Skip to main content

On the Use of Non-deterministic Automata for Presburger Arithmetic

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6269))

Abstract

A well-known decision procedure for Presburger arithmetic uses deterministic finite-state automata. While the complexity of the decision procedure for Presburger arithmetic based on quantifier elimination is known (roughly, there is a double-exponential non-deterministic time lower bound and a triple exponential deterministic time upper bound), the exact complexity of the automata-based procedure was unknown. We show in this paper that it is triple-exponential as well by analysing the structure of the non-deterministic automata obtained during the construction. Furthermore, we analyse the sizes of deterministic and non-deterministic automata built for several subclasses of Presburger arithmetic such as disjunctions and conjunctions of atomic formulas. To retain a canonical representation which is one of the strengths of the use of automata we use residual finite-state automata, a subclass of non-deterministic automata.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bardin, S., Leroux, J., Point, G.: FAST Extended Release. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 63–66. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Bollig, B., Habermehl, P., Kern, C., Leucker, M.: Angluin-Style Learning of NFA. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI 2009), Pasadena, CA, USA, July 2009, pp. 1004–1009. AAAI Press, Menlo Park (2009)

    Google Scholar 

  3. Boudet, A., Comon, H.: Diophantine Equations, Presburger Arithmetic and Finite Automata. In: Kirchner, H. (ed.) CAAP 1996. LNCS, vol. 1059, pp. 30–43. Springer, Heidelberg (1996)

    Google Scholar 

  4. Büchi, J.: Weak second-order Arithmetic and Finite Automata. Zeitschrift fur Mathematische Logik und Grundlagen der Mathematik 6, 66–92 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cooper, D.C.: Theorem Proving in Arithmetic without Multiplication. In: Machine Intelligence, pp. 91–100 (1972)

    Google Scholar 

  6. Denis, F., Lemay, A., Terlutte, A.: Residual Finite State Automata. Fundamenta Informaticae 51(4), 339–368 (2002)

    MATH  MathSciNet  Google Scholar 

  7. Denis, F., Lemay, A., Terlutte, A.: Learning Regular Languages using RFSAs. Theoretical Comput. Sci. 313(2), 267–294 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Oppen, D.C.: A \(2^{2^{2^{pn}}}\) Upper Bound on the Complexity of Presburger Arithmetic. J. Comput. Syst. Sci. 16(3), 323–332 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fischer, M.J., Rabin, M.O.: Super-exponential Complexity of Presburger Aithmetic. In: Symp. on Applied Mathematics. SIAM-AMS Proceedings, vol. VII, pp. 27–41 (1974)

    Google Scholar 

  10. Klaedtke, F.: Bounds on the Automata Size for Presburger Arithmetic. ACM Trans. Comput. Logic 9(2), 1–34 (2008)

    Article  MathSciNet  Google Scholar 

  11. Latteux, M., Lemay, A., Roos, Y., Terlutte, A.: Identification of biRFSA Languages. Theoretical Computer Science 356(1-2), 212–223 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Leroux, J.: Structural Presburger Digit Vector Automata. Theoretical Computer Science 409(3), 549–556 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Presburger, M.: Uber die Vollstandigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In: Comptes Rendus du Premier Congres des Mathematicienes des Pays Slaves, pp. 92–101 (1929)

    Google Scholar 

  14. Reddy, C.R., Loveland, D.W.: Presburger Arithmetic with Bounded Quantifier Alternation. In: ACM Symposium on Theory of Computing, pp. 320–325 (1978)

    Google Scholar 

  15. Vardhan, A., Viswanathan, M.: Learning to verify branching time properties. Formal Methods in System Design 31(1), 35–61 (2007)

    Article  MATH  Google Scholar 

  16. Wolper, P., Boigelot, B.: An Automata-theoretic Approach to Presburger Arithmetic Constraints. In: Mycroft, A. (ed.) SAS 1995. LNCS, vol. 983, pp. 21–32. Springer, Heidelberg (1995)

    Google Scholar 

  17. Lash homepage, http://www.montefiore.ulg.ac.be/~boigelot/research/lash/

  18. FAST homepage, http://www.lsv.ens-cachan.fr/Software/fast/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Durand-Gasselin, A., Habermehl, P. (2010). On the Use of Non-deterministic Automata for Presburger Arithmetic. In: Gastin, P., Laroussinie, F. (eds) CONCUR 2010 - Concurrency Theory. CONCUR 2010. Lecture Notes in Computer Science, vol 6269. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15375-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15375-4_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15374-7

  • Online ISBN: 978-3-642-15375-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics