
ar
X

iv
:1

00
8.

51
89

v1
 [

cs
.A

I]
 3

0
A

ug
 2

01
0 Improving the Performance of maxRPC

Thanasis Balafoutis1, Anastasia Paparrizou2, Kostas Stergiou2, and Toby
Walsh3

1Department of Information and Communication Systems Engineering,
University of the Aegean, Greece.

2Department of Informatics and Telecommunications Engineering,
University of Western Macedonia, Greece.

3NICTA, University of New South Wales, Australia.

Abstract

Max Restricted Path Consistency (maxRPC) is a local consistency for
binary constraints that can achieve considerably strongerpruning than arc
consistency. However, existing maxRPC algorithms suffer from overheads
and redundancies as they can repeatedly perform many constraint checks
without triggering any value deletions. In this paper we propose techniques
that can boost the performance of maxRPC algorithms. These include the
combined use of two data structures to avoid many redundant constraint
checks, and heuristics for the efficient ordering and execution of certain op-
erations. Based on these, we propose two closely related maxRPC algo-
rithms. The first one has optimal O(end3) time complexity, displays good
performance when used stand-alone, but is expensive to apply during search.
The second one has O(en2d4) time complexity, but a restricted version with
O(end4) complexity can be very efficient when used during search. Both
algorithms have O(ed) space complexity when used stand-alone. However,
the first algorithm has O(end) space complexity when used during search,
while the second retains the O(ed) complexity. Experimental results demon-
strate that the resulting methods constantly outperform previous algorithms
for maxRPC, often by large margins, and constitute a more than viable alter-
native to arc consistency.

1 Introduction

maxRPC is a strong domain filtering consistency for binary constraints introduced
in 1997 by Debruyne and Bessiere [5]. maxRPC achieves a stronger level of lo-
cal consistency than arc consistency (AC), and in [6] it was identified, along with

1

http://arxiv.org/abs/1008.5189v1

singleton AC (SAC), as a promising alternative to AC. Although SAC has received
considerable attention since, maxRPC has been comparatively overlooked. The
basic idea of maxRPC is to delete any valuea of a variablex that has no arc con-
sistency (AC) or path consistency (PC) support in a variabley. A valueb is an AC
support fora if the two values are compatible, and it is also a PC support for a if
this pair of values is path consistent. A pair of values(a, b) is path consistent iff
for every third variable there exists at least one value, called a PC witness, that is
compatible with botha andb.

The first algorithm for maxRPC was proposed in [5], and two more algorithms
have been proposed since then [7, 10]. The algorithms of [5] and [10] have been
evaluated on random problems only, while the algorithm of [7] has not been ex-
perimentally evaluated at all. Despite achieving considerable pruning, existing
maxRRC algorithms suffer from overhead and redundancies asthey can repeatedly
perform many constraint checks without triggering any value deletions. These con-
straint checks occur when a maxRPC algorithm searches for anAC support for a
value and when, having located one, it checks if it is also a PCsupport by look-
ing for PC witnesses in other variables. As a result, the use of maxRRC during
search often slows down the search process considerably compared to AC, despite
the savings in search tree size.

In this paper we propose techniques to improve the applicability of maxRPC by
eliminating some of these redundancies while keeping a low space complexity. We
also investigate approximations of maxRPC that only make slightly fewer value
deletions in practice, while being significantly faster. Wefirst demonstrate that
we can avoid many redundant constraint checks and speed up the search for AC
and PC supports through the careful and combined application of two data struc-
tures already used by maxRPC and AC algorithms [7, 10, 2, 8, 9]. Based on this,
we propose a coarse-grained maxRPC algorithm calledmaxRPC3 with optimal
O(end3) time complexity. This algorithm displays good performancewhen used
stand-alone (e.g. for preprocessing), but is expensive to apply during search. We
then propose another maxRPC algorithm, calledmaxRPC3rm. This algorithm has
O(en2d4) time complexity, but a restricted version with O(end4) complexity can
be very efficient when used during search through the use ofresidues. Both algo-
rithms have O(ed) space complexity when used stand-alone. However,maxRPC3

has O(end) space complexity when used during search, whilemaxRPC3rm retains
the O(ed) complexity.

Similar algorithmic improvements can be applied tolight maxRPC(lmaxRPC),
an approximation of maxRPC [10]. This achieves a lesser level of consistency
compared to maxRPC but still stronger than AC, and is more cost-effective than
maxRPC when used during search. Experiments confirm that lmaxRPC is indeed
a considerably better option than maxRPC.

2

We also propose a number of heuristics that can be used to efficiently order
the searches for PC supports and witnesses. Interestingly,some of the proposed
heuristics not only reduce the number of constraint checks but also the number of
visited nodes.

We make a detailed experimental evaluation of new and existing algorithms on
various problem classes. This is the first wide experimentalstudy of algorithms
for maxRPC and its approximations on benchmark non-random problems. Results
show that our methods constantly outperform existing algorithms, often by large
margins. When applied during search our best method offers up to one order of
magnitude reduction in constraint checks, while cpu times are improved up to four
times compared to the best existing algorithm. In addition,these speed-ups enable
a search algorithm that applies lmaxRPC to compete with or outperform MAC on
many problems.

2 Background and Related Work

A Constraint Satisfaction Problem(CSP) is defined as a tuple(X,D,C) where:
X = {x1, . . . , xn} is a set ofn variables,D = {D(x1), . . . ,D(xn)} is a set of do-
mains, one for each variable, with maximum cardinalityd, andC = {c1, . . . , ce} is
a set ofe constraints. Each constraintc is a pair(var(c), rel(c)), wherevar(c) =
{x1, . . . , xm} is an ordered subset ofX, and rel(c) is a subset of theCarte-
sian productD(x1) × . . . × D(xm) that specifies the allowed combinations of
values for the variables invar(c). In the following, a binary constraintc with
var(c) = {xi, xj} will be denoted bycij , andD(xi) will denote the current do-
main of variablexi. Each tupleτ ∈ rel(c) is an ordered list of values(a1, . . . , am)
such thataj ∈ D(xj),j = 1, . . . ,m. A tuple τ ∈ rel(ci) is valid iff none of
the values in the tuple has been removed from the domain of thecorresponding
variable.

The process which verifies whether a given tuple is allowed bya constraintc is
called aconstraint check. A binary CSP is a CSP where each constraint involves
at most two variables. We assume that binary constraint checks are performed in
constant time. In a binary CSP, a valueai ∈ D(xi) is arc consistent(AC) iff for
every constraintcij there exists a valueaj ∈ D(xj) s.t. the pair of values(ai, aj)
satisfiescij . In this caseaj is called anAC-supportof ai. A variable is AC iff all
its values are AC. A problem is AC iff there is no empty domain in D and all the
variables inX are AC.

3

2.1 maxRPC

A value ai ∈ D(xi) is max restricted path consistent(maxRPC) iff it is AC and
for each constraintcij there exists a valueaj ∈ D(xj) that is an AC-support ofai
s.t. the pair of values(ai, aj) is path consistent(PC) [5]. A pair of values(ai, aj)
is PC iff for any third variablexk there exists a valueak ∈ D(xk) s.t. ak is an
AC-support of bothai andaj . In this caseaj is aPC-supportof ai in xj andak is
aPC-witnessfor the pair(ai, aj) in xk. A variable is maxRPC iff all its values are
maxRPC. A problem is maxRPC iff there is no empty domain and all variables are
maxRPC.

To our knowledge, three algorithms for achieving maxRPC have been proposed
in the literature so far. The first one, calledmaxRPC1, is a fine-grained algorithm
based onAC6 and has optimal O(end3) time complexity and O(end) space com-
plexity [5]. The second algorithm, calledmaxRPC2, is a coarse-grained algorithm
having O(end3) time and O(ed) space complexity [7]. Finally,maxRPCrm is a
coarse-grained algorithm based onAC3rm [10]. The time and space complexi-
ties ofmaxRPCrm are O(en2d4) and O(end) but it has some advantages compared
to the other two because of its lighter use of data structures. Among the three
algorithms maxRPC2 seems to be the most promising for stand-alone use as it
has a better time and space complexity thanmaxRPCrm without requiring heavy
data structures or complex implementation asmaxRPC1 does. On the other hand,
maxRPCrm can be better suited for use during search as it avoids the costly main-
tainance of data structures.

Central tomaxRPC2 is theLastPC data structure, as we call it here. For
each constraintcij and each valueai ∈ D(xi), LastPCxi,ai,xj

gives the most
recently discovered PC-support ofai in D(xj). maxRPC2 maintains this data
structure incrementally. This means that the data structure is copied when moving
forward during search (i.e. after a successfully propagated variable assignment)
and restored when backtracking (after a failed variable assignment). This results in
the following behavior: When looking for a PC-support forai in D(xj), maxRPC2
first checks ifLastPCxi,ai,xj

is valid. If it is not, it searches for a new PC-support
starting from the value immediately afterLastPCxi,ai,xj

in D(xj). In this way
a good time complexity bound is achieved. On the other hand,maxRPCrm uses
a data structure similar toLastPC to storeresidues, i.e. supports that have been
discovered during execution and stored for future use, but does not maintain this
structure incrementally1. When looking for a PC-support forai in D(xj), if the
residueLastPCxi,ai,xj

is not valid thenmaxRPCrm searches for a new PC-support
from scratch inD(xj). This results in higher complexity, but crucially does not
require costly maintainance of theLastPC data structure during search.

1
maxRPC

rm also uses residues in a different context.

4

A major overhead of bothmaxRPC2 andmaxRPCrm is the following. When
searching for a PC-witness for a pair of values(ai, aj) in a third variablexk, they
always start the search from scratch, i.e. from the first available value inD(xk).
As these searches can be repeated many times during search, there can be many re-
dundant constraint checks. In contrast,maxRPC1manages to avoid searching from
scratch through the use of an additional data structure. This saves many constraint
checks, albeit resulting in O(end) space complexity and requiring costly main-
tainance of this data structure during search. The algorithms we describe below
largely eliminate these redundant constraint checks with lower space complexity,
and in the case ofmaxRPC3rm with only light use of data structures.

3 New Algorithms for maxRPC

We first recall the basic ideas of algorithmsmaxRPC2andmaxRPCrm as described
in [7] and [10]. Both algorithms use a propagation listL where variables whose
domain is pruned are added. Once a variablexj is removed fromL all neighboring
variables are revised to delete any values that are no longermaxRPC. For any value
ai of such a variablexi there are two possible reasons for deletion. The first, which
we callPC-support losshereafter, is when the unique PC-supportaj ∈ D(xj) for
ai has been deleted. The second, which we callPC-witness losshereafter, is when
the unique PC-witnessaj ∈ D(xj) for the pair(ai, ak), whereak is the unique
PC-support forai on some variablexk, has been deleted. In both cases valueai is
no longer maxRPC.

We now give a unified description of algorithmsmaxRPC3 andmaxRPC3rm.
Both algorithms utilize data structuresLastPC andLastAC which have the fol-
lowing functionalities: For each constraintcij and each valueai ∈ D(xi),
LastPCxi,ai,xj

andLastACxi,ai,xj
give (point to) the most recently discovered

PC and AC supports ofai inD(xj) respectively. Initially, allLastPC andLastAC
pointers are set to a special value NIL, considered to precede all values in any do-
main. AlgorithmmaxRPC3 updates theLastPC andLastAC structures incre-
mentally likemaxRPC2 andAC2001/3.1 respectively do. In contrast, algorithm
maxRPC3rm uses these structures as residues likemaxRPCrm andACrm do.

The pseudocode for the unified description ofmaxRPC3 andmaxRPC3rm is
given in Algorithm 1 and Functions 2, 3, 4. We assume the existence of a global
Boolean variable RM which determines whether the algorithmpresented is in-
stantiated tomaxRPC3 or to maxRPC3rm. If RM is true, the algorithm used is
maxRPC3rm. Otherwise, the algorithm ismaxRPC3.

Being coarse-grained, Algorithm 1 uses a propagation listL where variables
that have their domain filtered are inserted. If the algorithm is used for preprocess-

5

ing then, during an initialization phase, for each valueai of each variablexi we
check ifai is maxRPC. If it is not then it is deleted fromD(xi) andxi is added
to L. The initialization function is not shown in detail due to limited space. If the
algorithm is used during search thenL is initialized with the currently assigned
variable (line 3).

In the main part of Algorithm 1, when a variablexj is removed fromL, each
variablexi constrained withxj must be made maxRPC. For each valueai ∈ D(xi)
Algorithm 1, like maxRPC2 and maxRPCrm, establishes ifai is maxRPC by
checking for PC-support loss and PC-witness loss at lines 8 and 12.

Algorithm 1 maxRPC3/maxRPC3rm

1: if ¬ RM then
2: if ¬initialization(L, LastPC, LastAC)then return FAILURE;
3: else L = {currently assigned variable};
4: while L 6= Ø do
5: L=L−{xj};
6: for each xi ∈ X s.t. cij ∈ C do
7: for each ai ∈ D(xi) do
8: if ¬searchPCsup(ai, xj) then
9: deleteai;

10: L=L ∪ {xi};
11: else
12: if ¬checkPCwit(ai , xj) then
13: deleteai;
14: L=L ∪ {xi};
15: if D(xi) is emptythen return FAILURE;
16: return SUCCESS;

First, functionsearchPCsupis called to check if a PC-support forai exists in
D(xj). If valueLastPCxi,ai,xj

is still in D(xj), thensearchPCsupreturns TRUE
(lines 1-2). IfLastPCxi,ai,xj

is not valid, we search for a new PC-support. If
maxRPC3 is used, we can take advantage of theLastPC andLastAC pointers to
avoid starting this search from scratch. Specifically, we know that no PC-support
can exist beforeLastPCxi,ai,xj

, and also none can exist beforeLastACxi,ai,xj
,

since all values beforeLastACxi,ai,xj
are not AC-supports ofai. Lines 5-6 in

searchPCsuptake advantage of these to locate the appropriate starting value bj.
Note thatmaxRPC2 always starts the search for a PC-support from the value after
LastPCxi,ai,xj

. If the algorithm is called during search, in which case we use
maxRPC3rm then the search for a new PC-support starts from scratch (line 8), just
like maxRPCrm does.

For every valueaj ∈ D(xj), starting withbj, we first check if is an AC-
support ofai (line 10). This is done using functionisConsistentwhich simple
checks if two values are compatible. If it is, and the algorithm ismaxRPC3, then
we can updateLastACxi,ai,xj

under a certain condition (lines 12-13). Specifically,

6

if LastACxi,ai,xj
was deleted fromD(xj), then we can setLastACxi,ai,xj

to aj
in caseLastACxi,ai,xj

> LastPCxi,ai,xj
. If LastACxi,ai,xj

≤ LastPCxi,ai,xj

then we cannot do this as there may be AC-supports forai betweenLastACxi,ai,xj

andLastPCxi,ai,xj
in the lexicographical ordering. We then move on to verify the

path consistency of(ai, aj) through functionsearchPCwit.
If no PC-support forai is found inD(xj), searchPCsupwill return FALSE,

ai will be deleted andxi will be added toL. Otherwise,LastPCxi,ai,xj
is set

to the discovered PC-supportaj (line 15). If maxRPC3rm is used then we up-
date the residueLastACxi,ai,xj

since the discovered PC-support is also an AC-
support. In addition, to exploit the multidirectionality of residues,maxRPC3rm

setsLastPCxj ,aj ,xi
to ai, as in [10].

Function 2 searchPCsup(ai, xj):boolean
1: if LastPCxi,ai,xj

∈ D(xj) then
2: returntrue;
3: else
4: if ¬ RM then
5: if LastACxi,ai,xj

∈ D(xj) then bj = max(LastPCxi,ai,xj
+1,LastACxi,ai,xj

);
6: else bj = max(LastPCxi,ai,xj

+1,LastACxi,ai,xj
+1);

7: else
8: bj = first value inD(xj);
9: for each aj ∈ D(xj), aj ≥ bj do

10: if isConsistent(ai , aj) then
11: if ¬RM then
12: if LastACxi,ai,xj

/∈ D(xj) AND LastACxi,ai,xj
> LastPCxi,ai,xj

then
13: LastACxi,ai,xj

= aj ;
14: if searchPCwit(ai , aj) then
15: LastPCxi,ai,xj

= aj ;
16: if RM then LastACxi,ai,xj

= aj ; LastPCxj ,aj,xi
= ai;

17: returntrue;
18: returnfalse;

FunctionsearchPCwitchecks if a pair of values (ai,aj) is PC by doing the
following for each variablexk constrained withxi and xj

2. First, it checks if
eitherLastACxi,ai,xk

is valid and consistent withaj or LastACxj ,aj ,xk
is valid

and consistent withai (line 3). If one of these conditions holds then we have
found a PC-witness for (ai,aj) without searching inD(xk) and we move on to
the next variable constrained withxi and xj . Note that neithermaxRPC2 nor
maxRPCrm can do this as they do not have theLastAC structure. Experimental
results in Section 5 demonstrate that these simple conditions can eliminate a very
large number of redundant constraint checks.

If none of the conditions holds then we have to search inD(xk) for a PC-
witness. If the algorithm ismaxRPC3 then we can exploit theLastAC structure

2Since AC is enforced by the maxRPC algorithm, we only need to consider variables that form a
3-clique withxi andxj .

7

to start this search frombk = max{LastACxi,ai,xk
, LastACxj ,aj ,xk

} (line 6). But
before doing this, we call functionseekACsupport(not shown for space reasons),
first with (xi, ai, xk) and then with(xj , aj , xk) as parameters, to find the lexico-
graphically smallest AC-supports forai andaj in D(xk) (line 5). If such supports
are found,LastACxi,ai,xk

andLastACxj,aj ,xk
are updated accordingly. In case

no AC-support is found for eitherai or aj thenseekACsupportreturns FALSE, and
subsequently searchPCwit() will also return FALSE.

Function 3 searchPCwit(ai, aj):boolean
1: for each xk ∈ V s.t. cik ∈ C andcjk ∈ C do
2: maxRPCsupport=FALSE;
3: if (LastACxi,ai,xk

∈ D(xk) AND isConsistent(LastACxi ,ai,xk
, aj)) OR (LastACxj ,aj ,xk

∈
D(xk) AND isConsistent(LastACxj ,aj,xk

, ai)) then continue;
4: if ¬ RM then
5: if ¬seekACsupport(xi, ai, xk) OR¬seekACsupport(xj, aj , xk) then returnfalse;
6: bk = max(LastACxi ,ai,xk

, LastACxj ,aj ,xk
);

7: else bk = first value inD(xk);
8: for each ak ∈ D(xk), ak ≥ bk do
9: if isConsistent(ai , ak) AND isConsistent(aj , ak) then

10: if RM then LastACxi,ai,xk
= LastACxj ,aj ,xk

= ak ;
11: maxRPCsupport=TRUE;break;
12: if ¬maxRPCsupportthen returnfalse;
13: returntrue;

If the algorithm used ismaxRPC3rm then we start search for a PC-witness
from scratch (line 7), asmaxRPC2 andmaxRPCrm always do. If a PC-witnessak
is found (line 9) and we are usingmaxRPC3rm then both residuesLastACxi,ai,xk

andLastACxj ,aj ,xk
are set toak as they are the most recently discovered AC-

supports. If no PC-witness is found then we have determined that the pair (ai,aj)
is not PC and as a result FALSE will be returned andsearchPCsupwill move to
check if the next available value inD(xj) is a PC-support forai.

If valueai is not removed bysearchPCsupin Algorithm 1,checkPCwitis called
to check for PC-witness loss. This is done by iterating over the variables that are
constrained with bothxi and xj . For each such variablexk, we first check if
ak = LastPCxi,ai,xk

is still in D(xk) (line 3). If so then we check if there still is
a PC-witness inD(xj). This is done by first checking if eitherLastACxi,ai,xj

is
valid and consistent withak orLastACxk,ak,xj

is valid and consistent withai (line
4). If neither of these conditions holds then we search for a PC-witness starting
from bj = max{LastACxi,ai,xj

, LastACxk,ak,xj
} in case ofmaxRPC3 (line 9),

after checking the existence of AC-supports forai andak in D(xj), by calling
seekACsupport(line 8). If there is no AC-support inD(xj) for eitherai or ak we
set the auxiliary Boolean variablefindPCsupportto TRUE to avoid searching for a
PC-witness.

