )

≤ (2τ)γ/2|S|2|S|
∑
S∈S

Inf1(T1−γ/2fS) (since |XS| ≤ 2|S|).

4.4 Proof of Lemma 4.4

In this section, we prove the following.

Lemma 4.11 (Restatement of Lemma 4.4). For any S0 ∈ S, γ, δ, it holds that∣∣∣∣∣ E
In
k,S0,δ

[∏
S∈S

T1−γfS(xS)

]∣∣∣∣∣ ≤ √
δ.

We need the following lemma.

Lemma 4.12. For any i ∈ [n] and S0 ∈ S, it holds that

ρ(X i
S0
,

∏
S∈S\{S0}

X i
S ; Ik,S0,δ) ≤

√
δ.

Proof. Let f : X i
S0

→ R be any function with EIk,S0,δ
[f ] = 0,EIk,S0,δ

[f2] ≤ 1.

Also, let g :
∏
S∈S\{S0} X

i
S → R be any functions withEIk,S0,δ

[g] = 0,EIk,S0,δ
[g2] ≤

1. From the latter property we get,

1 ≥ E
Ik,S0,δ

[g2] = (1− δ) E
Ik,S0

[g2] + δ E
Nk

[g2] ≥ δ E
Nk

[g2]. (12)
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We now observe that

E
Ik,S0,δ

[fg] = (1− δ) E
Ik,S0

[fg] + δ E
Nk

[fg]

≤ (1− δ) E
Ik,S0

[f ] E
Ik,S0

[g] + δ
√

E
Nk

[f2]
√

E
Nk

[g2].

We have equality for the first term because the marginals of Ik,S0,δ on X i
S0

and∏
S∈S\{S0} X

i
S are independent. We used Cauchy-Schwarz on the second term.

Since EIk,S0
[f ] = 0 and From (12),

δ
√

E
Nk

[f2]
√

E
Nk

[g2] ≤ δ
√
1
√
1/δ.

Hence,

E
Ik,S0,δ

[fg] ≤
√
δ.

This completes the proof.

Proof of Lemma 4.4. From Lemma 4.12 and Proposition 2.16,

ρ(XS0
,

∏
S∈S\{S0}

XS ; Ink,S0,δ) ≤
√
δ.

Since EIn
k,S0,δ

[T1−γfS ] has mean 0 and variance at most 1 for any S, the lemma

immediately follows.

5 Discussion

Unfortunately, our Long Code test does not immediately imply a new PCP char-
acterization of NP. A Long Code test without consistency checks is most easily
composed with Unique Games [29] as an outer verifier in PCP constructions.
However, since Unique Games cannot have perfect completeness, an obvious ap-
proach that combines our tester and Unique Games does not imply a new PCP
construction. A variant of Unique Games, which is called d-to-1 Games [29],
is conjectured to have perfect completeness. Though it seems hard to combine
our tester and d-to-1 Games, we hope that it is possible and we obtain a new
conditional PCP construction.

Recent work After the extended abstract of this paper was published, sev-
eral papers have gave new unconditional PCP constructions under the standard
assumption that P̸=NP instead of Khot’s Unique Games conjecture or d-to-1
Games conjecture. In [25], H̊astad constructed non-adaptive 3-query PCPs with
perfect completeness and soundness s = 5/8, removing Khot’s d-to-1 conjecture
in [37]. In [15], Chan obtained non-adaptive q-query PCPs with almost perfect
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completeness and soundness s = 2q/2q, removing Khot’s Unique Games con-
jecture in [43]. In [28], Huang showed non-adaptive q-query PCPs with perfect

completeness and soundness s = 2O((q log q)1/3)/2q, improving the previous best
result due to [26]. The techniques introduced by these papers will probably be
useful for constructing PCPs with perfect completeness based on our Long Code
test.
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