Skip to main content

Multi-tissue Mesh Generation for Brain Images

  • Conference paper
Book cover Proceedings of the 19th International Meshing Roundtable

Abstract

We develop a multi-tissue mesh generation method that is suitable for finite element simulation involved in non-rigid registration and surgery simulation of brain images. We focus on the following four critical mesh properties: tissue-dependent resolution, fidelity to tissue boundaries, smoothness of mesh surfaces, and element quality. Each mesh property can be controlled on a tissue level. This method consists of two steps. First, a coarse multi-tissue mesh with tissue-dependent resolution is generated according to a predefined subdivision criterion. Then, a tissue-aware point-based registration method is used to find an optimal trade-off among fidelity, smoothness, and quality. We evaluated our method on a number of images ranging from MRI, visible human, to brain atlas. The experimental results verify the features of this method.

This work is supported in part by NSF grants: CCF-0916526, CCF-0833081, and CSI-719929 and by the John Simon Guggenheim Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boltcheva, D., Yvinec, M., Boissonnat, J.D.: Mesh generation from 3d multi-material images. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 283–290. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Pons, J.P., Ségonne, F., Boissonnat, J.D., Rineau, L., Yvinec, M., Keriven, R.: High-quality consistent meshing of multi-label datasets. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 198–210. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Meyer, M., Whitaker, R., Kirby, R.M., Ledergerber, C., Pfister, H.: Particle-based sampling and meshing of surfaces in multimaterial volumes. IEEE Transactions on Visualization and Computer Graphics 14(6), 1372–1379 (2008)

    Article  Google Scholar 

  4. Cheng, S.W., Dey, T.K., Edelsbrunner, H., Facello, M.A., Teng, S.H.: Silver exudation. J. ACM 47(5), 883–904 (2000)

    Article  MathSciNet  Google Scholar 

  5. Zhang, Y., Hughes, T.J., Bajaj, C.L.: An automatic 3d mesh generation method for domains with multiple materials. Computer Methods in Applied Mechanics and Engineering 199(5-8), 405–415 (2010)

    Article  Google Scholar 

  6. Molino, N., Bridson, R., Teran, J., Fedkiw, R.: A crystalline, red green strategy for meshing highly deformable objects with tetrahedra. In: International Meshing Roundtable, pp. 103–114 (2003)

    Google Scholar 

  7. Glazer, A.M., Burns, G.: Space Groups for Solid State Scientists, 2nd edn. Academic Press, Inc., Philadelphia (1990)

    Google Scholar 

  8. Kitware, http://www.itk.org/

  9. Clatz, O., Delingette, H., Talos, I.F., Golby, A., Kikinis, R., Jolesz, F., Ayache, N., Warfield, S.: Robust non-rigid registration to capture brain shift from intraoperative MRI. IEEE Trans. Med. Imag. 24(11), 1417–1427 (2005)

    Article  Google Scholar 

  10. Bierling, M.: Displacement estimation by hierarchical block matching. In: Proc. SPIE Vis. Comm. and Image Proc., vol. 1001, pp. 942–951 (1988)

    Google Scholar 

  11. Bathe, K.: Finite Element Procedure. Prentice-Hall, Englewood Cliffs (1996)

    Google Scholar 

  12. Wittek, A., Miller, K., Kikinis, R., Warfield, S.K.: Patient-specific model of brain deformation: Application to medical image registration. Journal of Biomechanics 40(4), 919–929 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, Y., Foteinos, P., Chernikov, A., Chrisochoides, N. (2010). Multi-tissue Mesh Generation for Brain Images. In: Shontz, S. (eds) Proceedings of the 19th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15414-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15414-0_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15413-3

  • Online ISBN: 978-3-642-15414-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics