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Abstract. In order to achieve a complete image description, we intro-
duce no-feature-features (NF-features) representing object regions where
regular interest point detectors do not detect features. As these regions
are usually non-textured, stable re-localization in different images with
conventional methods is not possible. Therefore, a technique is presented
which re-localizes once-detected NF-features using correspondences of reg-
ular features. Furthermore, a distinctive NF descriptor for non-textured
regions is derived which has invariance towards affine transformations and
changes in illumination. For the matching of NF descriptors, an approach
is introduced that is based on local image statistics.

NF-features can be used complementary to all kinds of regular feature
detection and description approaches that focus on textured regions, i.e.
points, blobs or contours. Using SIFT, MSER, Hessian-Affine or SURF as
regular detectors, we demonstrate that our approach is not only suitable
for the description of non-textured areas but that precision and recall of
the NF-features is significantly superior to those of regular features. In
experiments with high variation of the perspective or image perturbation,
at unchanged precision we achieve NF recall rates which are better by
more than a factor of two compared to recall rates of regular features.

1 Introduction

During the past years, the combination of interest point detector and local
descriptor has been successfully applied in a high number of computer vision
problems. The main reason for that is the fact that establishing local image

Fig. 1. Detected NF-features with increasing density using SIFT as regular features.
The lines denote the extents that the feature descriptor is built from.
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correspondences, which is one of the main computer vision problems, can be
solved by inexpensive descriptor matching. As high repeatability under various
external influences like changes in perspective or illumination is important for
a stable matching, textured image regions with intensity variations in scale and
space are chosen during the detection. Thereby, the local descriptor is created
from high-entropy input data which results in distinctive descriptors.

However, broad categories of real-world objects have non-textured regions.
Regular detectors very likely miss stable feature locations there. Additionally,
most kinds of descriptors are built using local image gradients and thus lose their
distinctiveness when built on non-textured areas. Hence, non-textured regions
usually are not considered for detection and description.

In this paper we present a new feature type named No-Feature features (NF-
features) that has the purpose to explicitly model regions without any features.
This is inspired from the field of physics, in which the absence of electrons in
conductors is modeled as the positively charged particle ‘electron hole’ with
effective properties like mass and mobility. Likewise, NF-features are located on
all those regions where any regular interest point detector left a ‘feature hole’.
Thus NF-features results in a complete description for all regions of an image
which enhances detection and classification.

The contributions of this paper are

– the development of a detection method for NF-features ensuring there is a
minimal density in the extracted features,

– the derivation of a new descriptor in which contrast and intensity-shift in-
variant image content is stored,

– the derivation of a statistical descriptor matching method which evaluates
the local image noise variance, and

– comprehensive evaluation of NF in combination with SIFT, MSER & GLOH,
Hessian-Affine & GLOH and SURF as regular features.

– For further evaluation of NF we provide binaries [1].

The remaining sections are structured as follows: In Section 2, we give an
overview of related work and explain the differences to our approach. In Sec-
tion 3, the algorithms used for NF detection, description and matching are de-
scribed. In Section 4, we show experiments and give a conclusion in Section 5.

2 Related Work

For stability and repeatability, all commonly-used interest point detectors de-
tect image content that contains high entropy. By evaluating the second moment
matrix, the Harris Corner Detector [2] detects interest points with intensity gra-
dients that vary in two directions and thus are precisely locatable. In [3] points
with extremal intensities are detected and by the evaluation of surrounding image
contents with rays, an affine orientation is assigned. Maximally Stable Extremal
Regions (MSER) [4] are detected by finding connected components which are
extremal as they either have lower or higher intensity values than all surround-
ing pixels. These regions can be considered homogeneous or non-textured, but in
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order to be detected, they necessarily have to exhibit a significant contour. The
following detectors which are based on the scale-space, detect blob-like features
not only in the spatial but also in the scale domain. The Harris-Affine detector
[5], which is based on the Harris Corner Detector, evaluates the second moment
matrix at a given scale and thus locates anisotropic blobs in the image. The
Hessian-Affine (HAff) [6] detector works similar but the Hessian matrix is eval-
uated instead. The famous SIFT (Scale Invariant Feature Transform) detector
[7] uses the Difference of Gaussians operator to locate features that correspond
to isotropic blobs in the unscaled image. In [8], generalized junction-type fea-
tures were proposed as interest points which are detected at different scales.
The idea of detecting all kinds of maxima that exhibit spatial unpredictability is
exploited in [9], where regions with maximal salience are detected. For a stable
localization in the scale-space, all these methods detect only significant maxima.
As non-textured regions with non-elliptic shape result in blurred maxima in the
scale-space, they are usually not considered as keypoint location.

In [10], the fusion of complementary information similar to our method has
been proposed. They use a contour descriptor combined with a local descriptor
and get improved results for the combination. However, non-textured regions are
still not covered with this approach. As they contain no contours and no texture,
no interest points may be described.

Local descriptors are usually built from statistical parameters around the de-
tected location. The SIFT descriptor [7] is built from histograms of gradient
orientation at the detected scale. [11] proposed GLOH (Gradient Location and
Orientation Histogram) which extends SIFT by changing the location grid and
using PCA for compression. [12] proposed SURF (Speeded Up Robust Features),
an efficient variation of SIFT by using integral images for a more-efficient com-
putation while making additional approximations towards SIFT. For invariance
towards monotonic changes in intensity, SMD (Stable Monotonic Change Invari-
ant Descriptor) [13] was introduced, which analyzes intensity order changes.

The idea of sampling lines for the descriptor that originate from the keypoint
location is also used for Spiders [14] and for the intensity-based region detector
[3]. In [14], the lines are used to determine the extents of a feature by evaluating
the intensity run along a line and choosing that border location, where the
intensity falls below a threshold for the first time. Likewise in [3], that location
is selected where an intensity expression becomes maximal. Thus in contrast to
NF, in both works the lines are used to determine the extents of a feature to
make it affine invariant.

3 NF Features

Creating NF-features in an image I1 follows the same paradigm as state-of-the-
art local features: First the feature is detected and then a descriptor is built from
the local image content. As our approach is always complementary to features
like SIFT that we call regular features, the NF detection has to be performed after
regular features have been detected. To match NF-features between images I1
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and I2, we introduce a technique called second level matching, for which regular
correspondences, NF features of I1, and the image I2 have to be given. Second
level matching consists of second level detection and second level description
which are both explained at the end of the following two sections.

In the derivation, xc denotes the location of a feature of set Fc, features of
images I1 and I2 are distinguished by x

(1)
c and x

(2)
c , and D(x, y) denotes the

Euclidean distance between two vectors x and y.

3.1 NF Detection

NF-features should be complementary to regular features. Thus we detect an
NF-feature at every location xnf where all regular features at xreg ∈ Freg are
far, thus D(xnf, xreg) > dfar. We define dfar as a constant factor c of the median
nearest neighbor Euclidean distance dmnn of the regular features:

dfar = c · dmnn(Freg) = c · medianFreg

[
D

(
xreg, nearestFreg(xreg)

)]
. (1)

Choosing c = 3 yields to a good trade-off between dense NF coverage and com-
putation speed. Likewise, we clip dmnn if it falls below 10 pel. In Fig. 1, detections
with increasing NF density using dfar from 5dmnn down to 2dmnn are displayed.

The detection is performed iteratively using an algorithm similar to the Far-
thest Point Sampling [15]. Given Freg and all already detected NF-features Fnf,
we seek for the location which is farthest from all known features Fkf = Freg∪Fnf.
In other words, we seek for the center of the largest hole in Fkf. To find that
location efficiently, the Delaunay triangulation is built for Fkf (cf. Fig. 2(a)). The
edges of its dual graph, the Voronoi diagram, cover all points to which the dis-
tance to the nearest two neighbors is identical. Thus, Voronoi vertices cover all
points which are locally farthest to all known feature locations. From all Voronoi
vertices we choose that point with maximal distance dmax to Fkf as NF location.
Features are located iteratively until dmax falls below dfar. Using this algorithm,
we ensure no hole remains with a radius larger than dfar.

Keypoint detection should be robust and repeatable. However, this detection
method is only repeatable if after a detection in image I1, exactly the same
regular features are detected in another image I2. To overcome this, when regular
correspondences Creg = {(F (1)

reg , F
(2)
reg )} have been found between images I1 and

I2, second level detection is performed. For each NF location x
(1)
nf from image

I1, a local transformation T to image I2 is estimated using the nearest n regular
features with correspondences in I2 (cf. Fig. 2(b)). The local transformation
x(2) = T (x(1)) is then applied to localize the NF-feature in image I2 as

x
(2)
nf = T

(
x

(1)
nf

)
. (2)

Thus, the NF keypoint always fulfills the same local motion as the nearest regular
correspondences. We call the involved regular features anchor features, as the
NF keypoint is fixed to these features and performs the same local motion.

Assuming that the anchor features as well as the NF-feature are coplanar,
T is a homography. For a stable estimate, RANSAC is used with the nearest



132 R. Dragon et al.
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Fig. 2. (a) NF detection using the Delaunay triangulation (solid) and the Voronoi di-
agram (dotted). The NF-feature (small circle) is located at xnf, which is that Voronoi
vertex with maximum distance to all regular features (crosses). (b) Second level detec-
tion. Corresponding regular features from images I1 and I2 are used as anchor features
in order to compute the local transformation x(2) = T (x(1)).

n = 8 correspondences, combined by a normalization step [16] and least-squares
fitting. If RANSAC does not find a reasonable solution, there is no NF-feature
located and thus no NF correspondence established. Likewise, any x

(2)
nf too close

to a regular feature is not considered, as I2 is assumed to be textured at that
location. By this second level detection, we obtain candidates for the matching.

3.2 NF Description

The NF descriptor should specify the contents of the region around its location.
As there was no regular feature detected in that region, it is very likely that it
is non-textured. However, the hull of the area which is built from the nearest
regular points is textured. We exploit this transition from dull to featured within
the NF descriptor: The descriptor is created by analyzing intensity runs from the
NF location to the nearest regular features. To describe the whole area around
the NF location, it is divided into 8 segments of same angle (Fig. 3(a)). In
each segment, a line is sampled which runs towards the nearest regular feature
inside the segment. If no regular feature has been detected or it is very far, we
sample along the segment middle with a distance of 5dmnn, as we are unsure
about the dimensions of the feature. By this sampling method, a hull around
the NF location is formed with one hull point in each segment. We use the
parametrization t ∈ [0, 1] for the line starting at the NF location.

ti =
i

N + 1
, i = 1 . . .N . (3)

To extract the deviation from a smooth transition from dull to featured, the
difference between I(t) and the linear transition Ilin(t) = I(0) + t · (I(1)− I(0))
is extracted for the descriptor (cf. Fig. 3(b)). For the jth segment, j = 1 . . . 8,
we receive N samples δij along the line towards the hull point:

δij = I(ti) − Ilin(ti) (4)
= I(ti) + (ti − 1) · I(0) − ti · I(1) . (5)

δij is not contrast invariant, as I(c) = αI yields δ(c) = αδ. As a stable measure-
ment for normalization, we use the standard deviation of δ of all samples in the
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Fig. 3. (a) NF description by sampling lines (solid) from xnf towards the hull points.
The dotted lines denote the 8 segment borders. For every segment the nearest regular
feature is selected as hull point. If no such feature exists, a point in the segment
middle (arrows) with specific distance to xnf is chosen as hull point. (b) Sampling δij

according to (5). The difference of the image intensity run I(t) to the linear transition
Ilin(t) = I(0) + t · (I(1) − I(0)) is extracted.

NF hull. For further processing, a zero-mean descriptor dij is required:

dij =
δij − mean δ√

var δ
. (6)

The NF descriptor dij , which has variance 1 and mean 0, specifies the contents of
the convex region spanned by the hull points. To store it in a memory-efficient
way, each element is quantized. We evaluated that a uniform quantization of
8 bit with clipping at ±2 does not change the descriptors significantly.

As the image texture is assumed to be non-textured near to the NF sampling
locations, small localization errors during the sampling can be neglected. Besides,
we can sample the low-passed image signal with acceptable loss in precision to
reduce the noise variance by a factor of slp. We use a Gaussian-shaped filter of
size 7 × 7 and a variance of 1 that performs a suppression of slp = 4.1.

Computing the hull is not repeatable if other nearest regular features are
used. Thus, we have to distinguish between first and second level descriptions
again. When regular correspondences have been established and the NF-feature
is located in image I2, we also transform the hull points x

(1)
hull from I1 to I2 using

x
(2)
hull = T (x(1)

hull). Sampling is then performed analog to first level matching.

3.3 Descriptor Matching Using Local Noise Estimation

As the descriptor is invariant with respect to small offsets, the two possibilities for
two descriptors to differ are that either the image content differs or the presence
of image noise. The two cases are to be classified to consider two descriptors to
differ or to match. Because the content of the NF hull is non-textured and thus
very unlikely to contain any high-frequency patterns, it can be assumed that
the local image variance is due to the noise. We use the high-pass filtered image
signal around the NF location to estimate the variance of Gaussian-distributed
image noise. For a more robust estimate, we collect estimations of the variance
at all sampling locations and take the median value of all estimations.

To analyze if two descriptors match, the NF descriptor d(1) is compared
element-wise with d(2) using the difference
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eij = d
(1)
ij − d

(2)
ij . (7)

If we assume that two segment descriptors do not match, d(1) and d(2) are two
independent random variables which were each normalized in (6) to have var d =
1. Assuming dij being Gaussian-distributed, eij is also Gaussian-distributed with
var e = 2. On the other side if we assume that the descriptors match perfectly,
then var e = 0. Among all perturbations which lead to non-perfect descriptor
matches, image noise is the only one that is not due to image contents changes.
Thus we further estimate the influence of image noise on eij .

First, we look at the influence of additive zero-mean Gaussian-distributed
image noise with variance σ2 on the samples I(t) from (5). I(0), I(1) and I(ti)
become independent random variables. During the sampling, their variance was
reduced from the low-pass filter by slp. Thus, we have

var I(t) =
σ2

slp
. (8)

As the three random variables are scaled in (5) by factors of 1, ti − 1 and ti
respectively, we get

var δij =
σ2

slp

(
12 + (ti − 1)2 + t2i

)
= 2

σ2

slp
(1 − ti + t2i ) . (9)

We assume that during the normalization of the descriptor in (6), the influence
of the image noise on var δ, which was created from the whole descriptor, is
negligible compared to the influence on δij . The influence of σ2 on dij is thus

var dij =
2σ2

slp var δ
(1 − ti + t2i ) = 2σ̄2(1 − ti + t2i ) , (10)

where we introduce σ̄2 as normalized image noise variance. When we compare
two independent descriptor elements according to (7), the variance of eij is

var eij = 2(σ̄2
1 + σ̄2

2)(1 − ti + t2i ) . (11)

We can assume that the image noise variance is constant in the sampled area.
Thus we can use (3) to derive the expected variance E[var eij ] of the random
variable eij over all realizations (i, j). An estimation of E[var eij ] can be found
by computing the element-wise mean square distance (MSD) between two zero-
mean descriptors:

E[var eij ] = DMSD(d(1), d(2)) = 2(σ̄2
1 + σ̄2

2)
1
N

N∑

i=1

(1 − ti + t2i ) (12)

= 2(σ̄2
1 + σ̄2

2)rN , (13)

where rN is a scale factor (3
4 ≤ rN < 5

6 ) that increases with growing number of
samples:

rN =
5N + 4
6N + 6

. (14)
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With an a-priori probability of p for two matching line segments, we set the
classification border to the weighted middle between the expected values.

b = 2(1 − p) + 2p
(
σ̄2

1 + σ̄2
2

)
rN (15)

As there is no a-priori information about the area between the features, p is set
to 0.5.

b = 1 + (σ̄2
1 + σ̄2

2)rN (16)

The theoretical limit where NF-features are not classifiable is at a mean image
noise variance of

σ2
max =

slp var δ

2 rN
. (17)

It seems we can handle all noisy images with a high noise suppression slp or with
a high number of samples N , but the variance of δ will also decrease by this: As
the image content of the sampled line is non-textured, the difference to the linear
run sampled in (5) mainly contains low-frequency patterns. So the theoretical
limit depends on the image contents and thus cannot be derived here.

We empirically determined N = 4 samples per line for regular camera images.
Thus, we achieve the following descriptor size: when using the here-proposed pa-
rameters (8 segments with 4 samples per segment, 8 bit descriptor quantization)
the descriptor only occupies 32 byte. With this approach, we have to additionally
store the intra-segment angles (8 bit) and the distances of the 8 hull points (8 bit)
as well as the normalized image variance with high precision (32 bit). Thus, the
NF descriptor size is 52 byte.

4 Experiments

We first demonstrate the properties of NF in a cluttered environment (Fig. 4).
Using NF-SIFT, we match 3 T-shirts worn by 6 different persons under different
illumination conditions. It can be seen that regular features match only at the
T-shirt logos whereas NF-features match on most of the T-shirt area. Further,
occluded or changed image contents like the faces is not matched.

To show the performance of our algorithm, we use natural image pairs of
sequences for the evaluation of affine invariant features from [11]. To demon-
strate illumination invariance, we use the Memorial sequence from [17] originally
used to create high dynamic range images. For a larger experiment, we use the
Amsterdam Library of Object Images (ALOI) [18] which includes 1000 images
under varying illumination conditions. To demonstrate NF-features are useful in
combination with different kinds of feature types, we use SIFT, MSER, Hessian-
Affine (HAff) and SURF as regular features, where for MSER and Hessian-Affine
GLOH is used as descriptor.

As NF uses second level matching and as the NF descriptor comparison is
not based on a nearest neighbor similarity, evaluating recall vs. precision graphs
by varying thresholds is not suitable here. Instead we focus on the common way
of establishing regular correspondences using second nearest neighbor (2NN)
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Fig. 4. NF (cyan) and SIFT (green) correspondences between 3 T-shirts worn by 6
different persons in a cluttered environment. The NF features are located on non-
textured T-shirt regions. The correspondence lines are thinned out by a factor of 5.

matching as proposed in [7]. We then build NF correspondences, estimate them
separately from the regular correspondences and compare all eight cases.

To measure performance, we use precision and recall of the extracted keypoints
of the first image I1 of every image pair (I1, I2) according to (18), where true
positives (tp), false positives (fp) and false negatives (tp) are counted.

recall =
tp

tp + fn
, precision =

tp
tp + fp

. (18)

To verify the correspondences in the case of sequences with a moving camera, ho-
mography matrices supplied with the test material are used as ground truth. As
we focus on dense object description for object recognition, we want to count an
imprecise localization as inlier in contrast to ‘real’ outliers with false correspon-
dences. For true positive correspondences we thus accept a maximum deviation
of 15 pel from the ground truth which is approximately the average dmnn of the
ALOI image database. Correspondences with a higher distance are classified as
false positives. All features detected only in the first image of the illumination
image pair are counted as false negatives. True negatives are not analyzed as no
significant occlusions exist in the sequences.

The runtime for processing NF-features using our non-optimized code depends
on the image contents. If there are many regular features near each other (e.g.
Fig. 6(b)) and large areas are unsampled, the iterative sampling algorithm from
Section 3.1 covers large unsampled regions. In such cases, the runtime is up to
10 times the processing time of regular SIFT features. In images, where holes
between regular features are filled (e.g. Fig. 1) NF matching needs roughly twice
the processing time.

4.1 Descriptor Invariance in Image Sequences

First we examine the influence of changes in global illumination (‘Leuven’), in
changes of internal (‘Bark’, ‘Boat’) and external camera parameters (‘Graf’,
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Fig. 5. Recall over the image index distance in the sequences ‘Bark’ (zoom and rota-
tion), ‘Bikes’ (blur), ‘Boat’ (zoom and rotation), ‘Graf’ (viewpoint), ‘Leuven’ (illumi-
nation), ‘Wall’ (viewpoint), ‘Ubc’ (JPEG compression), ‘Trees’ (blur) and ‘Memorial’
(dynamic range). Crosses denote NF features, circles regular features.

‘Wall’), in adding blur (‘Bikes’, ‘Trees’) and JPEG artifacts (‘Ubc’) and in varia-
tions of the dynamic range (‘Memorial’). For each series, correspondences
between all image pairs are established using 2NN for regular features and the
here-presented methods for NF. To analyze the descriptor invariance, we reduce
the effect of wrong second level detection due to false regular correspondences (We
further analyze this in Section 4.3). We enforce high precision by a loose outlier fil-
tering of the regular correspondences using RANSAC to estimate a homography
from the unfiltered correspondences. By this the precision values are similar (al-
most all above 0.9). So we can compare the approaches using the recall value, which
we average between all image pairs of the same image index distance (Fig. 5).

It can be seen that for all sequences NF always get higher recall values than
regular features, often with a factor of more than two. This is positively surpris-
ing as regular features serve as anchor points for the second level detection. Thus
we can deduce that NF descriptors have better invariance properties towards illu-
mination changes, blurring, JPEG compression and affine transformations than
regular features.
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(a) (b) (c)

Fig. 6. (a) Original image 256 of the ALOI database. (b) The sampled lines of the
detected NF-features (cyan) and SIFT anchor points (green circles denoting the extent).
(c) The examined image with added image noise variance of 100.
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Fig. 7. (a) Influence of image noise on the descriptor difference variance from image
256 of the ALOI database. (b) Noise variance estimation at the feature locations vs.
true noise variance.

4.2 Influence of Image Noise onto the Descriptor Distinctiveness

In this experiment, the distinctiveness of the NF descriptor is analyzed. Topo-
logical information from regular correspondences is not considered. In contrast
to all kinds of regular state-of-the-art descriptors, NF descriptors are directly
built from image intensity values. Thus the influence of image noise on the dis-
tinctiveness of the descriptor seems to be crucial. We now analyze the behavior
of NF towards noise. Therefore we use the center view of object 256 of the ALOI
database which shows a non-textured surface that has regular features at the
borders only (Fig. 6). This means there is no transition from non-textured to
textured during the line sampling for the descriptor. This is highly-crucial as
the NF descriptor has low variance (cf. (17)) and by this image noise has a high
impact on the matching result. We detect NF locations on the object and com-
pute the descriptor differences while adding Gaussian image noise. Using the
descriptor MSD, we compare descriptors which should match and those which
should not match (Fig. 7(a)).

It can be seen that the descriptor difference variance runs as expected: For
non-matching features it is independent from the image noise and reliably at
approximately 2, where it grows from 0 with increasing noise if the features
match. However, we have small systematic deviations from the derived model
concerning the estimation of the image noise (cf. Fig. 7(b)). Besides, the MSD
of non-matching features is slightly but significantly smaller than 2 which means
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Fig. 8. ALOI object 103 with varying illumination l1 . . . l8 viewed from camera c1

Fig. 9. Matching regular (green ellipses) and NF-features (cyan stars) of object 113
from the ALOI image database using NF-SIFT, NF-MSER, NF-HAff and NF-SURF

that they are statistically dependent. However these deviations are small and
likely to be overestimated in this experiment because of the large untextured
area. So we can deduce that NF descriptors are distinctive under the influence
of image noise, even for small changes in image contents.

4.3 Image Database

We use the series ‘Illumination Direction Collection’ from ALOI with camera
c1 in which one object is observed by a static camera during 8 different illumi-
nation conditions l1 . . . l8 (Fig. 8). Illumination l1 . . . l5 were taken at angles of
−60◦ . . . 60◦ in steps of 30◦. l6 and l7 were taken combining the side illuminations
l1 + l2 and l4 + l5 respectively. l8 is all illuminations combined.

We establish correspondences of each object illumination setting with each
other illumination setting of the same object. To measure the impact of false NF
correspondences due to false anchor point correspondences, we do not filter any
correspondence like in Section 4.1. However, we allow the correspondence cluster
filtering which is performed in SIFT, as it is an essential part of the algorithm.
We compute recall and precision values according to (18) for all illumination
pairs of the same object and average them. The results are plotted as precision
and recall matrices over the eight illumination setting in Fig. 10 and in the form
of precision and recall graphs over the angle of illumination change in Fig. 11.1

In Fig. 9 we show a comparison for the detection of all examined NF feature
combinations.

Generally two tendencies can be observed: Concerning the precision, images
with similar illumination, e.g. (l1, l6), have higher precision values for regular
features. With increasing variations of the illumination, NF outperforms reg-
ular features in precision, e.g. (l1, l5). However, NF-HAff show inferior results

1 Please note that NF recall of identical images does not necessarily have to equal to
1, as the estimation of the local motion model T may fail if there are too few suitable
anchor points available.
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(a) precision
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(b) recall
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Fig. 10. Precision (a) and recall (b) matrix for the illumination conditions l1 . . . l8,
where l1 . . . l5 are single-illuminated images and l6, l7 and l8 are illuminated with a
combinations thereof. In each square, regular (top) and NF features (bottom) are op-
posed using (starting left) SIFT, MSER, HAff and SURF. White denotes precision and
recall of 1, black a precision of 0.72 and a recall of 0.06.
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Fig. 11. Mean precision (a) and recall (b) over the angle of illumination change using
NF-SIFT, SIFT, NF-MSER, MSER, NF-HAff, HAff, NF-SURF and SURF

compared to HAff. Concerning the recall rates, NF always outperforms regular
features, where NF-SIFT is by far better than the other three NF combinations.

5 Conclusion

We derived a framework for NF-features which is complementary to every reg-
ular interest point detection approach with local descriptors. During detection,
centers of regions unsampled by a regular feature detection are determined as NF
locations. The second level matching algorithm re-locates suitable NF features
in further images according to a local transformation which is extracted from
already-established regular correspondences. The descriptor is built by sampling
lines from the non-textured NF location to the nearest regular feature locations.
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Using standard test material and enforcing high precision, we demonstrated
that the repeatability of NF-features is significantly improved towards regular
features, often by a factor of more than two. In a challenging experiment with
high variations of the illumination without outlier filtering, we also achieved
significantly better results concerning recall and precision. Thus, NF-features
are not only useful for a complete description of the image contents but also
improve recall and precision rates. For further evaluation, we provide binaries [1]
that may be combined with any type of regular features.
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