If maxRPC3rm is used, we start searching for a PC-witness from scratch (line

8

11). Note thatmaxRPC2 does not do the check of line 4 and always starts the
search for a PC-witness from the first value inD(xj). In contrast,maxRPCrm

avoids some redundant checks through the use of special residues, albeit resulting
in O(end) space complexity. When usingmaxRPC3rm, for each valueaj ∈ D(xj)
we check if it is compatible withai andak and move theLastAC pointers accord-
ingly (lines 14-15), exploiting the multidirectionality of residues,

Function 4 checkPCwit(ai, xj):boolean
1: for each xk ∈ V s.t. cik ∈ C andckj ∈ C do
2: witness=FALSE; findPCsupport=FALSE;
3: if ak = LastPCxi,ai,xk

∈ D(xk) then
4: if (LastACxi,ai,xj

∈ D(xj) AND isConsistent(LastACxi ,ai,xj
, ak)) OR (LastACxk,ak,xj

∈
D(xj) AND isConsistent(LastACxk ,ak,xj

, ai)) then
5: witness=TRUE;
6: else
7: if ¬ RM then
8: if seekACsupport(xi, ai, xj) AND seekACsupport(xk, ak , xj) then
9: bj = max(LastACxi,ai,xj

, LastACxk,ak,xj
);

10: else findPCsupport=TRUE;
11: else bj = first value inD(xj);
12: if ¬findPCsupport then
13: for each aj ∈ D(xj), aj ≥ bj do
14: if isConsistent(ai , aj) AND isConsistent(ak , aj) then
15: if RM then LastACxi,ai,xj

= LastACxk,ak,xj
= aj ;

16: witness=TRUE;break;
17: if ¬witness AND existsak > LastPCxi,ai,xk

∈ D(xk) then
18: if ¬ RM then
19: if LastACxi,ai,xk

∈ D(xk) then bk = max(LastPCxi,ai,xk
+1,LastACxi,ai,xk

);
20: else bk = max(LastPCxi,ai,xk

+1,LastACxi,ai,xk
+1

21: else
22: bk = first value inD(xk);
23: for each ak ∈ D(xk), ak ≥ bk do
24: if isConsistent(ai , ak) then
25: if ¬ RM then
26: if LastACxi,ai,xk

/∈ D(xk) AND LastACxi,ai,xk
> LastPCxi,ai,xk

then
27: LastACxi,ai,xk

= ak ;
28: if searchPCwit(ai , ak) then
29: LastPCxi,ai,xk

= ak ;
30: if RM then LastACxi,ai,xk

= ak; LastPCxk,ak,xi
= ai;

31: witness=TRUE;break;
32: if ¬witnessthen returnfalse;
33: returntrue;

If LastPCxi,ai,xk
has been removed orai has no PC-witness inD(xj), we

search for a new PC-support forai in D(xk). As in functionsearchPCsup, when
maxRPC3 is used this search starts at an appropriate value calculated taking ad-
vantage ofLastPCxi,ai,xk

andLastACxi,ai,xk
(lines 18-20). WhenmaxRPC3rm

is used we start from scratch. If an AC-support forai is found (line 24), we check
if it is also a PC-support by calling functionsearchPCwit(line 28). IfmaxRPC3 is
used thenLastACxi,ai,xk

is updated when necessary (lines 26-27). If a PC-support

9

is found,LastPCxi,ai,xk
is set accordingly (line 29). IfmaxRPC3rm is used then

the residueLastACxi,ai,xk
is also updated, as isLastPCxk,ak,xi

(bidirectionality).
If the search for a PC-support fails then FALSE will be returned,ai will be deleted,
andxi will be added to L.

3.1 Light maxRPC
Light maxRPC (lmaxRPC) is an approximation of maxRPC that only propagates
the loss of AC-supports and not the loss of PC-witnesses [10]. This ensures that
the obtained algorithm enforces a consistency property that is at least as strong as
AC.

lmaxRPC is a procedurally defined local consistency, meaning that its de-
scription is tied to a specific maxRPC algorithm. Light versions of algorithms
maxRPC3 andmaxRPC3rm, simply notedlmaxRPC3 andlmaxRPC3rm respec-
tively, can be obtained by omitting the call to thecheckPCwitfunction (lines 11-14
of Algorithm 1). In a similar way, we can obtain light versions of algorithms
maxRPC2 andmaxRPCrm.

As already noted in [10], the light versions of different maxRPC algorithms
may not be equivalent in terms of the pruning they achieve. Togive an example, a
brute force algorithm for lmaxRPC that does not use any data structures can achieve
more pruning than algorithmslmaxRPC2, lmaxRPC3, andlmaxRPCrm, albeit
being much slower in practice. Consider that any of these three algorithms will
return TRUE in caseLastPCxi,ai,xj

is valid. However, althoughLastPCxi,ai,xj

is valid, it may no longer be a PC-support because the PC-witness in some third
variable may have been deleted, and it may be the last one. In acase where
LastPCxi,ai,xj

was the last PC-support inxj for value ai, the three advanced
algorithms will not deleteai while the brute force one will. This is because it will
exhaustively check all values ofxj for PC-support, concluding that there is none.

The worst-case time and space complexities of algorithmlmaxRPC2 are the
same as maxRPC2. AlgorithmlmaxRPCrm has O(n3d4) time and O(ed) space
complexities, which are lower than those ofmaxRPCrm. Experiments with random
problems using algorithmslmaxRPCrm andmaxRPCrm showed that the pruning
power of lmaxRPC is only slightly weaker than that of maxRPC [10]. At the same
time, it can offer significant gains in run times when used during search. These
results were also verified by us through a series of experiments on various problem
classes.

3.2 Correctness and Complexities

We now prove the correctness of algorithmsmaxRPC3 andmaxRPC3rm and ana-
lyze their worst-case time and space complexities.

10

Proposition 1 Algorithm maxRPC3 is sound and complete.

Proof: Soundness. To prove the soundness ofmaxRPC3 we must prove that any
value that is deleted bymaxRPC3 is not maxRPC. Letai ∈ D(xi) be a value that
is deleted bymaxRPC3. It is either removed fromD(xi) during the initialization
phase (line 15) or in line 8 of Algorithm 1, aftersearchPCsuphas returnedfalse, or
in line 12, aftersearchPCsuphas returnedtrue andcheckPCwithas returnedfalse.

In the first case, since functioninitilization checks all values in a brute-force
manner, it is clear that any deleted valueai either has no AC-support or none of
its AC-supports is a PC-support in some variablexj. The non-existence of a PC-
support is determined using functionsearchPCwitwhose correctness is discussed
below.

In the second case, sincesearchPCsupreturns false, LastPCxi,ai,xj
is not

valid so a new PC-support inD(xj) is seeked (lines 9-17). This search starts with
the value at max(LastPCxi,ai,xj

+1, LastACxi,ai,xj
) or at max(LastPCxi,ai,xj

+1, LastACxi,ai,xj
+1), depending on whetherLastACxi,ai,xj

is valid or not.
This is correct since any value beforeLastPCxi,ai,xj

+1 and any value before
LastACxi,ai,xj

is definitely not an AC-support forai (similarly for the other case).
searchPCsupwill return false either because no AC-support forai can be found in
D(xj) (line 10), or because for any AC-support found,searchPCwitreturned false
(line 13). In the former case there is no PC-support forai in D(xj) since there is
no AC-support. In the latter case, for any AC-supportaj found there must be some
third variablexk for which no PC-witness for the pair(ai, aj) exists. For each
third variablexk searchPCwitcorrectly identifies a PC-witness if one of the con-
ditions in line 3 holds. In none holds thensearchPCwitsearches for a PC-witness
starting from max(LastACxi,ai,xk

, LastACxj ,aj ,xk
) (line 6). This is correct since

LastACxi,ai,xk
andLastACxj,aj ,xk

are updated with the lexicographically small-
est support ofai (resp.aj) in D(xk) by calling functionseekACsup, meaning that
any value smaller than max(LastACxi,ai,xk

,LastACxj ,aj ,xk
) is incompatible with

eitherai or aj . Therefore, ifsearchPCwitreturnsfalsethen there is no PC-witness
for some third variablexk. Hence, ifsearchPCsupreturnsfalse, it means no PC-
support forai can be found inD(xj) and it is thus correctly deleted.

Now assume that the call tosearchPCsupreturnedtrue andai was removed
aftercheckPCwitreturnedfalse. This means that for some variablexk, constrained
with bothxi andxj, both the first part (lines 3-11) and the second part (lines 13-24)
of checkPCwitfailed to set the Booleanwitnessto true. Regarding the first part,
the failure means that the pair of values(ai, ak), whereak is the last PC-support
of ai in D(xk) found, has no PC-witness inD(xj). In more detail, the search for
a PC-witness correctly starts from max(LastACxi,ai,xj

, LastACxj ,aj ,xj
) in line

9, after bothLastAC pointers have been updated byseekACsup. The condition

11

in line 4 is similar to the corresponding condition insearchPCwitand thus, if it
is true, the search for PC-witness is correctly overriden. Regarding the second
part, the failure means that no alternative PC-support forai in D(xk) was found.
In more detail, the search for a PC-support starts from max(LastPCxi,ai,xk

+1,
LastACxi,ai,xk

) or max(LastPCxi,ai,xk
+1,LastACxi,ai,xk

+1), depending on the
existence ofLastACxi,ai,xk

. This is correct since no ealier value can be a PC-
support. If there is no consistent (ai, ak) pair orsearchPCwitreturnsfalsefor all
consistent pairs found, thenai has no PC-support inD(xk) and is thus correctly
deleted.

Completeness. To prove the completeness ofmaxRPC3we need to show that if
a value is not maxRPC then the algorithm will delete it. The initialization function
checks all values of all variables one by one in a brute-forcemanner and removes
any value that is not maxRPC. Values that are maxRPC have their LastPC point-
ers set to the discovered PC-supports. Thereafter, the effects of such removals
are propagated by calling Algorithm 1 and as a result new value deletions may
occur. Now consider a valueai ∈ D(xi) that was not removed by the initializa-
tion function but after propagation is no longer maxRPC. This is either because of
PC-support or PC-witness loss.

In the first case assume thatxj is the variable in whichai no longer has a PC-
support. Since the previously found PC-support ofai has been deleted,xj must
have been added toQ at some point. Whenxj is removed fromQ all neighbor-
ing variables, includingxi will be checked. FunctionsearchPCsupwill find that
LastPCxi,ai,xj

is no longer valid and will search for a new PC-support concluding
that there is none. Therefore, it will returnfalseandai will be deleted.

In the second case assume that the pair of values (ai,aj), whereaj is the
last PC-support ofai in D(xj), has lost its last PC-witnessak in variablexk. If
LastPCxi,ai,xj

is not valid, which means thatxj was added toQ, then we have the
same case as above. Therefore, afterxj is removed fromQ, searchPCsupwill find
out that there is no PC-support forai in D(xj) and will delete it. IfLastPCxi,ai,xj

is valid thensearchPCsupwill return true (line 2). Sinceak was deleted,xk was
added toQ at some point. Whenxk is removed fromQ all neighboring vari-
ables, includingxi will be checked. Ifai has no longer a PC-support inD(xk),
this will be detected bysearchPCsupandai will be deleted. Otherwise, function
checkPCwitwill be called. The for loop in line 1 will go through every variable
constrained with bothxi andxk, including xj . SinceLastPCxi,ai,xj

is valid, a
new PC-witness for (ai,aj) in D(xk) will be seeked (lines 3-11). Sinceak was
the last PC-witness, none will be found and as a result a new PC-support forai
in D(xj) will be seeked (lines 13-24). Sinceaj was the last PC-support forai in
D(xj), none will be found,checkPCwitwill return false, andai will be deleted.

12

Proposition 2 Algorithm maxRPC3rm is sound and complete.

Proof: The proof is very similar to the corresponding proof formaxRPC3. As
explained, the main difference between the two algorithms concerns the use of
the LastAC andLastPC structures. AsmaxRPC3rm does not maintain these
structures incrementally, the searches for PC-supports insearchPCsupandcheck-
PCwit and the searches for PC-witnesses insearchPCwitand checkPCwitstart
from scratch. Clearly, this has no effect on the soundness orcompleteness of
the algorithm since it guarantees that all potential PC-supports and PC-witnesses
are checked. Furthermore, the conditions for avoiding redundant searches using
residues are the same as inmaxRPC3. Finally, another difference between the two
algorithms is the exploitation of bidirectionality bymaxRPC3rm. By the defini-
tion of path and arc consistency, bidirectionality holds. That is, when a PC-support
(AC-support)aj ∈ D(xj) is located for a valueai ∈ D(xi) thenai is a PC-support
(AC-support) foraj . Since the property of bidirectionality is exploited only to
update residues, it does not affect the correctness of the algorithm.

We now discuss the complexities of algorithmsmaxRPC3 andmaxRPC3rm

and their light versions. To directly compare with existingalgorithms for
(l)maxRPC, the time complexities give the asymptotic number of constraint checks3.
Folllowing [9], thenodetime (resp. space) complexity of a (l)maxRPC algorithm
is the worst-case time (resp. space) complexity of invokingthe algorithm after
a variable assignment. The correspondingbranchcomplexities of an (l)maxRPC
algorithm are the worst-case complexities of any incremental sequence ofk ≤ n

invocations of the algorithm. That is, the complexities of incrementally running
the algorithm down a branch of the search tree until a fail occurs.

Proposition 3 The node and branch time complexity of(l)maxRPC3 is O(end3).

Proof: The complexity is determined by the total number of calls to function
isConsistentin searchPCsup, checkPCwit, and mainlysearchPCwitwhere most
checks are executed.

Each variable can be inserted and extracted fromL every time a value is deleted
from its domain, giving O(d) times in the worst case. Each time a variablexj is
extracted fromL, searchPCsupwill look for a PC-support inD(xj) for all values
ai ∈ D(xi), s.t.ci,j ∈ C. For each variablexi, O(d) values are checked. Checking
if a valueaj ∈ D(xj) is a PC-support involves first checking in O(1) if it is an
AC-support (line 9 insearchPCsup) and then callingsearchPCwit. The cost of

3However, constraint checks do not always reflect run times asother operations may have an
equal or even greater effect.

13

searchPCwitis O(n + nd) since there are O(n) variables constrained with both
xi andxj and, after making the checks in line 3, their domains must be searched
for a PC-witness, each time from scratch with cost O(nd). Through the use of
LastPC no value ofxj will be checked more than once over all the O(d) timesxj
is extracted fromL, meaning that for any valueai ∈ D(xi) and any variablexj , the
overall cost ofsearchPCwitwill be O(dn + nd2) = O(nd2). Hence,searchPCsup
will cost O(nd2) for one value ofxi, giving O(nd3) for d values. Since, in the
worst case, this process will be repeated for every pair of variablesxi andxj that
are constrained, the total cost ofsearchPCsupwill be O(end3). This is the node
complexity oflmaxRPC3.

In checkPCwitthe algorithms iterate over the variables in a triangle withxj
andxi. In the worst case, for each such variablexk, D(xj) will be searched from
scratch for a PC-witness ofai and its current PC-support inxk. As xj can be ex-
tracted fromL O(d) times and each search from scratch costs O(d), the total cost
of checking for a PC-witness inD(xj), including the checks of line 4 incheck-
PCwit, will be O(d + d2). Ford values ofxi this will be O(d3). As this process
will be repeated for all triangles of variables, whose number is bounded byen,
its total cost will be O(end3). If no PC-witness is found then a new PC-support
for ai in D(xk) is seeked throughsearchPCwit. This costs O(nd2) as explained
above but it is amortized with the cost incurred by the calls to searchPCwitfrom
searchPCsup. Therefore, the cost ofcheckPCwitis O(end3). This is also the node
complexity ofmaxRPC3.

The branch complexity of(l)maxRPC3 is also O(end3). This is because the
use ofLastPC ensures that for any constraintci,j and a valueai ∈ D(xi), each
value ofxj will be checked at most once for PC-support while going down the
branch. Therefore, the cost ofsearchPCwit is amortized.

Proposition 4 The node and branch time complexities oflmaxRPC3rm and
maxRPC3rm are O(end4) and O(en2d4) respectively.

Proof: The proof is similar to that of Proposition 3. The main difference with
lmaxRPC3 is that sincelastPC is not updated incrementally, each time we seek
a PC-support for a valueai ∈ D(xi) in xj, D(xj) will be searched from scratch in
the worst case. This incurs an extra O(d) cost tosearchPCsupandsearchPCwit.
Hence, the node complexity oflmaxRPC3rm is O(end4). Also, the total cost of
searchPCwitin one node cannot be amortized. This means that the cost ofsearch-
PCwitwithin checkPCwitis O(nd2). Hence, the node complexity ofmaxRPC3rm

is O(en2d4). The branch complexities are the same because the calls tosearch-
PCwitare amortized.

14

The space complexities of the algorithms are determined by the space required
for data structuresLastPC andLastAC. Since both require O(ed) space, this is
the node space complexity of(l)maxRPC3and(l)maxRPC3rm. (l)maxRPC3
has O(end) branch space complexity because of the extra space requiredfor the in-
cremental update and restoration of the data structures. As(l)maxRPC3rm avoid
this, its branch space complexity is O(ed).

4 Heuristics for maxRPC Algorithms

Numerous heuristics for ordering constraint or variable revisions have been pro-
posed and used within AC algorithms [11, 3, 1]. Heuristics such as the ones used
by AC algorithms can be also used within a maxRPC algorithm toefficiently select
the next variable to be removed from the propagation list (line 5 of Algorithm 1).
In addition to this, maxRPC and lmaxRPC algorithms can benefit from the use of
heuristics elsewhere in their execution. Once a variablexj has been removed from
the propagation list, heuristics can be applied as follows in either a maxRPC or a
lmaxRPC algorithm (we use algorithm(l)maxRPC3 for illustration):

1. After a variablexj is removed fromL all neighboring variablesxi are re-
vised. lmaxRPC (resp. maxRPC) will detect a failure if the condition of
PC-support loss (resp. either PC-support or PC-witness loss) occurs for all
values ofxi. In such situations, the soonerxi is considered and the fail-
ure is detected, the more constraint checks will be saved. Hence, the order
in which the neighboring variables ofxj are considered can be determined
using a fail-first type of heuristic.

2. Once an AC-supportaj ∈ D(xj) has been found for a valueai ∈ D(xi),
searchPCsuptries to establish if it is a PC-support. If there is no PC-witness
for the pair(ai, aj) in some variablexk thenaj is not a PC-support. There-
fore, we can again use fail-first heuristics to determine theorder in which the
variables forming a triangle withxi andxj are considered.

The above cases apply to both lmaxRPC and maxRPC algorithms.In addition,
a maxRPC algorithm can employ heuristics as follows:

3. For each valueai ∈ D(xi) and each variablexk constrained with bothxi and
xj, Function 4 checks if the pair(ai, ak) still has a PC-witness inD(xj). If
there is no PC-witness orLastPCxi,ai,xk

is not valid then a new PC-support
in xk is seeked. If none is found thenai will be deleted. Again heuristics
can be used to determine the order in which the variables constrained with
xi andxj are considered.

15

4. In Function 4 ifLastPCxi,ai,xk
is not valid then a new PC-support forai in

D(xk) is seeked. The order in which variables constrained with both xi and
xk are considered can be determined heuristically as in Case 2 above.

As explained, the purpose of such ordering heuristic will beto “fail-first”. That
is, to quickly discover potential failures (Case 1 above), refute values that are not
PC-supports (Cases 2 and 4) and delete values that have no PC-support (Case 3).
Such heuristics can be applied in any coarse-grained maxRPCalgorithm to de-
cide the order in which variables are considered in Cases 1-4. Examples are the
following:

dom Consider the variables in ascending domain size. This heuristic can be ap-
plied in any of the four cases.

del ratio Consider the variables in ascending ratio of the number of remaining
values to the initial domain size. This heuristic can be applied in any of the
four cases.

wdeg In Case 1 consider the variablesxi in descending weight for the constraint
cij. In Case 2 consider the variablesxk in descending average weight for the
constraintscik andcjk. Similarly for Cases 3 and 4.

dom/wdeg Consider the variables in ascending value of dom/wdeg. Thisheuristic
can be applied in any of the four cases.

Experiments demonstrated that applying heuristics in Cases 1 and 3 are partic-
ularly effective, while doing so in Cases 2 and 4 saves constraint checks but only
marginally reduces cpu times. All of the heuristics mentioned above for Cases 1
and 3 offer cpu gains, with dom/wdeg being the most efficient.Although the pri-
mal purpose of the heuristics is to save constraint checks, it is interesting to note
that some of the heuristics can also divert search to different areas of the search
space when a variable ordering heuristic like dom/wdeg is used, resulting in fewer
node visits. For example, two different orderings of the variables in Case 1 may
result in different constraints causing a failure. As dom/wdeg increases the weight
of a constraint each time it causes a failure and uses the weights to select the next
variable, this may later result in different branching choices. This is explained for
the case of AC in [1].

5 Experiments

We have experimented with several classes of structured andrandom binary CSPs
taken from C.Lecoutre’s XCSP repository. Excluding instances that were very hard

16

for all algorithms, our evaluation was done on 200 instancesin total from various
problem classes. More details about these instances can be found in C.Lecoutre’s
homepage. All algorithms used the dom/wdeg heuristic for variable ordering [4]
and lexicographic value ordering. In case of a failure (domain wipe-out) the weight
of constraintcij is updated (right before returning in line 15 of Algorithm 1). The
suffix ’+H’ after any algorithm’s name means that we have applied the dom/wdeg
heuristic for ordering the propagation list [1], and the same heuristic forCase 1de-
scribed in Section 4. In absense of the suffix, the propagation list was implemented
as a FIFO queue and no heuristic from Section 4 was used.

Table 1: Average stand-alone performance in all 200 instances grouped by problem
class. Cpu times (t) in secs and constraint checks (cc) are given.

Problem class maxRPC2maxRPC3lmaxRPC2 lmaxRPC3 lmaxRPCrm lmaxRPC3rm lmaxRPC3+H
RLFAP t 6.786 2.329 4.838 2.043 4.615 2.058 2.148
(scen,graph) cc 31M 9M 21M 8M 21M 9M 8M
Random t 0.092 0.053 0.079 0.054 0.078 0.052 0.056
(modelB,forced) cc 0.43M 0.18M 0.43M 0.18M 0.43M 0.18M 0.18M
Geometric t 0.120 0.71 0.119 0.085 0.120 0.086 0.078

cc 0.74M 0.35M 0.74M 0.35M 0.74M 0.35M 0.35M
Quasigroup t 0.293 0.188 0.234 0.166 0.224 0.161 0.184
(qcp,qwh,bqwh) cc 1.62M 0.59M 1.28M 0.54M 1.26M 0.54M 0.54M
QueensKnights, t 87.839 47.091 91.777 45.130 87.304 43.736 43.121
Queens,QueenAttackcc 489M 188M 487M 188M 487M 188M 188M
driver,blackHole t 0.700 0.326 0.630 0.295 0.638 0.303 0.299
haystacks,job-shop cc 4.57M 1.07M 4.15M 1.00M 4.15M 1.00M 1.00M

Table 1 compares the performance of stand-alone algorithmsused for prepro-
cessing. We give average results for all the instances, grouped into specific problem
classes. We include results from the two optimal coarse-grained maxRPC algo-
rithms,maxRPC2 andmaxRPC3, from all the light versions of the coarse-grained
algorithms, and from one of the most competitive algorithms(maxRPC3) in tan-
dem with the dom/wdeg heuristics of Section 4 (lmaxRPC3+H). Results show that
in terms of run time our algorithms have similar performanceand are superior to
existing ones by a factor of two on average. This is due to the elimination of many
redundant constraint checks as the cc numbers show. Heuristic do not seem to
make any difference.

Tables 2 and 3 compare the performance of search algorithms that apply
lmaxRPC throughout search on RLFAPs and an indicative collection ofother
problems respectively. The algorithms compared arelmaxRPCrm and
lmaxRPC3rm with and without the use of heuristic dom/wdeg for propagation
list and for Case 1 of Section 4. We also include results from MACrm which is

17

considered the most efficient version of MAC [8, 9].

Table 2: Cpu times (t) in secs, nodes (n) and constraint checks (cc) from RLFAP
instances. Algorithms that use heuristics are denoted by their name + H. The best
cpu time among the lmaxRPC methods is highlighted.

instance ACrm lmaxRPCrm lmaxRPC3rm lmaxRPCrm + H lmaxRPC3rm + H
scen11 t 5.4 13.2 4.6 12.5 4.3

n 4,367 1,396 1,396 1,292 1,292
cc 5M 92M 29M 90M 26M

scen11-f10 t 11.0 29.0 12.3 22.3 9.8
n 9,597 2,276 2,276 1,983 1,983
cc 11M 141M 51M 114M 41M

scen2-f25 t 27.1 109.2 43.0 79.6 32.6
n 43,536 8,310 8,310 6,179 6,179
cc 44M 427M 151M 315M 113M

scen3-f11 t 7.4 30.8 12.6 17.3 7.8
n 7,962 2,309 2,309 1,852 1,852
cc 9M 132M 46M 80M 29M

scen11-f7 t 4,606.5 8,307.5 3,062.8 6,269.0 2,377.6
n 3,696,154 552,907 552,907 522,061 522,061
cc 4,287M 35,897M 9,675M 22,899M 6,913M

scen11-f8 t 521.1 2,680.6 878.0 1,902.4 684.7
n 345,877 112,719 112,719 106,352 106,352
cc 638M 10,163M 3,172M 7,585M 2,314M

graph8-f10 t 16.4 16.8 9.1 11.0 6.3
n 18,751 4,887 4,887 3,608 3,608
cc 14M 71M 31M 51M 21M

graph14-f28 t 31.4 4.1 3.1 2.6 2.1
n 57,039 2,917 2,917 1,187 1,187
cc 13M 17M 8M 13M 6M

graph9-f9 t 273.5 206.3 101.5 289.5 146.9
n 273,766 26,276 26,276 49,627 49,627
cc 158M 729M 290M 959M 371M

Experiments showed thatlmaxRPCrm is the most efficient among existing al-
gorithms when applied during search, which confirms the results given in [10]. Ac-
cordingly,lmaxRPC3rm is the most efficient among our algorithms. It is between
two and four times faster thanmaxRPC3rm on hard instances, while algorithms
lmaxRPC3 andlmaxRPC2 are not competitive when used during search because
of the data structures they maintain. In general, when applied during search, any
maxRPC algorithm is clearly inferior to the corresponding light version. The re-
duction in visited nodes achieved by the former is relatively small and does not
compensate for the higher run times of enforcing maxRPC.

Results from Tables 2 and 3 demonstrate thatlmaxRPC3rm always outper-
forms lmaxRPCrm, often considerably. This was the case in all 200 instances
tried. The use of heuristics improves the performance of both lmaxRPC algo-

18

rithms in most cases. Looking at the columns forlmaxRPCrm andlmaxRPC3rm

+H we can see that our methods can reduce the numbers of constraint checks by as
much as one order of magnitude (e.g. in quasigroup problems qcp and qwh). This
is mainly due to the elimination of redundant checks inside functionsearchPCwit.
Cpu times are not cut down by as much, but a speed-up of more than 3 times can
be obtained (e.g. scen2-f25 and scen11-f8).

