
ar
X

iv
:1

00
4.

27
80

v1
 [

cs
.L

O
]

 1
6

A
pr

 2
01

0

A Geometric Approach

to the Problem of

Unique Decomposition of Processes

Thibaut Balabonski1 and Emmanuel Haucourt2

1 Laboratoire PPS, Université Paris Diderot and CNRS, UMR 7126
thibaut.balabonski@pps.jussieu.fr

2 CEA, LIST, Gif-sur-Yvette, F-91191, France.
emmanuel.haucourt@cea.fr

Abstract. This paper proposes a geometric solution to the problem of
prime decomposability of concurrent processes first explored by R. Milner
and F. Moller in [MM93]. Concurrent programs are given a geometric
semantics using cubical areas, for which a unique factorization theorem is
proved. An effective factorization method which is correct and complete
with respect to the geometric semantics is derived from the factorization
theorem. This algorithm is implemented in the static analyzer ALCOOL.

1 Introduction: Parallel Programming Problem

This paper aims at introducing some new static analysis technology for concur-
rent programs. The work presented here gives a new insight into the problem of
decomposition of processes, which was first explored by R. Milner and F. Moller

in [MM93]. The main new results are an algorithm maximally decomposing con-
current programs into independent processes (Section 4) and the proof that this
prime decomposition is unique in the considered class of programs (Theorem 2).
They are derived from a study of algebraic properties of cubical areas.

Given an associative and commutative operator ‖ for parallel composition of
two processes (with the empty process as unit), decomposing a concurrent pro-
gram P into a multiset {P1, ..., Pn} such that P = P1‖...‖Pn and the Pis are inde-
pendent has several interests. For instance the decomposition may be relevant for
the allocation of processors to subprograms. Another important concern is the
static analysis of concurrent programs, whose complexity grows exponentially
with the number of concurrent processes: finding independent subprograms that
can be analyzed separately could dramatically decrease the global complexity
of the static analysis. Hence this paper aims at finding the finest decomposition
(and proving its existence) for a wide class of concurrent programs.

Let us first take a look at a non trivial example of independent processes,
in the so-called PV language introduced by E.W. Dijkstra [Dij68] as a simple

2 This work has been partially supported by Agence Nationale pour la Recherche via
the project PANDA (Parallel and Distributed Analysis) ANR-09-BLAN-0169-02

http://arxiv.org/abs/1004.2780v1

framework for the study of concurrency with shared resources. The only instruc-
tions are P (name) and V (name)3, where name is an identifier which refers to
a resource. The idea is to have some common pool of resources which can be
taken (with P) and released (with V) by concurrent processes. The resources
are formalized by semaphores which, depending on their arity, can be held si-
multaneously by a certain number of processes (arity n allows at most n − 1
simultaneous processes).

Now suppose c is the name of a ternary semaphore, which means it can be
held by at most two processes, and a, b are the names of binary semaphores, also
called mutex for mutual exclusion.

Example 1.
Σ := π1 = Pa.Pc.V c.V a

‖ π2 = Pb.Pc.V c.V b
‖ π3 = Pa.Pc.V c.V a
‖ π4 = Pb.Pc.V c.V b

A naive syntactic analysis would stamp this program as undecomposable since
all processes share the resource c, but the following finer analysis can be made:
thanks to mutex a (respectively b), the processes π1 and π3 (respectively π2 and
π4) cannot both hold an occurrence of the resource c at the same time. Then
there are never more than two simultaneous requests over c, which means that
the instructions Pc and V c play actually no role in determining the semantics of
the program. And without c, Σ can be split in two independent systems (they use
disjoint resources). Basically, this example is based on the fact that semaphores
are not the real resources, but mere devices used to guard their access. And it
may be that some guards are redundant.

This work is based on a geometric semantics for concurrency. The semantics
for PV programs was implicitly given in [Dij68], then explicited by Carson et
al.[CR87]. Roughly speaking, the instructions of a process are pinned upon a 1-
dimensional “directed” shape, in other words track along which the instructions
of the program to execute are written. If N sequential processes run together,
one can consider their N instruction pointers as a multi-dimensional control
point.

Although we have made the construction explicit for PV programs only,
the result applies to any synchronisation or communication mechanism whose
geometric interpretation is a so-called cubical area (the notion is formalized in
Section 3.5). See for instance [GH05] for the geometric semantics of synchronisa-
tion barriers, monitors and synchronous or asynchronous communications (with
finite or infinite message queues): their geometrical shape is the complement
of an orthogonal polyhedron [BMP99,Tha09], which is a special case of cubical
area.

Outline of the paper.

The paper is organized as follows. Section 2 provides the mathematics of the
geometric semantics, detailed for PV programs. Section 3 establishes the link

3 P and V stand for the dutch words “Pakken” (take) and “Vrijlaten” (release)

between algebraic properties of the semantics and independence of subprograms,
and then states and proves prime decomposability theorems for algrebraic frame-
works encompassing the geometric semantics (Theorems 1 and 2). Section 4
describes the corresponding algorithm and implementation as well as a detailed
example and some benchmarks.

2 The Geometric Semantics

The geometric semantics of a PV program is a subset of the finite dimensional
real vector space whose dimension is roughly speaking the number N of processes
running concurrently. Then each process is associated with a coordinate of RN .
Yet given a mutex a, the instructions P(a) and V(a) that occur in the kth process
should be understood as opening and closing parentheses or more geometrically
as the least upper bound and the greatest lower bound of an interval Ik of R. The
forbidden area generated by a mutex a is thus the finite union of hyperrectangles4

of the following form (with k < k′)

R
+ × · · · × R

+ × Ik × R
+ × · · · × R

+ × Ik′ × R
+ × · · · × R

+

︸ ︷︷ ︸

product of N terms

For example, P(a).V(a) ‖ P(a).V(a) is a pro-
gram written in PV language. Assuming that a
is a mutex (semaphore of arity 2), its geometric
model is (R+)2\[1, 2[2. Intuitively, a point p in
[1, 2[2 would correspond to the situation where
both processes hold the semaphore a, which is
forbidden by the semantics of mutices.

p

P
(a

)

V
(a

)

P (a)

V (a)

In the sequel of this section we formalize the PV language syntax as well as the
construction of the geometric semantics. Denote the positive half-line [0,+∞[
by R

+. For each α ∈ N\{0, 1} let Sα be an infinite countable set whose elements
are the semaphores of arity α of the PV language. A PV process is a finite
sequence on the alphabet

A :=
{
P (s), V (s)

∣
∣ s ∈

⋃

α≥2

Sα

}

and a PV program is a finite (and possibly empty) multiset of PV processes.
The parallel operator then corresponds to the multiset addition therefore it is
associative and commutative 5. Given a semaphore s and a process π, the se-
quences (xk)k∈N and (yk)k∈N are recursively defined as follows: set y−1 = 0
and
4 however we will more likely write “cube” instead.
5 The collection of multisets over a set A forms a monoid which is isomorphic to the
free commutative monoid over A. The first terminology is usually used by computer
scientists while mathematicians prefer the second one. Anyway it will be described
and caracterized in the Section 3.

– xk = min{n ∈ N | n > yk−1 and π(n) is P (s)}
– yk = min{n ∈ N | n > xk and π(n) is V (s)}

with the convention that min ∅ = ∞, π(n) denotes the nth term of the process
π and its first term is π(1). Then, the busy area of s in π is6

Bs(π) :=
⋃

k∈N

[xk, yk[

Actually this description requires some extra assumptions upon the way instruc-
tions are interpreted. Namely a process cannot hold more than one occurrence of
a given ressource. Thus a process already holding an occurrence of a semaphore
s ignores any instruction P (s), and similarly a process holding no occurrence of
s ignores any instruction V (s). Then denote by χπ

s : R → R the characteristic
function of Bs defined by

χπ
s (x) =

{
1 if x ∈ Bs(π)
0 otherwise

Because the sequence π is finite, there exists some k such that xk = ∞ and for
any such k and any k′ ≥ k, one also has xk′ = ∞. In particular, if the instruction
P (s) does not appear in π, then Bs(π) is empty and χπ

s is the null map. The
geometric model of a PV program with N processes running concurrently is a
subpospace of [0,+∞[N defined as follows:
- Call Π = (π1, . . . , πN) the program to modelize.
- Given a semaphore s of arity α define the forbidden area of s in Π as

Fs :=
{−→x ∈ [0,+∞[N

∣
∣ −→χs ·

−→x ≥ α
}

where −→x = (x1, . . . , xN), −→χs = (χπ1

s , . . . , χπN

s) and −→χs ·
−→x =

N∑

i=1

χπi

s (xi). The

value −→χs ·
−→x indicates how many occurrences of the semaphore s are held when

the instruction pointer is at position −→x . Note that Fs is a finite union of hyper-
rectangles which may be empty even if s appears in the program Π . In the end,
the forbidden area of the program Π is the following union over S the union
of all the sets Sα.

F :=
⋃

s∈S

Fs

Because there are finitely many resource names s appearing in a PV program,
there are finitely many non empty set Fs. Hence the previous union is still a
finite union of hyperrectangles. The state space or geometric model of Π is
then [0,+∞[N\F , and is denoted by JΠK. Remark that the geometric model is
also a finite union of hyperrectangles.

6 Including the greatest lower bound and removing the least upper one is the math-
ematical interpretation of the following convention: the changes induced by an in-
struction are effective exactly when the instruction pointer reaches it.

In other words, the state space of Π is the set of positions of the “multi
dimensional instruction pointer” for which the number of occurrences of each
semaphore s is strictly below its arity α. If Π is made of N concurrent process,
this space is a N -dimensional enclidean space with (cubical) holes. As an exam-
ple, Figure 1 shows the construction of the geometric model of the PV program
P (a)P (b)V (b)V (a) ‖ P (b)P (a)V (a)V (b) (refered to as the swiss flag). Figure 2
gives a simplified version of Example 1 fitting in three dimensions.

Fig. 1. Construction of a geometric model: the swiss flag

Fa

P(a)

V(a)

P
(a

)

V
(a

)

Fb

P(b)

V(b)

P
(b

)

V
(b

)

F

P(b)

P(a)

V(a)

V(b)

P
(a

)

P
(b

)

V
(b

)

V
(a

)

Fig. 2. Example in three dimensions

Σ∗ := π1 = Pa.Pc.V c.V a

‖ π∗

2 = Pc.V c

‖ π3 = Pa.Pc.V c.V a

Intuitively, the graphs pictured here correspond to the essential components of the state
space, see [GH07] for developments on this topic. The dark grey cube on the left picture
is the forbidden area of the semaphore c, which is contained in the forbidden area of
the mutex a (in the full –and 4D– example Σ the forbidden area of c is contained in
the union of the forbidden areas of a and b).

3 The Problem of Unique Decomposition

Now that the geometric semantics of programs is defined, let us refocus on the
main goal: finding the independent parts of a concurrent program. Hence the
question: what does independence mean in this geometrical setting?

3.1 Parallel Composition vs Cartesian Product

A general definition has to be given for independence: say a program Π is
independent from another program Π ′ when its behaviour is unaffected by par-
allel composition with Π ′, whatever the way Π ′ is executed. That means, the
presence ofΠ ′, as well as its instruction pointer, has no effect on the semantics of
Π . A geometric translation of this assertion is: in the geometric model of Π‖Π ′,
the cylinder7 over any state of Π ′ (i.e. the subspace of all points with given fix
coordinates for the Π ′ component) is equal to the model of Π .

Hence two programs Π and Π ′ of geometric models JΠK and JΠ ′K are inden-
pendent if and only if the geometric model JΠ‖Π ′K of their parallel composition
is isomorphic to the cartesian product JΠK × JΠ ′K. Thus the decompositions of
a program correspond to the factorizations if its geometric model (with respect
to the cartesian product). Next subsection reminds some algebraic settings and
results needed for a notion like factorization to make sense.

3.2 Free Commutative Monoids

The reader not familiar with this notion can refer for instance to [Lan02]. Let
M be a commutative monoid. Any element of M which has an inverse is called
a unit. A non unit element x of M is said to be irreducible when for all y and
z in M , if x = yz then y or z is a unit. The set of irreducible elements of M is
denoted by I(M).

For any elements x and y of M , say x divides y when there is an element x′

of M such that xx′ = y. A non unit element x of M is said to be prime when
for all y and z in M , if x divides yz then x divides y or x divides z. The set of
prime elements of M is denoted by P (M).

Given a set X , the collection of maps φ from X to N such that {x ∈
X | φ(x) 6= 0} is finite, together with the pointwise addition, forms a com-
mutative monoid whose neutral element is the null map: we denote it by F (X).
Yet, given any subset X of a commutative monoid M , the following map

ΦX
M : F (X) // M

φ �

//

∏

x∈X

xφ(x)

is a well-defined morphism of monoids. A well-known result asserts that the
following are equivalent [Lan02]:

7 Categorists would write “fibre” instead of “cylinder”.

1. the mapping Φ
I(M)
M is an isomorphism of monoids

2. the set I(M) generates8 M and I(M) = P (M)

3. any element of M can be written as a product of irreducible elements in a
unique way up to permutation of terms (unique decomposition property).

In this case M is said to be a free commutative monoid.
Two standard examples of free commutative monoids are given by the set of

non zero natural numbers N\{0} together with multiplication (the unit is 1 and
the irreducible elements are the prime numbers) and the set of natural numbers
N together with addition (the unit is 0 and the only irreducible element is 1).

However, neither the multiplicative monoid Z\{0} nor the additive group Z

are free commutative monoids since they both contain a non trivial unit, namely
−1 in both cases.

Also note that all the non zero elements of the additive monoid R+ are primes
though it does not contain a single irreducible element.

A more intricate phenomenon arises with polynomials [HN50]: the (multi-
plicative) commutative monoid N[X]\{0} of non zero polynomials with natural
coefficients is not free. Indeed, although each element of N[X]\{0} is a product
of irreducible polynomials these decompositions are not unique: we have

(1 +X)(1 +X2 +X4) = (1 +X3)(1 +X +X2)

where all of the polynomials 1 +X , 1 +X2 +X4, 1 +X3 and 1 +X +X2 are
irreducible (which is not the case in the monoid of polynomials with coefficients
in Z, indeed the ring Z[X] is factorial [Lan02]).

3.3 Cartesian Product and Commutation

The geometric model of a concurrent program is a set of points in an euclidean
space of finite dimension. Thus each point can be represented by the tuple of
its coordinates, and a geometric model becomes a set of tuples (of same length
which corresponds to the dimension of the space). The cartesian product on such
structures is the following:

X × Y =
{
(x1, ..., xn, y1, ..., yk)

∣
∣ (x1, ..., xn) ∈ X, (y1, ..., yk) ∈ Y

}

However, this operator is not commutative whereas the parallel composition of
programs should be so. Thus, in order to model parallel composition, we make
the operator × commutative monoid through quotient by permutation of co-
ordinates. In the next subsection we prove a freeness theorem for a monoid
generalizing this idea: tuples of (real) coordinates are replaced by words over
an arbitrary (potentially infinite) alphabet. The geometric model of a PV pro-
gram therefore belongs to a free commutative monoid and thus admits a unique
decomposition of irreducible elements, from which the processes factorization is
deduced.
8 X ⊆ M generates M when all its elements can be written as a product of elements of
X. The product of the empty set being defined as the neutral element. Remark then
that “I(M) generates M” implies that the only unit of M is its neutral element.

3.4 Homogeneous Sets of Words

Let A be a set called the alphabet. The non commutative monoid of words A∗

consists on the finite sequences of elements of A together with concatenation.
Given words w and w′ of length n and n′, the word w ∗ w′ of length n + n′ is
defined by

(w ∗ w′)k =

{
wk if 1 6 k 6 n
w′

k−n if n+ 1 6 k 6 n+ n′

The length of a word w is also refered to as ℓ(w). A subword of w is a word of
the form w ◦ φ where φ is a strictly increasing map {1, . . . , n} → {1, . . . , ℓ(w)}.
Hence a subword of w is also entirely characterized by the image of the increasing
map φ i.e. by a subset of {1, . . . , ℓ(w)}. If A is the image of φ then we write w◦A
instead of w ◦ φ.

The nth symmetric group Sn (the group of permutations of the set {1, ..., n})
acts on the set of words of length n by composing on the right, that is for all
σ ∈ Sn and all word w of length n we have

σ · w := w ◦ σ = (wσ(1) · · ·wσ(n))

The concatenation extends to sets of words. Given S, S′ ⊆ A∗, define

S ∗ S′ := {w ∗ w′ | w ∈ S;w′ ∈ S′}

Remark that this concatenation of sets corresponds to the cartesian product.

The set P(A∗) of subsets of A∗ is thus endowed with a structure of non

commutative monoid whose neutral element is {ǫ}: the singleton containing the
empty word. Note that the empty set ∅ is the absorbing element of P(A∗), that
is for all S ⊆ A∗ we have

∅ ∗ S = S ∗ ∅ = ∅

A subset H of A∗ is said to be homogeneous when all the words it contains
share the same length n. By analogy with the geometric construction, n is called
the dimension of H and denoted by d(H). The symmetric group Sn acts on the
set of homogeneous set of dimension n in a natural way by applying the same
permutation to all words:

σ ·H := {σ · w | w ∈ H}

The homogeneous subsets of A∗ form a sub-monoid Ph(A
∗) of P(A∗) and

can be equipped with an equivalence relation as follows: write H ∼ H ′ when
d(H) = d(H ′) = n and there exists σ ∈ Sn such that H ′ = σ · H . Moreover,
for two permutations σ ∈ Sn and σ′ ∈ Sn′ , define the juxtaposition σ ⊗ σ′ ∈
Sn+n′ as:

σ ⊗ σ′(k) :=

{
σ(k) if 1 6 k 6 n

(
σ′(k − n)

)
+ n if n+ 1 6 k 6 n+ n′

A Godement-like exchange law is satisfied, which ensures that ∼ is actually a
congruence:

(σ ·H) ∗ (σ′ ·H ′) = (σ ⊗ σ′) · (H ∗H ′)

Hence the quotient Ph(A
∗)/∼ from which the absorbing element has been re-

moved is still a monoid called the homogeneous monoid over A and denoted
by H(A). Moreover the homogeneous monoid is commutative and its only unit is
the singleton {ǫ}. Remark that if the alphabet A is a singleton (resp. the empty
set) then the homogeneous monoid H(A) is isomorphic to (N,+, 0) (resp. the
null monoid).

Theorem 1. For any set A the homogeneous monoid over A is free.

Proof. We check the conditions 1-3 which characterize the free commutative
monoids (see Section 3.2). Since d(H ∗H ′) = d(H) + d(H ′) we deduce from a
straightforward induction on the dimension of elements of H(A) that they can
all be written as products of irreducible elements: I(H(A)) generates H(A).

