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Abstract. Intrusion detection in computer networks faces the problem
of a large number of both false alarms and unrecognized attacks. To
improve the precision of detection, various machine learning techniques
have been proposed. However, one critical issue is that the amount of
reference data that contains serious intrusions is very sparse. In this pa-
per we present an inference process with linear chain conditional random
fields that aims to solve this problem by using domain knowledge about
the alerts of different intrusion sensors represented in an ontology.1

1 INTRODUCTION

Computer networks are subject to constant attacks, both targeted and unsighted,
that exploit the vast amount of existing vulnerabilities in computer systems.
Among the measures a network administrator can take against this growing
problem are intrusion detection systems (IDS). These systems recognize adver-
sary actions in a network through either a set of rules with signatures that match
against the malicious data stream or detection of anomalous behavior in the net-
work traffic. Whereas the former will not recognize yet unknown vulnerability
exploits (zero-day) due to the lack of respective signatures, the latter has an in-
herent problem with false positives. Anomalies may also be caused by a shift in
the network users’ behavior even when their actions are entirely legitimate (see
[12]). One strategy is to combine the signature and the anomaly detectors to a
hybrid IDS by learning which detection method is reliable for a given situation
(e.g. [4]). In this setup detecting false positives is the challenging task to avoid
overwhelming the users of an IDS with irrelevant alerts but without missing any
relevant ones.

Several well-known machine learning methods have already been applied
therefore to the domain of intrusion detection, e.g., Bayesian networks for recog-
nizing attacks based on attack-trees [11] and (hidden colored) Petri nets to infer

1 This work was supported by the German Federal Ministry of Education and Research
(BMBF) under the grant 01IS08022A.



the actions of the attacker by alerts [14]. For the detection of multi-stage intru-
sions in alert sequences especially hidden Markov models have been successfully
investigated (e.g., [8, 10]). However, these models suffer from an implicit model-
ing of past alerts with the Markov property because in this domain the threat of
an alert may highly depend on the context, e.g., the previously recognized alerts.
This problem can be addressed by using Conditional Random Fields (CRF) [7]
that can consider several (past) alerts to reason about the current state. It has
been shown that CRFs are very promising for detecting intrusions from simu-
lated connection information in the KDD cup ’99 intrusion domain2 compared
to decision trees and naive Bayes [5, 6].

However, the high amount of reference data as in the KDD data set is only
available in simulated environments and is not available in real network domains.
The sparse reference data problem is due to the infrequent occurrence of success-
fully accomplished critical intrusions (cf. [2]) and the lack of annotation. This
leads to the problem that most of the possible alerts are even unknown at the
training phase of the alert correlator. One possibility to overcome this problem
is described in this paper: Typed Linear Chain Conditional Random Fields.

This method uses type information of feature functions for the inference in
linear chain conditional random fields and is motivated by filling the gap of
missing reference data by considering semantic similarities. Earlier work has
already considered the semantic similarity between states for the inference, e.g.,
in Markov models [1], in hidden Markov models [3], and in input-output hidden
Markov models [9]. The latter is similar to linear chain conditional random fields.
The inference can also be regarded as mapping a sequence of input values to a
sequence of labels.

This paper is organized as follows: In the next section the intrusion detection
domain representation in an ontology and its use for preprocessing the alerts
from the different IDSs are described. In Section 3 we overcome the problem
of sparse reference data by using the domain knowledge described in Section 2.
In Section 4 the type extension to linear conditional random fields is evaluated
by some real examples in the intrusion detection domain. At last we come to a
conclusion and give an outlook of future research.

2 Preprocessing and Domain Knowledge

Hybrid IDSs that use both signature-based and anomaly-based detectors are a
promising strategy to improve the precision of intrusion detection. Our approach
therefore involves the correlation of alarms from several detectors that can be
added if they are present in a particular network. As a first step, we use a syntac-
tic normalization in the IDMEF3 format, which is done by Prelude Manager4,
a well-known open source interface. This is followed by a semantic normaliza-
tion that enables the system to handle each sensor’s alarms according to their
2 KDD ’99 data set: http://kdd.ics.uci.edu/databases/kddcup99
3 s. RFC 4765
4 http://www.prelude-technologies.com/



meaning and a burst filtering that eliminates duplicates of alarms produced by
several sensors or as a result of similar observations.

The semantic normalization is based on an ontology in OWL-DL5 represen-
tation. This ontology contains several facets of the security domain, including
e.g., the topology of the network in question, its computers (assets) and general
configuration knowledge. Of particular interest for the recognition of multi-step
attacks are definitions of possible observations that can be made by the sensors
that are organized in a hierarchy of concepts (see Fig. 1). Among the concepts
are some that have been derived from classes introduced by Snort6. Individuals
that belong to these concepts are possible observations and can be imported
from Snort’s rules set by an automatic parser. When analysing multi-step at-
tacks, these observations can be considered as describing adversary actions of an
attacker, but from a security expert’s perspective. Furthermore, the hierarchy
denotes semantic similarity between nearby concepts and thereby supports the
further correlation process.

If knowledge about further sensors is added to the ontology, several obser-
vations from one or more sensors can be unified when they are instances of the
same concept from the observation ontology. E.g., if an observation according to
the ET EXPLOIT MS04-007 Kill-Bill ASN1 exploit attempt rule has been
made by the Snort IDS and the Prelude logfile parser LML recognizes a match
of the Admin login rule in a log file it observes, they may be normalized to one
concept AttemptedAdminObservation to which they both belong.

Fig. 1. Excerpt from the observation ontology. Specific observations (as defined by the
sensors’ rules) are instances of concepts in a hierarchy.

3 Typed Linear Chain Conditional Random Fields

In this section we briefly introduce conditional random fields and extend them
by using a type hierarchy to fill the gap of missing feature functions due to

5 http://www.w3.org/TR/owl-features/
6 http://www.snort.org/



insufficient reference data. For ease of demonstration, this paper assumes that
each observation corresponds to one feature function.

3.1 Prerequisites: Linear Chain Conditional Random Fields

The purpose of linear chain conditional random fields compared to hidden Markov
models is to take multiple features (respectively observations) for computing the
probability of the labels into account. Thereby they also address the label bias
problem from maximum entropy Markov models (cf. [7]). In the following the
simplified notation from [13] for linear chain conditional random fields is used
with a sequence of labels X and a sequence of observations to be labeled Y with
a normalization function Z:

p(y|x, λ) =
1

Z(x)
exp(

∑
j

λjFj(y,x)) (1)

The inference problem is to determine the probability distribution over a vector
of labels y from a vector of observations x. Conditional random fields are gener-
ally not restricted in the dependencies among the nodes, however in linear chain
conditional random fields the nodes are only dependent on their predecessor
and on the vector of observations. Each feature function Fj has a corresponding
weight λj that is computed during training.

3.2 Typed Linear Chain Conditional Random Fields

One issue with linear chain conditional random fields is that there is a lack of
information for computing the probability of the labels if the features are not
known at training time. Our suggestion is to use a type hierarchy of feature
functions to find the most similar feature functions that handle the observation.
E.g., if no feature function matches a tcp port scan observation, it is dangerous to
assume that the tcp port scan observation belongs to a normal system behavior.
If there is a feature function matching a udp port scan observation and the type
hierarchy expresses a high similarity between udp and tcp port scans, the feature
function for udp port scan observation could be assumed to match instead. In
our case we can derive the type hierarchy from the semantic normalization (cf.
Section 2). The computation of the conditional probability is therefore extended
by a parameter for the type hierarchy over feature functions T :

p(y|x, λ, T ) =
1

Z(x)
exp(

∑
j

λjF
′
j(y,x)) (2)

In the case of not having a matching feature function for a given x we propose
to instantiate a new feature function F ′ to match the currently unknown obser-
vation, i.e., the feature function is fulfilled (returns 1) iff the given observation
arrives.
However, there is the need to determine the corresponding weights for the new



feature function. The original weights of the most similar feature functions should
be regarded but with a loss to reduce the likelihood that the sequence of obser-
vations really belongs to that label. The weights λF ′ of the new feature function
F ′ are determined by the weights of the most similar feature functions. The most
similar feature functions are given by a similarity measurement. The set of most
similar feature functions SF is given by:

SF = {Fs(x, y)|s ∈ argmin
k

sim(Fj(x, y), Fk(x, y), T ). Fk(x, y) ∈ B(x, y)} (3)

B(x, y) ⊆ T is the set of bound feature functions, i.e., the feature functions that
have a value for the given parameters. The corresponding weights of the new
feature function F ′ based on the most similar feature functions SF is given by:

λF ′ =
1
|SF |

∑
s

λssim(Fj , Fs, T ) (4)

As mentioned there is the need for a similarity score between feature functions
regarding the type hierarchy, denoted as sim(a, b, T ), a ∈ T, b ∈ T . There are
different possibilities to determine the similarity, e.g., the method of Zhong et
al. [15]. This method uses the distance from a to the closest common parent in
the type hierarchy denoted as d(a, ccp, T ) and the distance from b to the closest
common parent d(b, ccp, T ) where the distance is defined as:

d(a, b, T ) = | 1
2kl(a,T )

− 1
2kl(b,T )

| (5)

l(n, T ) is the depth of n ∈ T from the root node in the corresponding type
hierarchy where the depth of the root node is zero (l(root, T ) = 0). k is a design
parameter to indicate how fast the distance increases depending on the depth in
the hierarchy. In this paper k = 2 is used as proposed by Zhong. The similarity
of two feature functions is given by the distances to the closest common parent
by:

sim(a, b, T ) = 1− d(a, ccp, T )− d(b, ccp, T ) ∈ [0; 1] (6)

4 Results

The evaluation of typed linear chain conditional random fields is done by two
experiments to compare this model to traditional linear chain conditional ran-
dom fields. In the experiments both models are trained with missing reference
data. The first experiment shows how the type knowledge is used to overcome
the lack of data. The second experiment is about the dependency of the model
to the quality of the type hierarchy. The evaluation data consists of two real in-
trusions performed with the Metasploit Framework7: (1) the Kill-Bill8 and (2)
the Net-Api9 exploit. The gathered sequences of alerts from the Snort detector
and the normalized alerts by the preprocessor are presented in table 1 and 2.
7 http://www.metasploit.com/
8 Metasploit: windows/smb/ms04 007 killbill
9 Metasploit: windows/smb/ms08 067 netapi



Time Normalized alerts (after preprocessing) Snort message
1 MiscActivityObservation BAD-TRAFFIC udp port 0 traffic
2 MiscActivityObservation BAD-TRAFFIC udp port 0 traffic
3 AttemptedAdminObservation ET EXPLOIT MS04-007 Kill-Bill ASN1 exploit attempt
4 MiscActivityObservation BAD-TRAFFIC udp port 0 traffic
5 MiscActivityObservation BAD-TRAFFIC udp port 0 traffic

Table 1. Alert sequence of the Kill-Bill exploit

Time Normalized alerts (after preprocessing) Snort rule
1 MiscActivityObservation BAD-TRAFFIC udp port 0 traffic
2 ShellcodeDetectObservation ET EXPLOIT x86 JmpCallAdditive Encoder
3 MiscActivityObservation BAD-TRAFFIC udp port 0 traffic
4 ProtocolCommandDecodeObservation NETBIOS SMB-DS IPC$ share access
5 MiscActivityObservation BAD-TRAFFIC udp port 0 traffic

Table 2. Alert sequence of the Net-Api exploit

4.1 Experiment 1

The two kinds of linear chain conditional random fields (typed and untyped) have
been trained to detect the MiscActivityObservation as normal system behav-
ior and the other observations from the Net-Api alert sequence as an attack. Both
methods share exactly the same reference data and take the two preceding, the
current and the two succeeding alerts for the labeling into account. The linear
chain conditional random field has been tested against the typed linear chain
conditional random field by performing the untrained Kill-Bill exploit. As ex-
pected the typed model detects the Kill-Bill exploit by using the type knowledge
for this unknown observation. The typed model does not know the observation

Alert Similarity

ProtocolCommandDecodeObservation 0.882812
ShellcodeDetectObservation 0.882812

MiscActivityObservation 0.519531
Table 3. Similarity of the different feature functions to the feature for AttemptedAd-
minObservation

AttemptedAdminObservation from training but it searches the available feature
functions with the highest degree of similarity. These are the alerts Protocol-
CommandDecodeObservation and ShellcodeDetectObservation (cf. Fig. 1 and
3) and it computes the corresponding weights as described in Eqn. 4. Both fea-
tures refer to an attack and therefore the classification comes to the conclusion
that the unknown observation AttemptedAdminObservation also refers to an at-
tack. In contrast, the traditional untyped linear chain conditional random field
has not detected the Kill-Bill exploit and generated a critical classification in
the intrusion detection domain: A false negative. This shows how typed linear
chain CRFs enrich traditional linear chain CRFs. In conclusion the typed classi-



fication outperforms the traditional classification if a type hierarchy expressing
the correct semantic similarities is available.

4.2 Experiment 2

The second experiment shows how a type hierarchy expressing an ambiguous
semantic similarity between contradictory feature functions influences the in-
ference process. In this experiment, the MiscActivityObservation has been
attached to the type hierarchy to have exactly the same similarity than the
other similar observations ProtocolCommandDecodeObservation and Shell-
codeDetectObservation (each one having a similarity of 0.882812). The high
belief of the model that the MiscActivityObservation feature corresponds to
normal system behavior and the circumstance that it is as similar as the con-
tradictory feature functions led to the misclassification of the AttemptedAdmin-
Observation to a normal system behavior like in linear chain conditional ran-
dom fields. This behavior results by the contradictory weights associated with
the similar observations leading to a nearly uniform probability distribution over
the labels. In conclusion the increased inference accuracy of typed linear chain
CRFs is highly dependent on a type hierarchy expressing the right semantic
similarities. Ambiguous similar feature functions with contradictory semantics
lean towards a uniform probability distribution pointing to the appropriate de-
creased certainty of the results. However, if the type hierarchy expresses the right
semantic similarity, the typed model leads to an increased inference accuracy.

5 Conclusion and Future Work

Typed linear chain conditional random fields offer an improved way to handle
missing feature functions. The missing feature functions’ weights are approxi-
mated during runtime by searching semantically similar feature functions out
of a type hierarchy. The type hierarchy is extracted out of an ontology and the
semantic similarity between the concepts in the ontology (respectively the type
hierarchy) are determined by a measurement from Zhong et al. [15]. Fortunately,
the training process remains the same as for conditional random fields, only the
inference process is adapted. Further, the computational effort of the inference
process only increases if missing reference data influences the inference result, all
other cases are not affected. First experiments in the domain of intrusion detec-
tion have shown that this is a useful extension to linear chain conditional random
fields and that with this method variations of already known kinds of intrusions
can be detected more reliably. In the future, the evaluation should be extended
to a more expressive data set. Currently the benchmark sets of real intrusions
are either very limited to the amount/kinds of intrusions or are only available for
a low-level analysis. The search for similar features may be improved by suitable
search algorithms. Also, the way of similarity measurement might be extended
by not only considering a type hierarchy, but also considering different object
properties / relations in the ontology, e. g. by considering IP-to-subnet relations



or host-to-asset relations. Overall, typed linear chain conditional random fields
are a promising step in the direction of using complex domain knowledge to
improve reasoning over time with only a few reference data.
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