Table 3: Cpu times (t) in secs, nodes (n) and constraint checks (cc) from various
instances.

instance ACrm lmaxRPCrm lmaxRPC3rm lmaxRPCrm + H lmaxRPC3rm + H
rand-2-40-8 t 4.0 47.3 21.7 37.0 19.0
-753-100-75 n 13,166 8,584 8,584 6,915 6,915

cc 7M 289M 82M 207M 59M
geo50-20 t 102.7 347.7 177.5 273.3 150.3
d4-75-1 n 181,560 79,691 79,691 75,339 75,339

cc 191M 2,045M 880M 1,437M 609M
qcp150-120-5 t 52.1 89.4 50.2 80.0 55.3

n 233,311 100,781 100,781 84,392 84,392
cc 27M 329M 53M 224M 36M

qcp150-120-9 t 226.8 410.7 238.1 239.9 164.3
n 1,195,896 583,627 583,627 315,582 315,582
cc 123M 1,613M 250M 718M 112M

qwh20-166-1 t 52.6 64.3 38.9 21.2 14.9
n 144,653 44,934 44,934 13,696 13,696
cc 19M 210M 23M 53M 6M

qwh20-166-6 t 1,639.0 1,493.5 867.1 1,206.2 816.5
n 4,651,632 919,861 919,861 617,233 617,233
cc 633M 5,089M 566M 3,100M 351M

qwh20-166-9 t 41.8 41.1 25.0 39.9 28.5
n 121,623 32,925 32,925 26,505 26,505
cc 15M 135M 15M 97M 11M

blackHole t 1.8 14.4 3.8 12.1 3.6
4-4-e-8 n 8,661 4,371 4,371 4,325 4,325

cc 4M 83M 12M 68M 10M
queens-100 t 15.3 365.3 106.7 329.8 103.0

n 7,608 6,210 6,210 5,030 5,030
cc 6M 1,454M 377M 1,376M 375M

queenAttacking5 t 34.3 153.1 56.7 136.0 54.8
n 139,534 38,210 38,210 33,341 33,341
cc 35M 500M 145M 436M 128M

queensKnights t 217.0 302.0 173.6 482.0 283.5
-15-5-mul n 35,445 13,462 13,462 12,560 12,560

cc 153M 963M 387M 1,795M 869M

Importantly, the speed-ups obtained can make a search algorithm that effi-
ciently applies lmaxRPC competitive with MAC on many instances. For instance,
in scen11-f10 we achieve the same run time as MAC whilelmaxRPCrm is 3 times
slower while in scen11-f7 we go from 2 times slower to 2 times faster. In addition,

19

there are several instances where MAC is outperformed (e.g.the graph RLFAPs
and most quasigroup problems). Of course, there are still instances where MAC
remains considerably faster despite the improvements.

Table 4: Average search performance in all 200 instances grouped by class.

Problem class ACrm lmaxRPCrm lmaxRPC3rm lmaxRPCrm + H lmaxRPC3rm + H
RLFAP t 242.8 556.7 199.3 416.3 157.3
(scen,graph) cc 233M 2,306M 663M 1,580M 487M
Random t 8.4 28.0 14.8 28.5 17.1
(modelB,forced) cc 14M 161M 60M 137M 51M
Geometric t 21.5 72.2 37.2 57.6 32.1

cc 39M 418M 179M 297M 126M
Quasigroup t 147.0 162.5 94.9 128.9 89.6
(qcp,qwh,bqwh) cc 59M 562M 68M 333M 40M
QueensKnights, t 90.2 505.2 180.3 496.4 198.1
Queens,QueenAttackcc 74M 1,865M 570M 1,891M 654M
driver,blackHole t 3.2 17.1 9.1 11.9 7.0
haystacks,job-shop cc 1.8M 55M 6.4M 36.7M 5.1M

Table 4 summarizes results from the application of lmaxRPC during search.
We give average results for all the tested instances, grouped into specific prob-
lem classes. As can be seen, our best method improves on the existing best one
considerably, making lmaxRPC outperform MAC on the RFLAP and quasigroup
problem classes. Overall, our results demonstrate that theefficient application of a
maxRPC approximation throughout search can give an algorithm that is quite com-
petitive with MAC on many binary CSPs. This confirms the conjecture of [6] about
the potential of maxRPC as an alternative to AC. In addition,our results, along with
ones in [10], show that approximating strong and complex local consistencies can
be very beneficial.

6 Conclusion

We presentedmaxRPC3 andmaxRPC3rm, two new algorithms for maxRPC, and
their light versions that approximate maxRPC. These algorithms build on and im-
prove existing maxRPC algorithms, achieving the elimination of many redundant
constraint checks. We also investigated heuristics that can be used to order certain
operations within maxRPC algorithms. Experimental results from various problem
classes demonstrate that our best method,lmaxRPC3rm, constantly outperforms
existing algorithms, often by large margins. Significantly, the speed-ups obtained
allow lmaxRPC3rm to compete with and outperform MAC on many problems. In
the future we plan to adapt techniques for using residues from [9] to improve the

20

performance of our algorithms during search. Also, it wouldbe interesting to in-
vestigate the applicability of similar methods to efficiently achieve or approximate
other local consistencies.

References
[1] T Balafoutis and K. Stergiou. Exploiting constraint weights for revision ordering in Arc Consis-

tency Algorithms. InECAI-08 Workshop on Modeling and Solving Problems with Constraints,
2008.

[2] C. Bessière, J.C. Régin, R. Yap, and Y. Zhang. An Optimal Coarse-grained Arc Consistency
Algorithm. Artificial Intelligence, 165(2):165–185, 2005.

[3] F. Boussemart, F. Hemery, and C. Lecoutre. Revision ordering heuristics for the Constraint
Satisfaction Problem. InCP-2004 Workshop on Constraint Propagation, 2004.

[4] F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic search by weighting
constraints. InProceedings of ECAI-2004, 2004.

[5] R. Debruyne and C. Bessière. From restricted path consistency to max-restricted path consis-
tency. InCP-97, pages 312–326, 1997.

[6] R. Debruyne and C. Bessière. Domain Filtering Consistencies.JAIR, 14:205–230, 2001.

[7] F. Grandoni and G. Italiano. Improved Algorithms for Max-Restricted Path Consistency. In
Proceedings of CP’03, pages 858–862, 2003.

[8] C. Lecoutre and F. Hemery. A study of residual supports inarc cosistency. InProceedings of
IJCAI-2007, pages 125–130, 2007.

[9] C. Likitvivatanavong, Y. Zhang, J. Bowen, S. Shannon, and E. Freuder. Arc Consistency during
Search. InProceedings of IJCAI-2007, pages 137–142, 2007.

[10] J. Vion and R. Debruyne. Light Algorithms for Maintaining Max-RPC During Search. In
Proceedings of SARA-2009, 2009.

[11] R. Wallace and E. Freuder. Ordering heuristics for arc consistency algorithms. InAI/GI/VI,
pages 163–169, Vancouver, British Columbia, Canada, 1992.

21

	1 Introduction
	2 Background and Related Work
	2.1 maxRPC

	3 New Algorithms for maxRPC
	3.1 Light maxRPC
	3.2 Correctness and Complexities

	4 Heuristics for maxRPC Algorithms
	5 Experiments
	6 Conclusion