Now suppose H is an irreducible element of H(A) which divides H1 ∗H2 and
pick S, S1 and S2 respectively from the equivalence classesH , H1 andH2. Define
n = d(H), n1 = d(H1) and n2 = d(H2), and remark that n = n1 + n2. There
exists σ ∈ Sn and some S3 such that σ · (S1 ∗ S2) = S ∗ S3 in Ph(A

∗). Suppose
in addition that H does not divide H1 nor H2, then we have A1 ⊆ {1, ..., n1}
and A2 ⊆ {1, ..., n2} s.t. A1 6= ∅, A2 6= ∅ and σ(A1 ∪ A′

2) = {1, ..., n} where
A′

2 := {a+n1 | a ∈ A2}. Then we have a non trivial factoring S = S′
1 ∗S

′
2 where

S′
1 :=

{
w ◦A1

∣
∣ w ∈ S1

}
and S′

2 :=
{
w ◦A2

∣
∣ w ∈ S2

}

This contradicts irreducibility of H . Hence H divides H1 or H2 and thus H is
prime. So any irreducible element of H(A) is prime: I(H(A)) ⊆ P (H(A)).

Finally, suppose H is a prime element of H(A) such that H = H1 ∗H2. In
particular H divides H1 ∗H2, and since H is prime it divides H1 or H2. Both
cases being symmetrical, suppose H divides H1. In particular d(H) ≤ d(H1). On
the other hand d(H) = d(H1) + d(H2), and thus d(H2) ≤ 0. Dimensions being
natural numbers, we deduce that d(H2) = 0 and then that H2 = {ǫ}. Hence H
is irreducible, and I(H(A)) = P (H(A)).

One of the worthy feature of the construction is that any binary relation ⋄ over
Ph(A) which is compatible with the product and satifies

∀S, S′ ∈ Ph(A)
(
d(S) = d(S′) = n and S ⋄ S′ ⇒ ∀σ ∈ Sn (σ · S) ⋄ (σ · S′)

)

can be extended to a relation on H(A) which is still compatible with the product.
Actually it suffices to set H ⋄ H ′ when d(H) = d(H ′) = n and there exists a
representative S of H and a representative S′ of H ′ such that for all σ ∈ Sn we
have (σ · S) ⋄ (σ · S′). In addition, if the relation ⋄ satisfies

∀S, S′ ∈ Ph(A) S ⋄ S′ ⇒ d(S) = d(S′)

then the quotient map is compatible with ⋄ and its extension. The relation of
inclusion ⊆ over Ph(A) obviously satisfies these properties and therefore extends
to H(A).

3.5 Cubical Areas

A cube of dimension n is a word of length n on the alphabet I of non-empty

intervals of R. The elements of H(I) are called the cubical coverings. Further-
more the homogeneous monoid H(I) is endowed with a preorder arising from
the inclusion on I. Indeed, given two sets of cubes of the same length S and S′

we write S 4 S′ when for all cubes C ∈ S there exists a cube C′ ∈ S′ such that
C ⊆ C′. The relation 4 provides the monoid P(I) with a preorder that can be
extended to H(I) by setting H 4 H ′ when d(H) = d(H ′) = n and there exists a
representative S of H and a representative S′ of H ′ such that for all σ ∈ Sn we
have (σ ·S) 4 (σ ·S′). We now establish a Galois connection between (H(R),⊆)
and (H(I),4). Given a cubical covering F we define γ(F) as

{ ⋃

C∈S

C
∣
∣
∣ S ∈ F

}

Furthermore γ is a morphism of monoids and if F 4 F ′ then γ(F) ⊆ γ(F ′).
Conversely, given some S in Ph(R

∗) the collection of n-dimensional cubes C
such that C ⊆ S, ordered by inclusion, is a semilattice whose maximal elements
are called the maximal cubes of S. The set MS of maximal cubes of S is
homogeneous and for all σ ∈ Sn, σ · MS = Mσ·S . Then given H ∈ H(R) we
define α(H) as

{

MS

∣
∣
∣ S ∈ H

}

Furthermore α is a morphism of monoids and if H ⊆ H ′ then α(H) ⊆ α(H ′).
Then we have a Galois connection:

Proposition 1. γ ◦ α = idH(R) and idH(I) 4 α ◦ γ.

Given H ∈ H(R) and F ∈ H(I) we say that F is a cubical covering of H when
γ(F) = H . The cubical areas are the elements H of H(R) which admit a finite

cubical covering. The collection of cubical areas (resp. finite cubical coverings)
forms a sub-monoid Are of H(R) (resp. Cov of H(I)). The restrictions of the
morphisms γ and α to Cov and Are induce another Galois connection.

Proposition 2. γ ◦ α = idAre and idCov 4 α ◦ γ.

Moreover, the morphisms γ and α of Proposition 2 induce a pair of isomorphisms
of commutative monoids between Are and the collection of fixpoints of α ◦ γ. A
submonoid of a free commutative monoid may not be free. Yet, under a simple
additional hypothesis this pathological behaviour is no more possible. We say
that a submonoid P of a monoid M is pure when for all x, y ∈ M , x ∗ y ∈ P ⇒
x ∈ P and y ∈ P .

Lemma 1. Every pure submonoid of a free commutative monoid is free.

Proof. Let P be a pure submonoid of a free commutative monoid M . Let p be an
element of P written as a product x1 · · ·xn of irreducible elements of M . Each

xi is obviously an irreducible element of P so any element of P can be written
as a product of irreducible elements of P . Furthermore any irreducible element
of P is also an irreducible element of M because P is pure in M . It follows that
any elements of P can be written as a product of irreducible elements of P in a
unique way i.e. P is free.

Then we have:

Theorem 2. The commutative monoid of cubical areas is free and has infinitely

many irreducible elements.

Proof. Let X and X ′ be two elements of H(R) and suppose X ∗X ′ belongs to
Are. Since both α and γ are morphisms of monoids we have α ◦ γ(X ∗ X ′) =
α ◦ γ(X) ∗ α ◦ γ(X ′) which is finite. It follows that both α ◦ γ(X) and α ◦ γ(X ′)
are finite. Hence X and X ′ actually belongs to Are, which is thus free as a pure
submonoid of H(R).

4 Effective Factoring of Cubical Areas

Beyond their theoretical usefulness, the maximal cubes provide the data struc-
ture which allows to handle algorithmically cubical areas, as in the static analyzer
ALCOOL which is devoted to the study of parallel programs.

4.1 Implementation

We need an algorithm which performs decompositions in H(A), its implementa-
tion is directly based on the proof of the Theorem 1: H ∈ H(A) is reducible if
and only if there exists some representative S of H which admits a non trivial
decomposition in Ph(A

∗). In order to describe the algorithm we define

S ◦A :=
{
w ◦A | w ∈ S

}

for any S ∈ Ph(A
∗) and A ⊆ {1, ..., d(S)}. Moreover for w′ ∈ A∗ with ℓ(w′) 6

d(S), and Ac the complement of A (in {1, ..., d(S)}), we define the set of words

Ψ(w′, A, S) :=
{
w ◦Ac | w ∈ S and S ◦A = w′

}

Then the class [S ◦A] ∈ H(A) divides H if and only if for all w′ ∈ S ◦A one has
Ψ(w′, A, S) = [S ◦Ac]. In the monoid H(A) we thus have

[S ◦A] ∗ [S ◦Ac] = H

Then we look for some divisor of H by testing all the non empty subsets A of
{1, . . . , d(S)} according to the following total ordering

A 6 A′ when |A| < |A′| or (|A| = |A′| and |A| ⊑lex |A′|)

where ⊑lex is the lexicographic ordering. Doing so, we know that if A is the first
value such that [S ◦A] divides H , then [S ◦A] is irreducible. Moreover we have
d([S ◦ A]) = |A| and for all H0, H1 ∈ H(A), d(H0 ∗H1) = d(H0) + d(H1) hence
we can suppose

|A| 6
d(H)

2
+ 1

The software ALCOOL is entirely written in OCaml. The complexity of the decom-
position algorithm implemented in it is exponential in the dimension n of the
cubical area since it checks all the subsets of {0, . . . , n−1}. However the compu-
tation time actually devoted to the decomposition is rather small with regard to
the global execution time required by the whole analysis. Indeed the algorithm
which builds the state space of the program, though it has the same theoretical
complexity as the decomposition algorithm, has to handle heavier structures.

4.2 A detailed example

We treat the case of the program Σ given in Example 1. Its geometric model
is given on the left hand side of Figure 3. Applying the permutation (2, 3) we
obtain the right hand side set.

Fig. 3. Cubical area of Example 1

[0,1[*[0,1[*[0,-[*[0,-[

|| [0,1[*[4,-[*[0,-[*[0,-[

|| [0,1[*[0,-[*[0,-[*[0,1[

|| [0,1[*[0,-[*[0,-[*[4,-[

|| [4,-[*[0,1[*[0,-[*[0,-[

|| [4,-[*[4,-[*[0,-[*[0,-[

|| [4,-[*[0,-[*[0,-[*[0,1[

|| [4,-[*[0,-[*[0,-[*[4,-[

|| [0,-[*[0,1[*[0,1[*[0,-[

|| [0,-[*[0,1[*[4,-[*[0,-[

|| [0,-[*[0,-[*[0,1[*[0,1[

|| [0,-[*[0,-[*[0,1[*[4,-[

|| [0,-[*[4,-[*[0,1[*[0,-[

|| [0,-[*[4,-[*[4,-[*[0,-[

|| [0,-[*[0,-[*[4,-[*[0,1[

|| [0,-[*[0,-[*[4,-[*[4,-[

[0,1[*[0,-[*[0,1[*[0,-[

|| [0,1[*[0,-[*[4,-[*[0,-[

|| [0,1[*[0,-[*[0,-[*[0,1[

|| [0,1[*[0,-[*[0,-[*[4,-[

|| [4,-[*[0,-[*[0,1[*[0,-[

|| [4,-[*[0,-[*[4,-[*[0,-[

|| [4,-[*[0,-[*[0,-[*[0,1[

|| [4,-[*[0,-[*[0,-[*[4,-[

|| [0,-[*[0,1[*[0,1[*[0,-[

|| [0,-[*[4,-[*[0,1[*[0,-[

|| [0,-[*[0,1[*[0,-[*[0,1[

|| [0,-[*[0,1[*[0,-[*[4,-[

|| [0,-[*[0,1[*[4,-[*[0,-[

|| [0,-[*[4,-[*[4,-[*[0,-[

|| [0,-[*[4,-[*[0,-[*[0,1[

|| [0,-[*[4,-[*[0,-[*[4,-[

Then we can check that the (right hand side of Figure 3) cubical area can be
written as

(

[0,1[*[0,-[‖ [4,-[*[0,-[‖ [0,-[*[0,1[‖ [0,-[*[4,-[

)2

Then we have
(2, 3) ·

{
{1, 2}, {3, 4}

}
=

{
{1, 3}, {2, 4}

}

and it follows that in the program Σ the sets of processes {π1, π3} and {π2, π4}
run independently from each other.

4.3 Benchmarks

We describe some programs upon which the algorithm has been tested. The
programΣn1,...,nk

is made of k groups of processes: for all i ∈ {1, ..., k} it contains
ni copies of the process

P (ai).P (b).V (b).V (ai)

where ai is a mutex and b is a semaphore of arity k+1. All processes then share
the resource b, but as for Σ in Example 1 the k groups are actually independent.
On the other hand the program Σ′

n1,...,nk
is the same as Σn1,...,nk

but with b
of arity only k, which forbids any decomposition. The n-philosophers programs
implement the standard n dining philosophers algorithm.

The benchmark table of Figure 4 has been obtained using the Unix command
time which is not accurate. Hence these results have to be understood as an over-
approximation of the mean execution time. It is also worth remarking that our

Fig. 4. Benchmarks

Example Time (in sec.) Decomp.

6 philosophers 0.2 No

7 philosophers 0.7 No

8 philosophers 3.5 No

9 philosophers 21 No

10 philosophers 152 No

Example Time (in sec.) Decomp. Example Time (in sec.) Decomp.

Σ2,2 0.1 {1, 3}{2, 4} Σ′

2,2 0.1 No

Σ2,2,2 0.1 {1, 4}{2, 5}{3, 6} Σ′

2,2,2 0.3 No

Σ3,3 0.13 {1, 3, 5}{2, 4, 6} Σ′

3,3 0.52 No

Σ2,2,2,2 0.13 {1, 5}{2, 6}{3, 7}{4, 8} Σ′

2,2,2,2 7.1 No

Σ4,4 1 {1, 3, 5, 7}{2, 4, 6, 8} Σ′

4,4 33 No

Σ3,3,3 1.5 {1, 4, 7}{2, 5, 8}{3, 6, 9} Σ′

3,3,3 293 No

Σ4,5 6.1 {1, 3, 5, 7}{2, 4, 6, 8} Σ′

4,5 327 No

Σ5,5 50 {1, 3, 5, 7, 9}{2, 4, 6, 8, 10} Σ′

5,5 2875 No

algorithm is efficient when the cubical area to decompose is actually a carte-
sian product of several irreducible cubical areas of small dimension. This remark
should be compared with the fact that the standard decomposition algorithm of
integer into primes is very efficient on products of small prime numbers.

5 Conclusion

Related work.

The problem of decomposition of concurrent programs in CCS-style has been
studied in [GM92] and [MM93]. By the possibility of using semaphores of arbi-
trary arity, our work seems to go beyond this previous approach. Also note that
the silent and synchronous communication mechanism of CCS can be given a
straightforward geometric interpretation which falls in the scope of the present
discussion. However, the link between bisimilarity in CCS and isomorphic geo-
metric interpretations is still to be explored to make clear the relations between
these works.

In [LvO05] B. Luttik and V. van Oostrom have characterized the commuta-
tive monoids with unique decomposition property as those which can be provided
with a so-called decomposition order. In the case where the property holds, the
divisibility order always fits. Yet, there might exist a more convenient one. Un-
fortunately, in the current setting the authors are not aware of any such order
yielding direct proofs. Nevertheless it is worth noticing that this approach is ac-
tually applied for decomposition of processes in a normed ACP theory for which
a convenient decomposition order exists.

Conclusion.

This paper uses a geometric semantics for concurrent programs, and presents
a proof of a unique decomposition property together with an algorithm working
at this semantic level (Theorem 2). The main strength of this work is that it
applies to any concurrent program yielding a cubical area. Example of features
allowed in this setting are: semaphores, synchronisation barriers, synchronous as
well as asynchronous communications (with finite or infinite message queues),
conditional branchings. In fact we can even consider loops provided we replace
the set I of intervals of the real line R by the set A of arcs of the circle.

Future work.

Actually, a cubical area naturally enjoys a pospace9 structure. Pospaces are
among simplest objects studied in Directed Algebraic Topology. In particular, a
cubical area is associated with its category of components [FGHR04,GH05,Hau06]
and [GH07], which is proven to be finite, loop-free10 and in most cases connected.
Then, as the cubical areas do, these categories together with cartesian product
form a free commutative monoid. It is worth noticing this is actually the gener-
alization of a result concerning finite posets which has been established in the
early fifties [Has51]. Therefore a program Π can be decomposed by lifting the
decomposition of the category of components of its geometric model JΠK. In
general, the relation between the decomposition of a cubical area and the one of
its category of components is a theoretical issue the authors wish to investigate.

Another important concern is a clarification of the control constructs com-
patible with cubical areas: replacing in some dimensions the intervals of the real

9 shorthand for “partially ordered spaces” [Nac65].
10 Loop-free categories were introuced in [Hae91,Hae92] as “small categories without

loop” or “scwols”.

line by the arcs of the circle as mentioned above corresponds to a global loop,
but some richer structures may be useful.

A final point of interest is the investigation of the exact relation between our
semantic results and the syntactic ones of [GM92,MM93,LvO05]. Indeed they
use CCS-like syntaxes to describe some classes of edge-labelled graphs modulo
bisimilarity, whereas the category of components of our models correspond to
some other graphs modulo directed homotopy. Hence the question: what is in
this setting the relation between bisimilarity and homotopy?

References

[BMP99] O. Bournez, O. Maler and A. Pnueli. Orthogonal polyhedra: Representation
and computation. In Hybrid Systems: Computation and Control. Springer, 1999.

[CR87] S. D. Carson and P. F. Reynolds Jr. The geometry of semaphore programs.
ACM Transactions on Programming Languages and Systems, 9(1):25–53, 1987.

[Dij68] Edsger W. Dijkstra. Cooperating sequential processes. In Programming Lan-

guages: NATO Advanced Study Institute, pages 43–112. Academic Press, 1968.
[FGHR04] Lisbeth Fajstrup, Eric Goubault, Emmanuel Haucourt and Martin Raußen.

Component categories and the fundamental category. APCS, 12(1):81–108, 2004.
[GH05] E. Goubault and E. Haucourt. A practical application of geometric semantics

to static analysis of concurrent programs. CONCUR’05, LNCS 3653, 2005.
[GH07] Eric Goubault and Emmanuel Haucourt. Component categories and the fun-

damental category II. APCS, 15(4), 2007.
[GM92] Jan Friso Groote and Faron Moller. Verification of Parallel Systems via De-

composition. CONCUR ’92, 62–76, 1992.
[Hae91] André Haefliger. Complexes of groups and orbihedra. In Group theory from a

geometrical viewpoint, pp. 504–540. World Scientific, 1991.
[Hae92] André Haefliger. Extension of complexes of groups. Annales de l’institut

Fourrier, 42(1-2):275–311, 1992. http://www.numdam.org/
[Has51] Junji Hashimoto. On direct product decomposition of partially ordered sets.

Annals of Mathematics, (54):315–318, 1951.
[HN50] Junji Hashimoto and Tadasi Nakayama. On a problem of Garrett Birkhoff. In

Proceedings of the American Mathematical Society, volume 1, pp. 141–142, 1950.
[Hau06] Emmanuel Haucourt. Categories of components and Loop-free categories.

Theory and Applications of Categories, 16(27):736–770, 2006.
[Lan02] Serge Lang Algebra, 4th corrected printing. Graduate Texts in Mathematics.

Springer, 2002.
[LvO05] B. Luttik and V. van Oostrom. Decomposition orders: another generalisation

of the fundamental theorem of arithmetic. TCS, 335(2-3):147–186, 2005.
[MM93] Robin Milner and Faron Moller. Unique Decomposition of Processes. TCS,

107(2):357–363, 1993.
[Nac65] Leopoldo Nachbin. Topology and Order, volume 4 of Van Nostrand Mathe-

matical Studies. Van Nostrand, Princeton, 1965.
[Tha09] Dang Thao. Methods and Tools for Computer Aided Design of Embedded

Systems. HDR Thesis, Chapter 5. 2009.
[Win95] Glynn Winskel. Handbook of Logic in Computer Science vol.4 : Semantic

Modelling. Chapter 1. Oxford University Press, 1995.

