
Real-time Sensory Pattern Mining for
Autonomous Agents

Pedro Sequeira1 and Cláudia Antunes2

1 INESC-ID / IST, Av. Prof. Dr. Cavaco Silva, 2744-016 Porto Salvo, Portugal,
pedro.sequeira@gaips.inesc-id.pt

2 Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal,
claudia.antunes@ist.utl.pt

Abstract. Autonomous agents are systems situated in dynamic envi-
ronments. They pursue goals and satisfy their needs by responding to
external events from the environment. In these unpredictable conditions,
the agents’ adaptive skills are a key factor for their success. Based on pre-
vious interactions with its environment, an agent must learn new knowl-
edge about it, and use that information to guide its behavior throughout
time. In order to build more believable agents, we need to provide them
with structures that represent that knowledge, and mechanisms that up-
date them overtime to reflect the agents’ experience. Pattern mining, a
subfield of data mining, is a knowledge discovery technique which aims
to extract previously unknown associations and causal structures from
existing data sources. In this paper we propose the use of pattern min-
ing techniques in autonomous agents to allow the extraction of sensory
patterns from the agent’s perceptions in real-time. We extend some struc-
tures used in pattern mining and employ a statistical test to allow an
agent of discovering useful information about the environment while ex-
ploring it.

Key words: autonomous agents, adaptation, learning, pattern mining,
knowledge discovery

1 Introduction

There are several definitions of autonomous agents, and several attempts to de-
fine the requirements that a designer must meet when building those agents
[4]. Nevertheless, there a few characteristics which are common to those defini-
tions of agents, specifically that they are systems situated in dynamic environ-
ments, which have and actively pursue some goals and satisfy their needs by
autonomously responding to external events from that environment [4][9]. The
characteristics of the environment make restrictions on the sensations perceived,
and shape the actions performed, the knowledge constructed, and the decisions
that are taken by the agent at each moment. Because those environments can
be dynamic and unpredictable, the agent must have some mechanisms to dis-
tinguish the features that are perceived from it, focusing its attention in those

2 Pedro Sequeira, Cláudia Antunes

that seem more promising to achieve its goals, and ignoring others that do not
[4]. This ability of adapting to and learning new knowledge from the environ-
ment while interacting with it in real-time defines restrictions and requirements
when building autonomous agents with such capabilities [9]. Namely, we need to
provide them with some structures that represent the acquired knowledge about
the environment, and mechanisms that update these representations overtime to
reflect the agent’s interaction experience.

Data mining encloses a set of techniques to extract previously unknown and
possible useful information from data [5]. One of such techniques is transac-
tional pattern mining, which extracts frequent associations and causal structures
among sets of objects or items from several transactions.

In this paper we propose the use of pattern mining techniques within the
autonomous agents paradigm in order to provide those agents with the abil-
ity of discovering associative patterns in their perceptions while they interact
with their environment, i.e., in real-time. These patterns constitute the agents’
knowledge about its world taken from the regularities that are perceived from its
experience. Later on they can be useful for the agent to form concepts about the
environment and by setting expectations about future events. To achieve that
we extended some structures used in pattern mining to represent the discovered
knowledge. We also adopted a statistical test to detect significant sensory infor-
mation for the agent to discover useful facts about its world, and came up with
some heuristics and algorithms to update and maintain the knowledge structures
in real-time, while the agent explores it.

This paper is organized as follows: the next section gives an overview of the
general idea and motivation behind the work presented, and define the research
problem we are trying to solve. In the following section we present several exten-
sions to related work as possible solutions to the problem. In section 5 we present
the tests used to validate the proposed solutions and a comparative analysis re-
lating them. Finally we draw some conclusions and possible future extensions
for the work.

2 The Problem

In this section we describe the background motivation and research problem
behind the current work, introduce the pattern mining problem and explain
how the analogy between these problems and the autonomous agents’ paradigm
can be made. Next we characterize the problem to be solved and define a set of
requirements to be satisfied.

2.1 Background

In a previous work [10], Sequeira et al. presented SOTAI (Smart ObjecT-Agent
Interaction) framework to help autonomous agents identify the set of possible
interactions with unknown objects of the environment, based on previous ex-
periences with other objects. The approach is based on the notion of Gibson’s

Real-time Sensory Pattern Mining for Autonomous Agents 3

affordances [6] which can be defined as the interaction opportunities which are
transmitted by the objects to the agents taking into account their interaction
capabilities. Within the SOTAI framework, an agent is provided with a set of
sensors from which it perceives its environment. At each moment one sensor can
contain a set of sensations which are modeled as symbolic qualities or features
of the perceived objects from the environment. For example, if an agent inter-
acts with an orange then it will receive the symbol orange in the color sensor,
spherical in the shape sensor, the symbol soft to the touch-texture sensor, etc.

The framework is based in Cohen et al.’s block-building approach [3]. It allows
the construction of small pieces of information called Base Fluents, which are
pairs of Sensations that occur frequent and simultaneously in the agent’s sensors.
Using a Chi-square [11] statistical test, one can determine whether two monitored
Sensations are correlated, and also their association strength by calculating their
Phi-coefficient [11]. If an association is detected, Base Fluents are created and
later tested in pairs to determine new associations. The learning process occurs in
real-time while the agent interacts with its environment, building new and larger
blocks of information (Fluents) from smaller structures. More implementation
details can be found in [10].

To test the knowledge generation mechanisms, a test application (Sotai-
Tester) was created where an agent explores and interacts with a simulated
environment composed of several objects in a random manner. It selects at each
decision moment an object to interact with and receives sensations from the
environment. For example, when it sees an object, the agent takes its shape
and color features from the object’s internal description, when it touches it re-
ceives the object’s tactile information, when it eats it takes flavor and energy
properties, etc.

2.2 The Pattern Mining Analogy

Pattern mining is a technique that is used to discover frequent patterns, asso-
ciations, correlations, or causal structures among sets of items or objects [1]. In
transactional pattern mining, a transaction database (DB) is a set of transac-
tions, each of which containing a set of items describing objects or events that
occur simultaneously, at a given point in time. The goal of the pattern mining
algorithms is to discover all the maximal sets of items that occur together in a
significant number of transactions in the DB. Itemsets are considered patterns if
the number of transactions in the DB where they occur is greater than a minimal
threshold value, the pre-established support.

Considering the characteristics of the agents being modeled within the SO-
TAI framework, one can envisage a way of applying some of these pattern mining
algorithms within an autonomous agent paradigm. In the case of such agents, at
each time every sensor will have a certain stimulus represented by some symbol.
In the knowledge-discovery language these symbols constitute categorical nomi-
nal attribute data or alphabets as they describe discrete values with no ordering
between them. Moreover, if we consider the symbols as being items, then at each
time the set of all the stimuli in the agent’s sensors (it’s current perception state)

4 Pedro Sequeira, Cláudia Antunes

can be considered as a transaction. In this context, a DB can be defined as the
whole record of perception states of the agent during all of its execution time.

2.3 Problem Definition

Having described the perception mechanism of the agent that we are modeling
in the context of pattern mining (as a set of items and transactions), we can
define the problem of discovering knowledge from the agent’s interactions with
its environment as a problem of mining patterns from sets of transactions from
a database.

More specifically, we can better define the problem as finding synchronous
sensory patterns: sets of stimuli that occur frequently and simultaneously within
the agent’s sensors that reveal some regularities of its environment. Because this
discovering process directly depends on the perceptions made, the number and
set of patterns discovered will depend on each agent’s interaction experience
even if the environment and its conditions (the objects and its features) are the
same. From this definition, the mining algorithms to apply have to follow some
requirements:

– Discover sensory patterns in real-time as the agent interacts with the envi-
ronment;

– Discover the maximum amount of sensory patterns that indicate useful in-
formation to be used by the agent at which it should focus its attention;

– Maintain within the knowledge structure the maximum number of patterns
so that they can be easily accessed and used by the agent to make decisions;

– Use the minimal amount of resources (both storage and time consumption).

3 Sensory Pattern Mining for Autonomous Agents

In this section we present several approaches to the problem defined in the
previous section. We start by a quick overview of the FP-Growth algorithm and
envisage possible modifications of the algorithm and its structures so that it
can be used in mining patterns in real time. Finally we propose the use of the
Jaccard index statistic as a way to retrieve more and meaningful patterns from
the sensory data.

3.1 Transactional Pattern Mining

As described above, at each instant the agent’s perception state describes a
set of stimuli that can be defined as a transaction which can be provided to
pattern mining algorithms. The best well-known algorithm within the area of
transactional pattern mining is the Apriori algorithm introduced by Agrawal et
al. [1]. It iteratively generates the set of candidate patterns (itemsets) of some
length k from the set of frequent-patterns of length k − 1. If the candidate is
frequent, i.e. its occurrence is greater than the minimum support threshold,

Real-time Sensory Pattern Mining for Autonomous Agents 5

then it is considered a pattern, and new candidates are generated from this
set to be tested in the next step. However, and despite the simplicity of the
algorithm, its candidate generation and test philosophy impairs its efficiency,
and makes difficult its extension to deal with continuous flows of data and real-
time environments.

More recently, Han et al. proposed an algorithm to surpass some of the
problems presented by the Apriori algorithm, namely the necessity of having to
generate and test a huge number of candidate sets and execute multiple scans
over the entire DB in order to discover the patterns. As such, Han et al. developed
FP-Growth, an algorithm that builds up a compact structure (FP-Tree) from
the data in a way that avoids scanning the DB multiple times [7]. The algorithm
works in three steps: first, it scans the DB once in order to identify frequent
items and identifies the best ordering among them; the frequency-descending
order among items is then used to reorder each transaction, using the FP-Tree
to compact all the transactions in the DB; finally, it goes through the tree in
order to identify all the patterns in the database. Fig. 1 illustrates the result of
applying the FP-Growth algorithm (left) to a set of transactions in a DB (right).
The algorithm discovers a, b, c and ac as patterns (min. support = 0.4).

In light of the problem described earlier and taking into account the require-
ments defined in section 2.3, the FP-Growth algorithm presents some drawbacks:

– First by requiring a first scanning over the whole set of transactions from
the DB to order items by their occurrence frequency, which is impossible to
realize in the autonomous agent’s case because we want the mining process
to be made online;

– The main objective of the algorithm is to determine all the frequent itemsets.
Due to the inherent compactness of the FP-Tree structure, it is sometimes
difficult to determine whether specific combinations of items are considered
patterns, having to scan the tree to determine their support;

– Finally, as another consequence of the compactness of the FP-Tree, it is
difficult to verify if a specific itemset is a pattern in real-time. Indeed it
would be beneficial for the agent to have an easy and rapid access to all the
patterns discovered so far in order to use them to make better evaluations
of the current state and also take better decisions upon it.

3.2 Real-time Pattern Mining

One of the requirements stated in section 2.3 was that the algorithm to be
developed must be executed in real-time, while the agent interacts with its en-
vironment, taking into consideration the past sensory experiences. As such, the
first attempt to solve this issue was to try to build an FP-Tree structure using
the same algorithm before mentioned, but doing it in only one scan over the set
of transactions of the DB. To do that we discarded the first scan used to deter-
mine the order of the items according to their frequency. Because this order is
only a heuristic to minimize the number of nodes generated (not guaranteeing

6 Pedro Sequeira, Cláudia Antunes

a, b, c, d

a, c

a, b, d

a, c

c,

b, c, d

a, b

a, c

Fig. 1. The FP-Tree (left) resulting from the application of the FP-Growth algorithm
(min. support=0.4) over the set of transactions (right). Lighter nodes represent smaller
support values.

that the generated tree is the smallest one possible), we established a fixed order
to be used by the algorithm, namely the alphabetic order of the symbols rep-
resenting the agent’s perceptions. Naturally, other kinds of ordering heuristics
could be used, namely the ones based on domain knowledge about the environ-
ment, for example by determining what stimulus were more likely to be present
in the agent’s sensors throughout time, estimating the ordering among items.
Nevertheless, because the objective was to provide a biased-free mechanism for
the agents to explore the environment starting from (almost) zero information
about it, and so we used the alphabetical order.

This change of ordering can have an impact on the time used to build the
patterns tree, but does not solve the requirement of having the maximum number
of known patterns readily accessible to the agent. To solve that problem we
changed the way the transactions are inserted in the tree in such a way that
now each node represents a specific itemset and its count value represents the
frequency of that itemset so far. The algorithm thus generates all the possible
sub-combinations of itemsets whenever a transaction is inserted. For example,
if we inserted the transaction abc in a new tree (Fig. 2), the nodes a, a → b, b,
a → c, a → b → c and b → c are created with a count value of 1. We call this
set of nodes representing all the sub-combinations of an itemset its Dependency
Tree (DT). By making use of the anti-monotone Apriori heuristic [1] we can
state that for an itemset to be frequent then every node in its DT must also be
frequent. The idea behind this way of building the patterns tree is to have the
maximum number of frequent patterns stored in the tree’s structure without the
need of having to search the whole tree for sub-combinations of itemsets and
determine whether they are frequent.

Real-time Sensory Pattern Mining for Autonomous Agents 7

����

����� ����� �����

����� �����

�����

�����

Fig. 2. The patterns tree after inserting transaction abc. It also represents the Depen-
dency Tree (DT) of the node a → b → c.

Because the number of possible sub-combinations of an itemset can be very
large, storing all the combinations for every possible transaction seems a very
unfeasible and resource-consuming task. To tackle with that problem we defined
a heuristic to prune those nodes that do not seem promising in becoming a
pattern. This heuristic prunes a node (deletes it from the tree) whenever it’s
considered as an infrequent node, i.e., when its support (count value) drops below
a certain threshold of the pre-established minimum support. In the context of
this work we defined this limit as 0.75 times the minimum support1. This pruning
heuristic is applied when determining the frequent patterns (nodes) to reduce
the tree’s size overtime. In Fig. 3 we can see the result of applying this new
algorithm to the previous example.

3.3 The Jaccard Index

In our opinion, one of the problems that these pattern mining algorithms suffer
lies within what they consider to be a frequent pattern. This judgment is based
on the statistic of the frequency of an itemset in relation to the total number
of transactions recorded. In the context of the current work however, sometimes
there are some sets of stimuli which frequency is low, but that appear to occur
always simultaneously. Looking at the previous example DB, we may notice that
most of the times when item b appears in a transaction, a and d also occur in
that transaction. Because the support of the itemsets ab, bd and abd is very low,

1 Through experimentation, a high percentage value should be used as threshold to
determine infrequent nodes during the pruning procedure. As such, 0.75 proved
to be a value which pruned several nodes without damaging the overall patterns
discovered.

8 Pedro Sequeira, Cláudia Antunes

����

����� ����� ����� �����

����� �����

����	 ����

����	

�����

Fig. 3. The tree resulting from the application of the ”all-combinations” algorithm
(transaction set and support is the same as the above example).

frequency-based algorithms cannot detect them as being patterns. This makes
that a lot of useful information about the environment’s regularities is being
discarded by the agent throughout time.

Due to that fact, we decided to look for a statistic to determine the correla-
tion level between nominal variables (as is the case of the ones here described).
Considering the nature and structure of the patterns trees being built, we de-
cided to apply the Jaccard index statistic [8] to determine the frequent patterns.
This statistic allows us to determine the level of correlation between several vari-
ables as a function of the frequency of their intersection over their union. In the
case of two variables A and B (non independent) the index can be expressed
using the following formula [11]:

Jacc(AB) =
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B| − |A ∩B|
(1)

The index value varies from 0 to 1, so values near 0 indicate a weak cor-
relation between the variables while values near 1 indicate a strong correlation
between them. This statistic can be used as a useful heuristic to determine sen-
sory patterns in agents perceptions by allowing us to characterize the level of
correlation between the stimuli as a measure of the deviation between their co-
occurrence and the sum of all of its occurrences, which at the same time ignores
the total number of perceptions made so far. By extending equation (1) to n
variables we can informally write the Jaccard index by equation (2).

Real-time Sensory Pattern Mining for Autonomous Agents 9

Jacc idx =
no. of co-occurrences of the variables

no. of co-occurrences + no. of non-simultaneous occurrences
(2)

If we take the structure of the patterns tree being developed here, we can
determine the Jaccard index value of some itemset by dividing the count value
of the node which represents the itemset in the tree (which precisely corresponds
to the number of co-occurrences between the items) by the weighted sum of the
count values of all the nodes within its DT. The weight determines the sign of
the nodes’ count value according to the parity of their depth in the tree (−count
if odd depth, +count if even).

In this new context, the pruning heuristic is applied right after the insertion
of a new transaction, to all the nodes within the DT of the node representing
the transaction in the tree, because these were the nodes which count values
were updated (for example, if transaction abc is inserted, the nodes belonging
to the DT of the node a → b → c are considered). Following the example DB
of the previous sections, the application of this new approach results in the tree
depicted in Fig. 4. As we can see, for a minimum Jaccard index of 0.4, the
algorithm finds the same patterns discovered by the previous algorithms plus
the itemsets ab and bd. Itemset abd still does not have enough support to be
considered a pattern under the Jaccard index statistic, but it does have minimum
support for not being removed under the pruning heuristic.

����

����� ����� ����� �����

�����
	
�

�����
	
�

�����
	
��

�����
	
�

Fig. 4. The tree resulting from the application of the ”jaccard-index” algorithm (trans-
action set and support is the same as the above example). Jaccard index values are
represented in the nodes below their support.

10 Pedro Sequeira, Cláudia Antunes

4 Experimental Results

In this section we describe the tests carried out over the proposed algorithms
to determine their validity and the usefulness of the generated patterns, by
presenting the main results and making a comparative analysis between the
algorithms performance.

4.1 Test Conditions

To test the efficiency and quantity of patterns generated by the proposed algo-
rithms we decided to test them against the FP-Growth [7] algorithm and the
SOTAI framework algorithm [10], both described earlier. Of course FP-Growth
is an algorithm which purpose is somewhat different from the type of pattern
mining we are aiming at here. Nevertheless, because it served as a base algorithm
for the proposed extensions, it provides reference values that we can use when
comparing the quantity of patterns generated and the efficiency of the mining
processes. In relation to the SOTAI framework, we adapted the generated Flu-
ents as sensory patterns by considering the set of Sensations they represent as
itemsets. The set of algorithms we ended up testing is the following (short name
in brackets):

– SOTAI framework knowledge-generation algorithm (Sotai);
– FP-Growth algorithm (FP-Growth);
– FP-Growth with alphabetic item order, one scan over the DB (Alpha-FP-

Growth);
– Algorithm considering all sub-combinations in every transaction with prun-

ing heuristic (All-Comb);
– Same algorithm as All-Comb but using the Jaccard index statistic as a

heuristic to determine patterns (Jacc-Index).

Because we wanted to test the algorithms within an autonomous agent ar-
chitecture, in a context where the agent continuously interacted with its envi-
ronment and which perceived sensations were in the form of symbols describing
categorical nominal attributes of the objects, we chose Sotai-Tester [10] applica-
tion to generate the transaction data to be input to the algorithms. Sotai-Tester
agent, as explained before, has a random behavior and at each decision time it
chooses an object from the environment to interact with. After that interaction
is over, it chooses another object and so on. Sotai-Tester environment has a total
of 8 objects that the agent can interact with, and the agent has a total of 13
sensors to perceive the environment. There are a total of 70 possible individual
symbols to describe the perceptions of the agent. Because some of these symbols
can be present at the same time within the agent’s sensors, we considered a
combination of two or more symbols as a single sensation (for example, if the
color sensor has yellow and red symbols at the same update cycle, sensation
color-yellow-red is considered as being an item). As such, at each update cycle
of the agent’s process, we recorded in a simple text file all the sensations that
were present in the agent’s sensors at that time. Each line of the text file thus
represents a transaction to be processed by the pattern mining algorithm.

Real-time Sensory Pattern Mining for Autonomous Agents 11

4.2 Metrics

The goal of the tests is essentially to analyze the algorithms’ performance and
the number and quality of the patterns it finds, i.e., the knowledge generated
by the agent from perceiving its environment while interacting with it. As such,
the following metrics were adopted and measured for each algorithm at each test
execution:

– Time used to build the knowledge structure (tree), reading each transaction
one-by-one from the previously generated text files, measured in CPU time
(Build-Time);

– The number of nodes used to build the tree in order to evaluate the algo-
rithms in terms of memory requirements (Nodes-Number);

– Time used to retrieve from the tree every possible pattern according to the
minimal threshold established, measure in CPU time (Pattern-Time);

– Total number of patterns found. One-item-length patterns were ignored be-
cause we are interested in finding correlations in the sensory data (Pattern-
Number).

Using the Sotai-Tester application described earlier we generated a total of
10 text files containing 10K transactions (average length = 5), each representing
an update cycle of the agent. To see the relationship between the limit values
established to discover patterns and the algorithms’ performance, we iterated the
minimum support threshold over 10 possible values from 0.1 to 1. In the case
of the Jacc-Index algorithm, this threshold corresponds to a minimum value for
the Jaccard’s index associated with a node. In relation to the Sotai algorithm,
the threshold is the minimum association strength (Phi-coefficient) between the
generated structures. After the execution of all the tests, we averaged the values
of each metric for each algorithm and each support value, removing mild outliers
through quartile estimation.

4.3 Results and Comparative Analysis

The results of the tests described earlier are depicted in Fig. 5. By looking at
the algorithms’ behavior during the tests we are able to make the following
observations about them:

SOTAI framework’s knowledge-discovery algorithm didn’t perform well at
any of the analyzed parameters. It takes too much time to discover associa-
tions from the sensory data, maintaining unnecessary information of statistical
tests, and discovering few patterns overtime due to its block-building approach
explained earlier.

Although we introduced FP-Growth during the tests only to establish base
values for the measures, we found that the algorithm performed very well within
its ”family”. As we expected, by having the transactions sorted by item frequency
before its introduction in the tree, less nodes are needed to build the tree and less
time is required to search for the patterns than the alphabetical-order algorithm.

12 Pedro Sequeira, Cláudia Antunes

0

50

100

150

200

250

300

350

0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

number of
patterns

minimum support

Pattern-Number

Sotai

FP-Tree-based

Jacc-Index

0

10

20

30

40

50

60

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

CPU time (ms)

minimum support

Pattern-Time

Sotai

FP-Growth

Alpha-FP-Growth

All-Comb

Jacc-Index

0

200

400

600

800

1000

1200

1400

0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

number of
nodes

minimum support

Nodes-Number

Sotai

FP-Growth

Alpha-FP-Growth

All-Comb

Jacc-Index

0

500

1000

1500

2000

2500

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

CPU time (ms)

minimum support

Build-Time

Sotai

FP-Growth

Alpha-FP-Growth

All-Comb

Jacc-Index

Fig. 5. The graphics containing the results of the tests performed over all the proposed
sensory pattern mining algorithms.

By relying on the itemsets frequency, FP-Growth discovered, as expected, less
patterns than the statistic-based association mining algorithms (Sotai and Jacc-
Index). We can also observe that storing all the sub-combinations in memory
isn’t that useful when mining for frequent patterns: it creates more nodes and
requires pruning over the entire tree to find patterns. As a conclusion, none of
the FP-Growth-based algorithms represents a real solution for the problem being
solved.

The first thing we can say about the proposed Jaccard-index-based algorithm
is that if we set the minimum index threshold too low, we end up having too
many nodes, too many itemsets considered as patterns, and also spend too much
time scanning the tree for those patterns. A compromise must be made between
performance and usefulness of the discovered patterns as to consider how strong
an association between stimuli must be for it to be considered a regularity of the
environment, a pattern. As expected, it takes more time to build the tree and
search for patterns than the FP-Growth-based algorithms because it needs to
calculate the statistic to determine patterns. However, in this case, the structure
of the patterns tree, by storing all the sub-combinations of itemsets, enhances
its mining performance by maintaining in memory the nodes that are necessary
for the index calculation (its Dependency Tree). We believe that the algorithm’s
performance shows that it can be a solution to our problem: it generates patterns
of sensory data from the agent’s perceptions throughout time, based on the
statistical significance of the correlation between the stimuli they represent; it

Real-time Sensory Pattern Mining for Autonomous Agents 13

also performs this task in a reasonable time to be used by the agent while it
interacts with its environment, i.e., in real-time (less than 1 second to process
10K update cycles).

5 Conclusions and Future Work

Autonomous agents are systems inhabiting dynamic and unpredictable environ-
ments which they perceive and react to events accordingly. To survive, the agent
must learn new facts from the world and perceive its regularities to make better
decisions on how to act upon it. In this paper we showed that by modifying some
pattern mining algorithms we can provide autonomous agents with mechanisms
to discover useful information about its environment while interacting with it
in real-time. If we see the agents’ perceptions as transactions of a DB, then we
can apply those algorithms to discover sensory patterns from the environment.
We proposed a new structure to store the sensory information perceived by the
agent, which is constructed in a way that facilitates the retrieval of the sen-
sory patterns. We also proposed a new heuristic to discover frequent patterns
by using the Jaccard index statistic, which is sensible to some regularities of the
environment that are not frequent, but denote particular cases of correlations
within the perceptions.

We believe that the use of data mining techniques will provide autonomous
agents with capabilities of discovering patterns relating their activities while
interacting with the environment. For now, the proposed algorithms discover
synchronous sensory patterns, i.e., sets of stimuli that co-occur frequently. In
the future we want to extend them for the discovery of asynchronous patterns,
i.e., sets of stimuli that frequently occur one after the other, revealing causal
relations between them. To achieve that, we can adapt algorithms from the se-
quential pattern mining area [2]. We would also like to test the algorithms in
different contexts, testing the pattern mining mechanisms in richer scenarios,
possibly involving virtual environments and synthetic characters. Finally an-
other approach would be to test this solution within a multi-agent application.
Because different agents interact with the environment in different manners at
particular instants of time, they will perceive the world in a singular manner and
as such, they will create different sensory patterns throughout time. It would be
interesting to check commonalities and differences between the patterns created,
and provide them with communication capabilities so that overall social knowl-
edge could be created to reflect the experiences of particular groups.

Acknowledgments

This paper was supported by a scholarship (SFRH / BD / 38681 / 2007) granted
by the Fundação para a Ciência e Tecnologia. The authors are solely responsible
for the content of this publication. It does not represent the opinion of the
Fundação para a Ciência e Tecnologia, which is not responsible for any use that
might be made of data appearing therein.

14 Pedro Sequeira, Cláudia Antunes

References

1. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc.
20th Int. Conf. Very Large Data Bases, VLDB, volume 1215, page 487499. Citeseer,
1994.

2. C. Antunes and A. Oliveira. Sequential pattern mining algorithms: Trade-offs
between speed and memory. In 2nd Workshop on Mining Graphs, Trees and Seq.
Citeseer, 2004.

3. P. Cohen, M. Atkin, T. Oates, and C. Beal. Neo: Learning conceptual knowledge by
sensorimotor interaction with an environment. Proceedings of the first international
conference on Autonomous agents, pages 170–177, 1997.

4. S. Franklin and A. Graesser. Is it an Agent, or just a Program?: A Taxonomy for
Autonomous Agents. Lecture Notes in Computer Science, 1193:21–36, 1997.

5. W. Frawley, G. Piatetsky-Shapiro, and C. Matheus. Knowledge discovery in
databases: An overview. Ai Magazine, 13(3):57–70, 1992.

6. J. Gibson. The ecological approach to visual perception. Houghton Mifflin, 1979.
7. J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent patterns without candi-

date generation: A frequent-pattern tree approach. Data Mining and Knowledge
Discovery, 8(1):53–87, Janeiro 2004.

8. P. Jaccard. The distribution of the flora in the alpine zone. New Phytologist, 1912.
9. P. Maes. Modeling adaptive autonomous agents. Artificial life, 1(1-2):135–162,

1994.
10. P. Sequeira, M. Vala, and A. Paiva. What can i do with this?: finding possible

interactions between characters and objects. In Proceedings of the 6th international
joint conference on Autonomous agents and multiagent systems, AAMAS ’07, pages
5:1–5:7, New York, NY, USA, 2007. ACM.

11. M. J. Warrens. Similarity coefficients for binary data: properties of coefficients, co-
efficient matrices, multi-way metrics and multivariate coefficients. Doctoral thesis,
Leiden University, 2008.

