arXiv:1008.5189v1 [cs.Al] 30 Aug 2010

Improving the Performance of maxRPC

Thanasis Balafouti§, Anastasia Paparrizai Kostas Stergiod, and Toby

Walsh?®

IDepartment of Information and Communication Systems Eawging,

University of the Aegean, Greece.

2Department of Informatics and Telecommunications Enginge

University of Western Macedonia, Greece.
SNICTA, University of New South Wales, Australia.

Abstract

Max Restricted Path Consistency (maxRPC) is a local carsigtfor
binary constraints that can achieve considerably stropgaming than arc
consistency. However, existing maxRPC algorithms suffemfoverheads
and redundancies as they can repeatedly perform many aonsthecks
without triggering any value deletions. In this paper wepmse techniques
that can boost the performance of maxRPC algorithms. Thedede the
combined use of two data structures to avoid many redundamgti@int
checks, and heuristics for the efficient ordering and execwdf certain op-
erations. Based on these, we propose two closely relatedRR@xalgo-
rithms. The first one has optimal(@.d®) time complexity, displays good
performance when used stand-alone, but is expensive ty dpphg search.
The second one has ©&(d*) time complexity, but a restricted version with
O(end*) complexity can be very efficient when used during searchthBo
algorithms have @d) space complexity when used stand-alone. However,
the first algorithm has @nd) space complexity when used during search,
while the second retains the(&@l) complexity. Experimental results demon-
strate that the resulting methods constantly outperforwipus algorithms
for maxRPC, often by large margins, and constitute a mone ¢feble alter-
native to arc consistency.

I ntroduction

maxRPC is a strong domain filtering consistency for binamyst@ints introduced
in 1997 by Debruyne and Bessiere [5]. maxRPC achieves agsrdavel of lo-
cal consistency than arc consistency (AC), andin [6] it vaetiified, along with

http://arxiv.org/abs/1008.5189v1

singleton AC (SAC), as a promising alternative to AC. AltgauSAC has received
considerable attention since, maxRPC has been compdyativerlooked. The
basic idea of maxRPC is to delete any vaduef a variablex that has no arc con-
sistency (AC) or path consistency (PC) support in a varigble valueb is an AC
support fora if the two values are compatible, and it is also a PC suppord ib
this pair of values is path consistent. A pair of valdesb) is path consistent iff
for every third variable there exists at least one valudedad PC witness, that is
compatible with both: andb.

The first algorithm for maxRPC was proposed/ih [5], and twoeragorithms
have been proposed since theh[[7, 10]. The algorithmis| ofr{8][&0] have been
evaluated on random problems only, while the algorithm_§fhfEs not been ex-
perimentally evaluated at all. Despite achieving considier pruning, existing
maxRRC algorithms suffer from overhead and redundancidsegsan repeatedly
perform many constraint checks without triggering any galeletions. These con-
straint checks occur when a maxRPC algorithm searches f8Casupport for a
value and when, having located one, it checks if it is also as&port by look-
ing for PC witnesses in other variables. As a result, the fiseaxRRC during
search often slows down the search process considerablyazethto AC, despite
the savings in search tree size.

In this paper we propose techniques to improve the appligabf maxRPC by
eliminating some of these redundancies while keeping a page complexity. We
also investigate approximations of maxRPC that only maightyy fewer value
deletions in practice, while being significantly faster. ¥Wst demonstrate that
we can avoid many redundant constraint checks and speecewgeénch for AC
and PC supports through the careful and combined applicafiewo data struc-
tures already used by maxRPC and AC algorithms$ [V, 10, [2,.838%ed on this,
we propose a coarse-grained maxRPC algorithm calledrRPC3 with optimal
O(end?) time complexity. This algorithm displays good performamdeen used
stand-alone (e.g. for preprocessing), but is expensiveptyaluring search. We
then propose another maxRPC algorithm, calleskRPC3"". This algorithm has
O(en?d*) time complexity, but a restricted version with @¢*) complexity can
be very efficient when used during search through the usesitdues Both algo-
rithms have Qed) space complexity when used stand-alone. HowenexRPC3
has Qend) space complexity when used during search, whi&RPC3""" retains
the Q(ed) complexity.

Similar algorithmic improvements can be appliedight maxRPQImaxRPC),
an approximation of maxRPC [110]. This achieves a lessell lglveonsistency
compared to maxRPC but still stronger than AC, and is moreeftsctive than
maxRPC when used during search. Experiments confirm thadRP@ is indeed
a considerably better option than maxRPC.

2

We also propose a humber of heuristics that can be used teeeffjcorder
the searches for PC supports and witnesses. Interestsmiye of the proposed
heuristics not only reduce the number of constraint checkslso the number of
visited nodes.

We make a detailed experimental evaluation of new and egistigorithms on
various problem classes. This is the first wide experimesttady of algorithms
for maxRPC and its approximations on benchmark non-randatgms. Results
show that our methods constantly outperform existing dlgms, often by large
margins. When applied during search our best method ofier® wne order of
magnitude reduction in constraint checks, while cpu tinresraproved up to four
times compared to the best existing algorithm. In additibase speed-ups enable
a search algorithm that applies ImaxRPC to compete with resform MAC on
many problems.

2 Background and Related Work

A Constraint Satisfaction ProblefCSP) is defined as a tupleX, D, C) where:
X ={z1,...,z,}isasetof variables,D = {D(z1),...,D(zy)} is a set of do-
mains, one for each variable, with maximum cardinalitendC' = {c;,...,c.}is
a set ofe constraints. Each constrainis a pair(var(c), rel(c)), wherevar(c) =
{z1,...,2,} is an ordered subset of, andrel(c) is a subset of theCarte-
sian product D(z1) x ... x D(zy,) that specifies the allowed combinations of
values for the variables inar(c). In the following, a binary constraint with
var(c) = {z;,z;} will be denoted by;;, and D(x;) will denote the current do-
main of variabler;. Each tupler € rel(c) is an ordered list of valug@, . . ., a,,)
such thata; € D(z;),j = 1,...,m. Atupler € rel(c;) is valid iff none of
the values in the tuple has been removed from the domain ofédtresponding
variable.

The process which verifies whether a given tuple is allowed bgnstraint is
called aconstraint check A binary CSP is a CSP where each constraint involves
at most two variables. We assume that binary constraintkshae performed in
constant time. In a binary CSP, a valuge D(z;) is arc consisten{AC) iff for
every constraint;; there exists a value; € D(x;) s.t. the pair of valuega;, a;)
satisfiesc;;. In this casey; is called anAC-supportof a;. A variable is AC iff all
its values are AC. A problem is AC iff there is no empty domairi and all the
variables inX are AC.

2.1 maxRPC

A value a; € D(z;) is max restricted path consiste(maxRPC) iff it is AC and
for each constraint;; there exists a value; € D(x;) that is an AC-support of;
s.t. the pair of value$a;, a;) is path consisten(PC) [5]. A pair of valuega;, a;)

is PC iff for any third variabler; there exists a value, € D(zy) s.t. a is an
AC-support of bothu; anda;. In this cases; is aPC-supportof a; in z; anday, is
aPC-witnesdor the pair(a;, a;) in z;. A variable is maxRPC iff all its values are
maxRPC. A problem is maxRPC iff there is no empty domain ahebailables are
maxRPC.

To our knowledge, three algorithms for achieving maxRP&Hmeen proposed
in the literature so far. The first one, called xRPC1, is a fine-grained algorithm
based oracé and has optimal @@d>) time complexity and Q:d) space com-
plexity [5]. The second algorithm, calleehxRPC2, is a coarse-grained algorithm
having O¢nd?) time and O¢d) space complexity [7]. FinallypaxRPC™™ is a
coarse-grained algorithm based ma3" [10]. The time and space complexi-
ties ofmaxRPC™™ are O¢n?d*) and O¢nd) but it has some advantages compared
to the other two because of its lighter use of data structuesong the three
algorithms maxRPC2 seems to be the most promising for stborge use as it
has a better time and space complexity thaxRPC™"" without requiring heavy
data structures or complex implementationmaskRpPC1 does. On the other hand,
maxRPC"™ can be better suited for use during search as it avoids ttiy cogin-
tainance of data structures.

Central tomaxRPC?2 is the LastPC data structure, as we call it here. For
each constraint;; and each value; € D(x;), LastPCy, a, =; gives the most
recently discovered PC-support of in D(z;). maxRPC2 maintains this data
structure incrementally. This means that the data strectucopied when moving
forward during search (i.e. after a successfully propabatiable assignment)
and restored when backtracking (after a failed variablggasgent). This results in
the following behavior: When looking for a PC-support giin D(z;), maxRPC2
first checks ifLast PCy, 4, ., is valid. If itis not, it searches for a new PC-support
starting from the value immediately aftéust PCy, o, ., in D(x;). In this way
a good time complexity bound is achieved. On the other haagtRPC"™ uses
a data structure similar thast PC to storeresiduesi.e. supports that have been
discovered during execution and stored for future use, bas ot maintain this
structure incrementamj When looking for a PC-support far; in D(z;), if the
residueLast PCy, 4, ., IS Not valid themaxRPC™™ searches for a new PC-support
from scratch inD(x;). This results in higher complexity, but crucially does not
require costly maintainance of theist PC' data structure during search.

maxRPC"™ also uses residues in a different context.

4

A major overhead of bothaxRPC2 andmaxRPC" is the following. When
searching for a PC-witness for a pair of vales a;) in a third variablexy, they
always start the search from scratch, i.e. from the firstiavi@ value inD(xy).
As these searches can be repeated many times during séarehcan be many re-
dundant constraint checks. In contrasixRPC1 manages to avoid searching from
scratch through the use of an additional data structures Sadnies many constraint
checks, albeit resulting in @nd) space complexity and requiring costly main-
tainance of this data structure during search. The algostive describe below
largely eliminate these redundant constraint checks witlet space complexity,
and in the case afiaxRPC3""™ with only light use of data structures.

3 New Algorithmsfor maxRPC

We first recall the basic ideas of algorithmsxRPC2 andmaxRPC""™ as described

in [7] and [10]. Both algorithms use a propagation listvhere variables whose
domain is pruned are added. Once a variahles removed fromL all neighboring
variables are revised to delete any values that are no langeRPC. For any value

a; of such a variable:; there are two possible reasons for deletion. The first, which
we callPC-support los$ereafter, is when the unique PC-suppgrte D(x;) for

a; has been deleted. The second, which wele@liwitness loskereafter, is when
the unique PC-witness; € D(x;) for the pair(a;, ar), whereay, is the unique
PC-support for; on some variable, has been deleted. In both cases valyis

no longer maxRPC.

We now give a unified description of algorithma xRPC3 andmaxRPC3""™,
Both algorithms utilize data structurdsist PC' and Last AC' which have the fol-
lowing functionalities: For each constrain; and each valuea; € D(x;),
LastPCly, a,x; andLastACy, q, ., give (point to) the most recently discovered
PC and AC supports af; in D(z;) respectively. Initially, allLast PC andLast AC
pointers are set to a special value NIL, considered to peead/alues in any do-
main. AlgorithmmaxRPC3 updates thd.ast PC and Last AC' structures incre-
mentally likemaxRPC2 andAC2001/3. 1 respectively do. In contrast, algorithm
maxRPC3"" uses these structures as residuesrike RPC™”* andAC™ do.

The pseudocode for the unified descriptionmafxRPC3 andmaxRPC3"" is
given in Algorithm[1l and Functiorls P] B 4. We assume the exeg of a global
Boolean variable RM which determines whether the algorifmesented is in-
stantiated tanaxRPC3 or tomaxRPC3"™. If RM is true, the algorithm used is
maxRPC3"", Otherwise, the algorithm isaxRPC3.

Being coarse-grained, Algorithid 1 uses a propagationZlisthere variables
that have their domain filtered are inserted. If the algaritk used for preprocess-

ing then, during an initialization phase, for each valyef each variabler; we
check ifa; is maxRPC. If it is not then it is deleted froM(z;) andx; is added
to L. The initialization function is not shown in detail due tmlied space. If the
algorithm is used during search thénis initialized with the currently assigned
variable (line 3).

In the main part of Algorithni]l, when a variablg is removed fromL, each
variablez; constrained with; must be made maxRPC. For each valye D(x;)
Algorithm [1, like maxRPC2 and maxRPC'™, establishes ifz; is maxRPC by
checking for PC-support loss and PC-witness loss at linewi8la.

Algorithm 1 maxRPC3/maxRPC3""

1: if = RMthen

2 if —initialization(L, LastPC, LastAC}hen return FAILURE;
3: dselL = {currently assigned varialjle
4

> whileL # @ do
5 L=L—{1’j};
6 for each z; € X s.t.¢;; € C do
7. for each a; € D(x;) do
8: if =searchPCsufu;, z;) then
9: deletea;;
10: L=L U {z;};
11: ese
12: if ~checkPCwita;, ;) then
13: deletea;;
14: L=L U {z;};
15: if D(z;) is emptythen return FAILURE;

16: return SUCCESS;

First, functionsearchPCsupis called to check if a PC-support for exists in
D(xj). If value Last PCy, 4, », is still in D(z;), thensearchPCsupeturns TRUE
(lines 1-2). If LastPCy, 4, ., is not valid, we search for a new PC-support. If
maxRPC3 is used, we can take advantage of thest PC' and Last AC pointers to
avoid starting this search from scratch. Specifically, wevkithat no PC-support
can exist beford.ast PCy, 4, »;, and also none can exist befake st AC,, o, 2,
since all values beford.astAC;, 4, .; are not AC-supports of;. Lines 5-6 in
searchPCsupake advantage of these to locate the appropriate staréihg ;.
Note thatnaxRPC2 always starts the search for a PC-support from the value afte
LastPCy, 4, ;- If the algorithm is called during search, in which case we us
maxRPC3"" then the search for a new PC-support starts from scrata&)injust
like maxRPC"™ does.

For every valuea; € D(x;), starting withb;, we first check if is an AC-
support ofa; (line 10). This is done using functioisConsistentwhich simple
checks if two values are compatible. If it is, and the aldonitismaxRPC3, then
we can updaté.astAC,, ., »; under a certain condition (lines 12-13). Specifically,

if LastACy, a, ., Was deleted fromD(z;), then we can sekast ACy, 4, +; 10 a;
in caseLastACy, a;2; > LastPCy, q; 0;- If LastACy, o, 2; < LastPCy, g, 4,
then we cannot do this as there may be AC-supports;fbetweenLast ACy; 4, x;
andLastPCy, 4, ., in the lexicographical ordering. We then move on to verify th
path consistency dfu;, a;) through functiorsearchPCwit

If no PC-support fora; is found in D(x;), searchPCsumill return FALSE,
a; will be deleted andr; will be added toL. Otherwise,LastPCy, 4, ., IS Set
to the discovered PC-suppatj (line 15). If maxRPC3"™ is used then we up-
date the residud.astAC,, 4, ., since the discovered PC-support is also an AC-
support. In addition, to exploit the multidirectionality eesiduesmaxRpC3"™
setsLastPCy; q; «; 10 a;, as in [10].

Function 2 searchPCsufa;, x;):boolean

1: if LastPCy;,a;,z; € D(x;) then
2 returntrue;

3 dse

4 if = RM then

5 if LastACs,,a;,2; € D(z;) then b; = max(LastPCu;,a;,0;+1,LastACs; a; ;)
6 elseb; = max(LastPCzi’ahzj +l,LastACzi,ai’zj +1);

7 ese

8 b; = first value inD(z;);

9. foreacha; € D(zj),a; > b; do

10 if isConsister(; , a;) then

11: if =RM then
12:

13

14

15

16

17

if LastACwi_,ai#w]. ¢ D(x;) AND LastACwi,ai,w]. > LastPC’wi,ai,w]. then
LastACzi,ai’zj = aj;
if searchPCwita;, a;) then
LastPCzi’ai,zj = aj;
if RM then LastACwi,ai,w]. =ay; LastPC’wj,a].,wi = a;;
. returntrue;
18: returnfalse

Function searchPCwitchecks if a pair of valueSa(,ajé is PC by doing the
following for each variabler;, constrained withz; and ;4. First, it checks if
either LastACy, o, =, 1S valid and consistent with; or LastACy; 4, +, is valid
and consistent wittu; (line 3). If one of these conditions holds then we have
found a PC-witness foraf,a;) without searching inD(z;) and we move on to
the next variable constrained witly andz;. Note that neithemaxRPC2 nor
maxRPC"™ can do this as they do not have thest AC structure. Experimental
results in Sectiofh]5 demonstrate that these simple conditian eliminate a very
large number of redundant constraint checks.

If none of the conditions holds then we have to searctDi) for a PC-
witness. If the algorithm imaxRPC3 then we can exploit théast AC' structure

2Since AC is enforced by the maxRPC algorithm, we only neeitsider variables that form a
3-clique withz; andx;.

to start this search from), = max{LastACy, 4, z,,, LastACy; 4,z } (line 6). But
before doing this, we call functioseekACsuppoliinot shown for space reasons),
first with (z;, a;, 1) and then with(z;, a;, z,) as parameters, to find the lexico-
graphically smallest AC-supports faf anda; in D(xy) (line 5). If such supports
are found,LastACy, 4, x, @nd LastAC,, 4, », are updated accordingly. In case
no AC-support is found for either; or a; thenseekACsupporeturns FALSE, and
subsequently searchPCwit() will also return FALSE.

Function 3 searchPCwita;, a;):boolean
1: for each z;, € V s.t.c;, € C andcj, € Cdo

2: maxRPCsupport=FALSE;

31 if (LastACy; 0,0, € D(z) AND isConsistentLastACs; a2, a;)) OR (LastACy; a;,a), €
D(z1) AND isConsistertLastACz; ,a;,a, , a;)) then continue;

4 if = RM then

5: if ~seek AC'support(zi, a;, xi,) OR~seek ACsupport(x;, a;, x)) then returnfalse;

6: by, = max(LastACy; a; z, LastACzjyajyzk);

7. eseby =firstvalue inD(zy);

8: for each ap € D(zy), ax > by do

9: if isConsister(ia; , ar,) AND isConsister{ia;, aj,) then

10: if RM then LastACy,; a2, = LastACy; a;,z, = ak;

11: maxRPCsupport=TRUHreak;

12: if =maxRPCsupporthen returnfalse;
13: returntrue;

If the algorithm used isnaxRPC3"" then we start search for a PC-witness
from scratch (line 7), amaxRPC2 andmaxRPC"™ always do. If a PC-withess;
is found (line 9) and we are usimgaxRPC3"" then both residuebast AC,, q; 2,
and LastACy; 4, «, are set toa, as they are the most recently discovered AC-
supports. If no PC-witness is found then we have determinatthe pair ¢;,a;)
is not PC and as a result FALSE will be returned aedrchPCsupvill move to
check if the next available value i(x;) is a PC-support fot;.

If value a; is not removed bgearchPCsujn Algorithm[, checkPCwits called
to check for PC-witness loss. This is done by iterating okiervtariables that are
constrained with both:; andz;. For each such variable;, we first check if
a = LastPCy, 4, », 1S still in D(zy,) (line 3). If so then we check if there still is
a PC-witness iD(z;). This is done by first checking if eitherast AC, 4, «; is
valid and consistent withy, or LastACy, 4, ., IS valid and consistent with; (line
4). If neither of these conditions holds then we search foCanftness starting
from b; = max{LastACy, q; z;, LastACy, 4, ,} in case ofmaxRPC3 (line 9),
after checking the existence of AC-supports dgrand a;, in D(z;), by calling
seekACsupporfine 8). If there is no AC-support if(x;) for eithera; or a;, we
set the auxiliary Boolean variabfmdPCsupporto TRUE to avoid searching for a
PC-witness.

If maxRPC3" is used, we start searching for a PC-witness from scrateé (li

8

11). Note thatnaxRPC2 does not do the check of line 4 and always starts the
search for a PC-witness from the first value/iiz;). In contrastmaxRpPC"™
avoids some redundant checks through the use of specidliessialbeit resulting

in O(end) space complexity. When usimgaxRPC3"", for each value; € D(z;)

we check if it is compatible witlh; anda;, and move thd.ast AC' pointers accord-
ingly (lines 14-15), exploiting the multidirectionalityf cesidues,

Function 4 checkPCwita;, z;):boolean

1: for each z;, € V s.t.¢;, € C andey; € Cdo

2: witness=FALSE; findPCsupport=FALSE;

3 if ap, = LastPCly; a;,z), € D(xy) then

4: if (LastACzi,ai’zj € D(x;) AND isConsister{tLast ACy, i s ar)) OR (LaStAC(pkyak’zj IS
D(z;) AND isConsisterfLastACqz, ,a, ,«;,a;)) then

5 witness=TRUE;

6 else

7 if = RM then

8 if seek AC support(x;, a;, xj) AND seek ACsupport(xy, ar, ;) then

9 bj = max(LastACy, ;. LastACy, ay.x;);

10 else findPCsupport=TRUE;

11 elseb; = first value inD(x;);

12 if = findPCsupport then

13 for each a; € D(z;), a; > bj do

14 if isConsister{iz;, a;) AND isConsisterfay,, a;) then

15 if RMthen LastACy; a;,2; = LastACz, ay ,x; = aj;

16 witness=TRUEpreak;

17: if —witness AND existsi, > LastPCly, a; .z, € D(zy)then

18 if = RM then

19: if LastAC%; a;,2;, € D(xy)then by, = max(LastPCy; a; 2, t1,LastACy; a; z;);

20: else by, = max(LastPCu; a;,z, *1.LastACs; a;), +1

21:

22

23

24

25

26

27

28

29

30

31

32

dse
by, = first value inD(zy);
for each ay, € D(zy), ap, > by do
if isConsister{ia; , a;) then
if = RM then
if LastACy; a;,2), ¢ D(xr) AND LastACy; a;,z,, > LastPCy, a; «, then
LastACy; a;,x) = ak;
if searchPCwita;, ay) then
LastPCy; a; x), = ak;
if RMthen LastACy, a;,z), = ak; LastPCy, a) .z, = a5
witness=TRUEpreak;
if —witnessthen returnfalse;
33: returntrue;

If LastPCy, q,.., has been removed @ has no PC-witness i) (z;), we
search for a new PC-support foy in D(xy). As in functionsearchPCsupwhen
maxRPC3 is used this search starts at an appropriate value calduiakeng ad-
vantage ofLastPCy, 4, , andLastACy, 4, o, (lines 18-20). WhemaxRPC3"™™
is used we start from scratch. If an AC-supportdgis found (line 24), we check
if itis also a PC-support by calling functisearchPCwi{line 28). IfmaxRPC3 is
used theLast ACy, q, ., IS Uupdated when necessary (lines 26-27). If a PC-support

9

is found, Last PCy, 4, s, i set accordingly (line 29). ihaxRPC3"" is used then
the residuelast AC, 4, «,, IS also updated, as fsast PCy, ,, ., (bidirectionality).

If the search for a PC-support fails then FALSE will be readyu; will be deleted,
andzx; will be added to L.

3.1 Light maxRPC

Light maxRPC (ImaxRPC) is an approximation of maxRPC thdy pnopagates
the loss of AC-supports and not the loss of PC-witness€es [IBis ensures that
the obtained algorithm enforces a consistency propertyidtat least as strong as
AC.

ImaxRPC is a procedurally defined local consistency, megpiiat its de-
scription is tied to a specific maxRPC algorithm. Light vens of algorithms
maxRPC3 andmaxRPC3"", simply notedlmaxRPC3 and1maxRPC3""" respec-
tively, can be obtained by omitting the call to ttieeckPCwifunction (lines 11-14
of Algorithm [T). In a similar way, we can obtain light verspif algorithms
maxRPC2 andmaxRPC"™.

As already noted in [10], the light versions of different rR&®C algorithms
may not be equivalent in terms of the pruning they achievagii® an example, a
brute force algorithm for ImaxRPC that does not use any datatsres can achieve
more pruning than algorithmsmaxRPC2, 1maxRPC3, and1maxRPC"™, albeit
being much slower in practice. Consider that any of theseetlatgorithms will
return TRUE in casd.ast PCy, 4, o, IS valid. However, althougihast PCy, 4, «;
is valid, it may no longer be a PC-support because the PGesstin some third
variable may have been deleted, and it may be the last one. chs@ where
LastPCy, 4, .; Was the last PC-support in; for value a;, the three advanced
algorithms will not deleter; while the brute force one will. This is because it will
exhaustively check all values of for PC-support, concluding that there is none.

The worst-case time and space complexities of algorithitaxRPC2 are the
same as maxRPC2. AlgorithomaxRPC’™ has Qn3d*) time and Qed) space
complexities, which are lower than thosercfxRPC""". Experiments with random
problems using algorithmsmaxRPC"™ andmaxRPC"" showed that the pruning
power of ImaxRPC is only slightly weaker than that of maxRBQ][At the same
time, it can offer significant gains in run times when usedrdusearch. These
results were also verified by us through a series of expetsramvarious problem
classes.

3.2 Correctness and Complexities

We now prove the correctness of algorithimsxRPC3 andmaxRPC3" and ana-
lyze their worst-case time and space complexities.

10

Proposition 1 Algorithm maxRPC3 is sound and complete.

Proof: Soundness. To prove the soundness m&xRPC3 we must prove that any
value that is deleted hyaxRPC3 is not maxRPC. Let; € D(x;) be a value that
is deleted bymaxRPC3. It is either removed fronD(z;) during the initialization
phase (line 15) or in line 8 of Algorithid 1, afteearchPCsujpas returnedalse or
in line 12, aftersearchPCsupmas returnedrue andcheckPCwihas returnedalse

In the first case, since functidnitilization checks all values in a brute-force
manner, it is clear that any deleted valueeither has no AC-support or none of
its AC-supports is a PC-support in some variabje The non-existence of a PC-
support is determined using functisearchPCwitwhose correctness is discussed
below.

In the second case, sineearchPCsupeturnsfalse LastPCy, 4, ., iS not
valid so a new PC-support iR (z;) is seeked (lines 9-17). This search starts with
the value at maxast PCy, o, 2;+1, LastACy, 4, ;) OF at maxCastPCy, 4, «;
+1, LastACy, q; -; +1), depending on whethetastAC,, 4, .; is valid or not.
This is correct since any value befofeist PC, 4, .,+1 and any value before
LastACy, q, «, is definitely not an AC-support far; (similarly for the other case).
searchPCsupvill return false either because no AC-supportdgican be found in
D(z;) (line 10), or because for any AC-support fousdarchPCwiteturned false
(line 13). In the former case there is no PC-supportafoin D(x;) since there is
no AC-support. In the latter case, for any AC-suppgrfound there must be some
third variablez;, for which no PC-witness for the pair;, a;) exists. For each
third variablex;, searchPCwitcorrectly identifies a PC-witness if one of the con-
ditions in line 3 holds. In none holds theearchPCwitsearches for a PC-witness
starting from maxt.astACy, 4, 2, LastACy, 4, »,) (line 6). This is correct since
LastACy, 4; 2, @ndLast ACy; 4, -, are updated with the lexicographically small-
est support ofi; (resp.a;) in D(xy,) by calling functionseekACsupmeaning that
any value smaller than makgst ACy, o, 2, Last ACy; o,) IS incompatible with
eithera; or a;. Therefore, ifsearchPCwiteturnsfalsethen there is no PC-witness
for some third variable:;,. Hence, ifsearchPCsupeturnsfalse it means no PC-
support fora; can be found inD(x;) and it is thus correctly deleted.

Now assume that the call wearchPCsupeturnedtrue and a; was removed
aftercheckPCwiteturnedfalse This means that for some variahlg, constrained
with bothz; andx;, both the first part (lines 3-11) and the second part (line24)3
of checkPCwitfailed to set the Booleawitnessto true. Regarding the first part,
the failure means that the pair of valugs, ax), whereay is the last PC-support
of a; in D(xy,) found, has no PC-witness iR(x;). In more detail, the search for
a PC-witness correctly starts from méxistACy, o, z;, LastACy; 4, ;) in line
9, after bothLast AC pointers have been updated syekACsup The condition

11

in line 4 is similar to the corresponding condition searchPCwitand thus, if it

is true, the search for PC-witness is correctly overrideregd®ding the second
part, the failure means that no alternative PC-supportfaon D(x;) was found.

In more detail, the search for a PC-support starts from mex(PC., 4, ., +1,
LastACy,; a;.2,) Of MaxLastPCy, 4, 2, +1, LastAC,, 4, -, +1), depending on the
existence ofLastAC,, q, +,.- This is correct since no ealier value can be a PC-
support. If there is no consistent;(a;) pair or searchPCwitreturnsfalsefor all
consistent pairs found, then has no PC-support ifv(x) and is thus correctly
deleted.

Completeness. To prove the completenessmof xRPC3 we need to show that if
a value is not maxRPC then the algorithm will delete it. Thedlization function
checks all values of all variables one by one in a brute-fone@ner and removes
any value that is not maxRPC. Values that are maxRPC havelthei PC point-
ers set to the discovered PC-supports. Thereafter, thetefté such removals
are propagated by calling Algorithid 1 and as a result newevdkietions may
occur. Now consider a valug, € D(z;) that was not removed by the initializa-
tion function but after propagation is no longer maxRPCsTisieither because of
PC-support or PC-witness loss.

In the first case assume that is the variable in whiclu; no longer has a PC-
support. Since the previously found PC-support:phas been deleted;; must
have been added 1@ at some point. When; is removed fromy all neighbor-
ing variables, including:; will be checked. FunctiosearchPCsupill find that
LastPCy, a,, is no longer valid and will search for a new PC-support codicig
that there is none. Therefore, it will retuflseandq; will be deleted.

In the second case assume that the pair of valugs;j, wherea; is the
last PC-support ofi; in D(x;), has lost its last PC-witness, in variablex;,. If
LastPCy, q, ; is notvalid, which means that; was added t@), then we have the
same case as above. Therefore, afteis removed front), searchPCsupvill find
out that there is no PC-support ferin D(x;) and will delete it. IfLast PCy, 4, x;
is valid thensearchPCsupill return true (line 2). Sincea; was deletedy;, was
added to(Q at some point. Whemr; is removed from@ all neighboring vari-
ables, includingr; will be checked. Ifa; has no longer a PC-support i(xy),
this will be detected bygearchPCsumnda; will be deleted. Otherwise, function
checkPCwitwill be called. The for loop in line 1 will go through every vable
constrained with bothy; and xy, including z;. Since LastPCy, 4, »; is valid, a
new PC-witness ford,a;) in D(x;) will be seeked (lines 3-11). Sineg, was
the last PC-witness, none will be found and as a result a nevsup@ort fora;
in D(z;) will be seeked (lines 13-24). Sineg was the last PC-support fas in
D(z;), none will be foundcheckPCwitwill return false anda; will be deleted.

12

Proposition 2 Algorithm maxRPC3"™ is sound and complete.

Proof: The proof is very similar to the corresponding proof fitexRPC3. AS
explained, the main difference between the two algorithorscerns the use of
the LastAC and Last PC' structures. AsnaxRPC3" does not maintain these
structures incrementally, the searches for PC-supporsarchPCsumndcheck-
PCwit and the searches for PC-withessess@archPCwitand checkPCwitstart
from scratch. Clearly, this has no effect on the soundnessoompleteness of
the algorithm since it guarantees that all potential P(psug and PC-witnesses
are checked. Furthermore, the conditions for avoiding mdelat searches using
residues are the same asnaxRPC3. Finally, another difference between the two
algorithms is the exploitation of bidirectionality byaxRpCc3". By the defini-
tion of path and arc consistency, bidirectionality holdkaflis, when a PC-support
(AC-support)a; € D(z;) is located for a value; € D(z;) thena, is a PC-support
(AC-support) fora;. Since the property of bidirectionality is exploited onty t
update residues, it does not affect the correctness of goeidm.

We now discuss the complexities of algorithmsxRPC3 andmaxRPC3"""
and their light versions. To directly compare with existirggorithms for
(DmaxRPC, the time complexities give the asymptotic nunabeonstraint checlés
Folllowing [9], the nodetime (resp. space) complexity of a (Il maxRPC algorithm
is the worst-case time (resp. space) complexity of invokimg algorithm after
a variable assignment. The correspondimgnchcomplexities of an (Il maxRPC
algorithm are the worst-case complexities of any increalesgquence of < n
invocations of the algorithm. That is, the complexities mérementally running
the algorithm down a branch of the search tree until a failczc

Proposition 3 The node and branch time complexity @f) maxRPC3is O(end?).

Proof: The complexity is determined by the total number of calls unction
isConsistentin searchPCsupcheckPCwit and mainlysearchPCwitwhere most
checks are executed.

Each variable can be inserted and extracted ffogwery time a value is deleted
from its domain, giving @Qd) times in the worst case. Each time a variabjeis
extracted fromL, searchPCsupvill look for a PC-support inD(x;) for all values
a; € D(x;),s.t.c; ; € C. For each variable;, O(d) values are checked. Checking
if a valuea; € D(z;) is a PC-support involves first checking i D if it is an
AC-support (line 9 insearchPCsupand then callingsearchPCwit The cost of

SHowever, constraint checks do not always reflect run timestlasr operations may have an
equal or even greater effect.

13

searchPCwitis O(n + nd) since there are @) variables constrained with both
x; andx; and, after making the checks in line 3, their domains mustebected
for a PC-witness, each time from scratch with cogh@. Through the use of
Last PC no value ofz; will be checked more than once over all thedptimesz;

is extracted fron, meaning that for any valug € D(x;) and any variable ;, the
overall cost ofsearchPCwiwill be O(dn + nd?) = O(nd*). Hence searchPCsup
will cost O(nd?) for one value ofz;, giving O(nd?) for d values. Since, in the
worst case, this process will be repeated for every pair ohbkesz; andz; that
are constrained, the total cost sarchPCsupill be O(end?). This is the node
complexity of ImaxRPC3.

In checkPCwitthe algorithms iterate over the variables in a triangle with
andz;. In the worst case, for each such variabje D(z;) will be searched from
scratch for a PC-witness af and its current PC-support iry,. As z; can be ex-
tracted fromL O(d) times and each search from scratch cogié)(the total cost
of checking for a PC-witness il(z;), including the checks of line 4 inheck-
PCwit, will be O(d + d?). Ford values ofz; this will be O(d?). As this process
will be repeated for all triangles of variables, whose numbebounded byen,
its total cost will be @end?). If no PC-witness is found then a new PC-support
for a; in D(x},) is seeked througkearchPCwit This costs Qnd?) as explained
above but it is amortized with the cost incurred by the callsdarchPCwitfrom
searchPCsupTherefore, the cost aheckPCwiis O(end?). This is also the node
complexity ofmaxRPC3.

The branch complexity of 1) maxRPC3 is also Qend?). This is because the
use of Last PC ensures that for any constraint; and a valuer; € D(x;), each
value ofz; will be checked at most once for PC-support while going dolaa t
branch. Therefore, the cost efarch PCwit is amortized.

Proposition 4 The node and branch time complexities bhaxRPC3"" and
maxRPC3"™ are Qend*) and Qen?d*) respectively.

Proof: The proof is similar to that of Propositidd 3. The main difiece with
1maxRPC3 is that sincdast PC is not updated incrementally, each time we seek
a PC-support for a valug; € D(x;) in z;, D(x;) will be searched from scratch in
the worst case. This incurs an extrédd cost tosearchPCsum@mnd searchPCwit
Hence, the node complexity afnaxRPC3™™ is O(end*). Also, the total cost of
searchPCwiin one node cannot be amortized. This means that the cestaoth-
PCwitwithin checkPCwifs O(nd?). Hence, the node complexity s xRPC3"™

is O(en?d*). The branch complexities are the same because the caltsatoh-
PCwitare amortized.

14

The space complexities of the algorithms are determinetiédgpace required
for data structured.ast PC' and Last AC'. Since both require @d) space, this is
the node space complexity 0f.) maxRPC3 and (1) maxRPC3™". (1)maxRPC3
has Qend) branch space complexity because of the extra space redoirtg in-
cremental update and restoration of the data structures1AsaxRPC3""™ avoid
this, its branch space complexity i&d).

4 Heuristicsfor maxRPC Algorithms

Numerous heuristics for ordering constraint or variabldsiens have been pro-
posed and used within AC algorithms [11] 3, 1]. Heuristioshsas the ones used
by AC algorithms can be also used within a maxRPC algorithefftoiently select
the next variable to be removed from the propagation lise(b of Algorithm[1).
In addition to this, maxRPC and ImaxRPC algorithms can befrefn the use of
heuristics elsewhere in their execution. Once a variableas been removed from
the propagation list, heuristics can be applied as followsither a maxRPC or a
ImaxRPC algorithm (we use algorithil) maxRPC3 for illustration):

1. After a variabler; is removed fromL all neighboring variables; are re-
vised. ImaxRPC (resp. maxRPC) will detect a failure if thadibon of
PC-support loss (resp. either PC-support or PC-witnes3 mscurs for all
values ofz;. In such situations, the sooner is considered and the fail-
ure is detected, the more constraint checks will be savedcéjahe order
in which the neighboring variables of; are considered can be determined
using a fail-first type of heuristic.

2. Once an AC-support; € D(z;) has been found for a valug € D(x;),
searchPCsupries to establish if it is a PC-support. If there is no PCheits
for the pair(a;, a;) in some variabler;, thena; is not a PC-support. There-
fore, we can again use fail-first heuristics to determineotider in which the
variables forming a triangle with; andz; are considered.

The above cases apply to both ImaxRPC and maxRPC algorithraddition,
a maxRPC algorithm can employ heuristics as follows:

3. Foreachvalue; € D(x;) and each variable; constrained with both; and
x;, Functior(4 checks if the paik;, ai) still has a PC-witness i (z;). If
there is no PC-witness drast PC,, 4, =, 1S not valid then a new PC-support
in z, is seeked. If none is found then will be deleted. Again heuristics
can be used to determine the order in which the variablestreamsd with
x; andz; are considered.

15

4. In Functiorid ifLast PCy, 4, », is not valid then a new PC-support fefin
D(zy,) is seeked. The order in which variables constrained with bpand
x), are considered can be determined heuristically as in Casev&a

As explained, the purpose of such ordering heuristic wilido#ail-first”. That
is, to quickly discover potential failures (Case 1 abovejute values that are not
PC-supports (Cases 2 and 4) and delete values that have sagpGrt (Case 3).
Such heuristics can be applied in any coarse-grained maxdgiithm to de-
cide the order in which variables are considered in Cases BExdmples are the
following:

dom Consider the variables in ascending domain size. This $igugan be ap-
plied in any of the four cases.

del_ratio Consider the variables in ascending ratio of the number mfaneing
values to the initial domain size. This heuristic can be i@plpih any of the
four cases.

wdeg In Case 1 consider the variablesin descending weight for the constraint
c;;. In Case 2 consider the variablegin descending average weight for the
constraints:;;, andc;. Similarly for Cases 3 and 4.

dom/wdeg Consider the variables in ascending value of dom/wdeg. figuisistic
can be applied in any of the four cases.

Experiments demonstrated that applying heuristics in €ased 3 are partic-
ularly effective, while doing so in Cases 2 and 4 saves camstchecks but only
marginally reduces cpu times. All of the heuristics mergidabove for Cases 1
and 3 offer cpu gains, with dom/wdeg being the most efficié&tthough the pri-
mal purpose of the heuristics is to save constraint chetks, jnteresting to note
that some of the heuristics can also divert search to diftemesas of the search
space when a variable ordering heuristic like dom/wdegesi usesulting in fewer
node visits. For example, two different orderings of thaalaes in Case 1 may
result in different constraints causing a failure. As doadegy increases the weight
of a constraint each time it causes a failure and uses theéhtgeig select the next
variable, this may later result in different branching desi. This is explained for
the case of AC in1].

5 Experiments

We have experimented with several classes of structuredaanaibm binary CSPs
taken from C.Lecoutre’s XCSP repository. Excluding insesthat were very hard

16

for all algorithms, our evaluation was done on 200 instamcdstal from various
problem classes. More details about these instances caubé in C.Lecoutre’s
homepage. All algorithms used the dom/wdeg heuristic foialste ordering([4]
and lexicographic value ordering. In case of a failure (diomape-out) the weight
of constraintc;; is updated (right before returning in line 15 of Algorittiin The
suffix '+H’ after any algorithm’s name means that we have &gpthe dom/wdeg
heuristic for ordering the propagation list [1], and the sdrauristic foICase 1de-
scribed in Section 4. In absense of the suffix, the propagéitibwas implemented
as a FIFO queue and no heuristic from Section 4 was used.

Table 1: Average stand-alone performance in all 200 instgeoouped by problem
class. Cpu times (t) in secs and constraint checks (cc) aea.gi

Problem class maxRPCZ2maxRPC3ImaxRPCZImaxRPC3ImaxRPC™ |ImaxRPC3™ |ImaxRPC3+H
RLFAP t| 6.786 2.329 4.838 2.043 4.615 2.058 2.148
(scen,graph) cc| 31M M 21M 8M 21M oM 8M
Random t 0.092 0.053 0.079 0.054 0.078 0.052 0.056
(modelB,forced) cc| 0.43M 0.18M 0.43M 0.18M 0.43M 0.18M 0.18M
Geometric t| 0.120 0.71 0.119 0.085 0.120 0.086 0.078
cc| 0.74M 0.35M 0.74M 0.35M 0.74M 0.35M 0.35M
Quasigroup t 0.293 0.188 0.234 0.166 0.224 0.161 0.184
(qcp,qwh,bgwh) cc| 1.62M 0.59M 1.28M 0.54M 1.26M 0.54M 0.54M
QueensKnights, t| 87.839 | 47.091 | 91.777 45.130 87.304 43.736 43.121
Queens,QueenAttackc| 489M 188M 487M 188M 487M 188M 188M
driver,blackHole t 0.700 0.326 0.630 0.295 0.638 0.303 0.299
haystacks,job-shop |cc| 4.57M 1.07M 4.15M 1.00M 4.15M 1.00M 1.00M

Table[1 compares the performance of stand-alone algoritls®d for prepro-
cessing. We give average results for all the instancespgubinto specific problem
classes. We include results from the two optimal coarsexgdamaxRPC algo-
rithms,maxRPC2 andmaxRPC3, from all the light versions of the coarse-grained
algorithms, and from one of the most competitive algoritimsxRPC3) in tan-
dem with the dom/wdeg heuristics of SectidniéxRPC3+H). Results show that
in terms of run time our algorithms have similar performaaocé are superior to
existing ones by a factor of two on average. This is due to li@reation of many
redundant constraint checks as the cc numbers show. Hewsinot seem to
make any difference.

Tables [2 and[]3 compare the performance of search algorithaisapply
1maxRPC throughout search on RLFAPs and an indicative collectiorotber
problems respectively. The algorithms compared aremaxRpC’™ and
1maxRPC3"™ with and without the use of heuristic dom/wdeg for propagati
list and for Case 1 of Sectidd 4. We also include results froAQW"™ which is

17

considered the most efficient version of MAC[8, 9].

Table 2: Cpu times (t) in secs, nodes (n) and constraint ch@xk from RLFAP
instances. Algorithms that use heuristics are denoteddiy tlame + H. The best
cpu time among the ImaxRPC methods is highlighted.

instance AC™™ |ImaxRPC™ [ImaxRPC3™ | ImaxRPC™ + H|ImaxRPC3™ + H
scenll t 5.4 13.2 4.6 125 4.3
n| 4,367 1,396 1,396 1,292 1,292
cc| 5M 92M 29M 90M 26M
scenll-f10] t 11.0 29.0 12.3 22.3 9.8
n| 9,597 2,276 2,276 1,983 1,983
ccl 11Mm 141IM 51M 114M 41IM
scen2-f25 | t 271 109.2 43.0 79.6 32.6
n| 43,536 8,310 8,310 6,179 6,179
cc| 44M 427M 151M 315M 113M
scen3-f11 |t 7.4 30.8 12.6 17.3 7.8
n|l 7,962 2,309 2,309 1,852 1,852
ccl 9M 132M 46M 80M 29M
scenll-f7 |t | 4,606.5 8,307.5 3,062.8 6,269.0 2,377.6
n (3,696,154 552,907 552,907 522,061 522,061
cc| 4,287M | 35,897M 9,675M 22,899M 6,913M
scenll-f8 |t | 521.1 2,680.6 878.0 1,902.4 684.7
n| 345,877 112,719 112,719 106,352 106,352
cc| 638M 10,163M 3,172M 7,585M 2,314M
graph8-f10 | t 16.4 16.8 9.1 11.0 6.3
n| 18,751 4,887 4,887 3,608 3,608
cc| 14M 71M 31M 51M 21M
graph14-f28 t 31.4 4.1 3.1 2.6 21
n| 57,039 2,917 2,917 1,187 1,187
ccl 13M 17M 8M 13M 6M
graph9-f9 | t| 2735 206.3 101.5 289.5 146.9
n| 273,766 26,276 26,276 49,627 49,627
cc| 158M 729M 290M 959M 371M

Experiments showed thatmaxRPC"™ is the most efficient among existing al-
gorithms when applied during search, which confirms theltegiven in [10]. Ac-
cordingly, ilmaxRPC3"™ is the most efficient among our algorithms. It is between
two and four times faster thanaxRPC3" on hard instances, while algorithms
1maxRPC3 and1lmaxRPC2 are not competitive when used during search because
of the data structures they maintain. In general, when egmluring search, any
maxRPC algorithm is clearly inferior to the correspondiigit version. The re-
duction in visited nodes achieved by the former is relayiv@hall and does not
compensate for the higher run times of enforcing maxRPC.

Results from Tablek]2 arid 3 demonstrate thahxRPC3"" always outper-
forms 1maxRPC"™, often considerably. This was the case in all 200 instances
tried. The use of heuristics improves the performance ol hmaxRPC algo-

18

rithms in most cases. Looking at the columns feraxRPC™ and 1maxRPC3""™
+H we can see that our methods can reduce the numbers ofaahstiecks by as
much as one order of magnitude (e.g. in quasigroup problemsuad qwh). This
is mainly due to the elimination of redundant checks insidefionsearchPCwit
Cpu times are not cut down by as much, but a speed-up of mane3ttimmes can
be obtained (e.g. scen2-f25 and scenl11-8).

Table 3: Cpu times (t) in secs, nodes (n) and constraint ch@xk from various
instances.

instance AC™™ |ImaxRPC™ |ImaxRPC3™ |ImaxRPC" + H|ImaxRPC3™ + H
rand-2-40-8 t 4.0 47.3 21.7 37.0 19.0
-753-100-75 n| 13,166 8,584 8,584 6,915 6,915
ccl 7™ 289M 82M 207M 59M
geo50-20 t| 1027 347.7 177.5 273.3 150.3
d4-75-1 n| 181,560 79,691 79,691 75,339 75,339
cc| 191M 2,045M 880M 1,437M 609M
qcpl50-120-5 |t 52.1 89.4 50.2 80.0 55.3
n| 233,311 100,781 100,781 84,392 84,392
ccl 27T™M 329M 53M 224M 36M
qcpl50-120-9 |t | 226.8 410.7 238.1 239.9 164.3
n (1,195,896 583,627 583,627 315,582 315,582
cc| 123M 1,613M 250M 718M 112M
gwh20-166-1 |t 52.6 64.3 38.9 21.2 14.9
n| 144,653| 44,934 44,934 13,696 13,696
ccl 19M 210M 23M 53M 6M
gwh20-166-6 |t | 1,639.0| 1,493.5 867.1 1,206.2 816.5
n (4,651,632 919,861 919,861 617,233 617,233
cc| 633M 5,089M 566M 3,100M 351M
gwh20-166-9 |t 41.8 41.1 25.0 39.9 28.5
n| 121,623| 32,925 32,925 26,505 26,505
cc| 15M 135M 15M 97M 11M
blackHole t 1.8 14.4 3.8 12.1 3.6
4-4-e-8 n|l 8,661 4,371 4,371 4,325 4,325
ccl 4M 83M 12M 68M 10M
gueens-100 t 15.3 365.3 106.7 329.8 103.0
n| 7,608 6,210 6,210 5,030 5,030
ccl 6M 1,454M 377M 1,376M 375M
queenAttacking$ t 34.3 153.1 56.7 136.0 54.8
n| 139,534 38,210 38,210 33,341 33,341
cc| 35M 500M 145M 436M 128M
queensKnights | t | 217.0 302.0 173.6 482.0 283.5
-15-5-mul n| 35,445 13,462 13,462 12,560 12,560
cc| 153M 963M 387M 1,795M 869M

Importantly, the speed-ups obtained can make a searchithigothat effi-
ciently applies ImaxRPC competitive with MAC on many instes. For instance,
in scen11-f10 we achieve the same run time as MAC whilexRPC""" is 3 times
slower while in scenl11-f7 we go from 2 times slower to 2 timeestdr. In addition,

19

there are several instances where MAC is outperformed (aeggraph RLFAPs
and most quasigroup problems). Of course, there are sitthites where MAC
remains considerably faster despite the improvements.

Table 4: Average search performance in all 200 instancaggubby class.

Problem class AC"™™ [ImaxRPC™ |ImaxRPC3™ | ImaxRPC™ + H|ImaxRPC3™ + H
RLFAP t|242.8 556.7 199.3 416.3 157.3
(scen,graph) cc| 233M| 2,306M 663M 1,580M 487M
Random t| 84 28.0 14.8 28.5 17.1
(modelB,forced) cc| 14M 161M 60M 137M 51M
Geometric t| 215 72.2 37.2 57.6 32.1
cc| 39M 418M 179M 297M 126M
Quasigroup t | 147.0 162.5 94.9 128.9 89.6
(qcp,qwh,bgwh) cc| 59M 562M 68M 333M 40M
QueensKnights, t| 90.2 505.2 180.3 496.4 198.1
Queens,QueenAttackc| 74M 1,865M 570M 1,891M 654M
driver,blackHole t| 32 17.1 9.1 11.9 7.0
haystacks,job-shop |cc| 1.8M 55M 6.4M 36.7M 5.1M

Table[4 summarizes results from the application of ImaxRBfind search.
We give average results for all the tested instances, gtbuge specific prob-
lem classes. As can be seen, our best method improves onigi@gbest one
considerably, making ImaxRPC outperform MAC on the RFLAH gnasigroup
problem classes. Overall, our results demonstrate thaffiogent application of a
maxRPC approximation throughout search can give an afgotihat is quite com-
petitive with MAC on many binary CSPs. This confirms the cohjee of [6] about
the potential of maxRPC as an alternative to AC. In additoam results, along with
ones in[[10], show that approximating strong and complealloonsistencies can
be very beneficial.

6 Conclusion

We presentethaxRPC3 andmaxRPC3"", two new algorithms for maxRPC, and
their light versions that approximate maxRPC. These dlyos build on and im-
prove existing maxRPC algorithms, achieving the elimoraif many redundant
constraint checks. We also investigated heuristics thabeaused to order certain
operations within maxRPC algorithms. Experimental resiatim various problem
classes demonstrate that our best methadyxRPC3"", constantly outperforms
existing algorithms, often by large margins. Significanthe speed-ups obtained
allow 1maxRPC3"™ to compete with and outperform MAC on many problems. In
the future we plan to adapt techniques for using residues &) to improve the

20

performance of our algorithms during search. Also, it wdaddinteresting to in-
vestigate the applicability of similar methods to efficlgrachieve or approximate
other local consistencies.

References

(1]

(2]

(3]

[4]

[5]

(6]
[7]

(8]

9]

[10]

[11]

T Balafoutis and K. Stergiou. Exploiting constraint \gkts for revision ordering in Arc Consis-
tency Algorithms. INECAI-08 Workshop on Modeling and Solving Problems with Gairgs,
2008.

C. Bessiere, J.C. Régin, R. Yap, and Y. Zhang. An Opli@earse-grained Arc Consistency
Algorithm. Artificial Intelligence 165(2):165-185, 2005.

F. Boussemart, F. Hemery, and C. Lecoutre. Revisionrargeneuristics for the Constraint
Satisfaction Problem. 1€P-2004 Workshop on Constraint Propagati@904.

F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Bogstystematic search by weighting
constraints. IfProceedings of ECAI-2002004.

R. Debruyne and C. Bessiere. From restricted path stersty to max-restricted path consis-
tency. InCP-97, pages 312-326, 1997.

R. Debruyne and C. Bessiere. Domain Filtering Consisies. JAIR, 14:205-230, 2001.

F. Grandoni and G. Italiano. Improved Algorithms for MRestricted Path Consistency. In
Proceedings of CP'03ages 858-862, 2003.

C. Lecoutre and F. Hemery. A study of residual supportarmcosistency. IfProceedings of
IJCAI-2007 pages 125-130, 2007.

C. Likitvivatanavong, Y. Zhang, J. Bowen, S. Shannord BnFreuder. Arc Consistency during
Search. IrProceedings of IJCAI-200Pages 137-142, 2007.

J. Vion and R. Debruyne. Light Algorithms for Maintaing Max-RPC During Search. In
Proceedings of SARA-2002009.

R. Wallace and E. Freuder. Ordering heuristics for anesistency algorithms. 1AI/GI/VI,
pages 163-169, Vancouver, British Columbia, Canada, 1992.

21

	1 Introduction
	2 Background and Related Work
	2.1 maxRPC

	3 New Algorithms for maxRPC
	3.1 Light maxRPC
	3.2 Correctness and Complexities

	4 Heuristics for maxRPC Algorithms
	5 Experiments
	6 Conclusion

