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Abstract. This paper presents an exemplar-based approach to detecting and lo-
calizing human actions, such as running, cycling, and swinging, in realistic videos
with dynamic backgrounds. We show that such activities can be compactly rep-
resented as time series of a few snapshots of human-body parts in their most dis-
criminative postures, relative to other activity classes.This enables our approach
to efficiently store multiple diverse exemplars per activity class, and quickly re-
trieve exemplars that best match the query by aligning theirshort time-series
representations. Given a set of example videos of all activity classes, we extract
multiscale regions from all their frames, and then learn a sparse dictionary of
most discriminative regions. The Viterbi algorithm is thenused to track detec-
tions of the learned codewords across frames of each video, resulting in their
compact time-series representations. Dictionary learning is cast within the large-
margin framework, wherein we study the effects ofℓ1 andℓ2 regularization on the
sparseness of the resulting dictionaries. Our experimentsdemonstrate robustness
and scalability of our approach on challenging YouTube videos.

1 Introduction

This paper is about efficient, robust, and scalable activityrecognition. Our thesis is that
certain human actions, such as cycling, diving, walking, and horseback riding, can be
compactly represented as short time series of a few still snapshots. Such a discrete ac-
tivity representation captures discriminative parts of the human body and participating
objects (e.g., racquet in playing tennis) in moments when they also assume discrimina-
tive postures. Their discriminativeness is defined relative to other human postures and
objects seen across different activity classes, so as to allow robust activity recognition.
Since there may be only a few time instances in which a few human-body parts strike
discriminative poses, the entire space-time volume of a video gets hugely compressed
by representing activities as time series. This allows us todevelop a robust and scal-
able, exemplar-based approach to activity recognition in realistic videos with dynamic
backgrounds. Numerous video exemplars per activity class can be efficiently stored as
time series for the purposes of representing diverse, natural, inter- and intra-class vari-
ations. Also, retrieval of exemplars that best match the query can be efficiently done by
aligning their short time-series representations.

Our approach consists of the following four computational steps: (1) extracting use-
ful video features, (2) learning a dictionary of discriminative features extracted from
a given set of exemplar videos, (3) representing videos as temporal sequences of the

1



in Proc. 11th European Conference on Computer Vision, Crete, Greece, 2010

learned codewords, and (4) detecting and locating activities in a query video by align-
ing the query and exemplar time series. In the following, we give an overview of our
approach, and point out our main contributions.

Feature Extraction: To represent activities, we extract hybrid features from videos,
where the hybrid consists of appearance and local motion cues. Our motivation for us-
ing static appearance features comes from the well-known capability of human percep-
tion to recognize human actions from still images of activity-characteristic body pos-
tures [6,7]. In cases when different actions (e.g., walkingand running) produce similar
static features, motion cues that we also extract will help resolve any ambiguity about
static features. Prior work also often combines local motion and static features [1–5],
since their extraction is reportedly more robust than that of other types of features, such
as 2D+t volumes, optical flow, etc. We segment each video frame by the standard hi-
erarchical meanshift algorithm, as in [8]. Meanshift regions are described by the HOG
descriptor [9], shown to be stable and discriminative undera certain amount of partial
occlusion, and changes in object pose [10]. HOG is computed using the spatial deriva-
tive of pixel intensities in the frame. HOG’s are invariant to similar camera motions
(e.g., panning) across videos, which may produce similar motion features of distinct ac-
tions. We also compute the temporal derivative of pixel intensities between two frames,
resulting in the 2D+t HOG descriptor associated with every meanshift region.

Dictionary Learning: Given a large set of 2D+t HOG’s, extracted from all exem-
plar videos, we learn a sparse dictionary of codewords, eachrepresenting the most dis-
criminative 2D+t HOG’s in the set. Since the HOG’s are anchored at meanshift regions
of video frames, the learned codewords may correspond to theentire human body, or
body part, as well as to an object taking part in the activity (e.g., horses head in horse-
back riding, or swing in swinging). Existing work typicallyclusters video features by K-
means [1,11,12], yielding codewords that may not be relevant for discriminating among
the action classes. There is very little work on dictionary leaning for activity recogni-
tion, with few exceptions [4, 13]. Their information-bottleneck formulation, however,
is intractable and requires approximation, which may not learn the optimal dictionary.
In contrast, we cast dictionary learning within the large-margin framework, and derive
an efficient, linear-complexity algorithm, with strong theoretical guarantees of small
generalization error. Another key difference from prior work is that our codewords may
represent objects defining the activity, in addition to human-body parts. This is critical
for differentiating between very similar activities in which the human body undergoes
similar motions but interacts with different objects (e.g., eating a banana vs. answer-
ing the phone). Most existing methods, however, do not account for objects that people
interact with while performing the activity. This is because they seek to crop out only
people from the videos by various means of background subtraction [14], or by apply-
ing people detectors [2,12]. Recent studies show that activity recognition may improve
when co-occurring objects in the context are identified [11]. Unlike all previous work,
we use only video labels, i.e., weak supervision, for our dictionary learning.

Time-Series Representation: We represent videos as temporal sequences of code-
words of the dictionary, learned in the previous step. Givena video, its time series
is computed by tracking candidate detections of the codewords in each frame, as il-
lustrated in Fig. 1. For this tracking, we use the Viterbi algorithm which sequentially
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Fig. 1. Compact video representation: Meanshift regions, extracted from video frames, are
matched with the codewords representing discriminative human-body parts and activity-defining
objects. Best matching candidates are tracked across the frames by the Viterbi algorithm, resulting
in a short time series of a few discriminative, still snapshots (marked red).

pursues the bast track at any given state, defined by a productof all codewords and
meanshift segments in the visited frame. The codewords carry the information about
their relative time locations in the exemplar videos from which they have been ex-
tracted. This allows the Viterbi algorithm to enforce the activity-characteristic temporal
consistency of the resulting time-series representation.Prior work also seeks to rep-
resent videos as sequences of shape-motion prototypes [12]. However, they detect the
prototypes in each frame, and thus generate long sequences of prototypes spanning all
frames. Also, their prototypes represent the entire human body, giving our part-based
codewords advantage in the presence of partial occlusions.

Recognition: Given a query video, and its time-series representation, itis aligned
with the exemplar sequences by the cyclic dynamic time warping (CDTW) [15]. The
activity label of the best aligned exemplar is transferred to the query, where their CDTW
alignment also localizes the activity’s occurrence in the space-time volume of the query.
As shown in Sec. 5, we achieve the average recognition rate of77.8% on challenging
YouTube videos, outperforming the state-of-the-art result of 71.2% from [4].

Our Contributions include: (i) Four alternative, weakly supervised methods for
learning a sparse dictionary of video features, formulatedwithin the large-margin frame-
work, usingℓ1 or ℓ2 regularizations; (ii) Proofs that the four methods converge to
their respective globally optimal solutions, subject to the four distinct objective func-
tions considered; (iii) Accounting for the co-occurrence statistics of objects and human
actions in the scene, and thus extracting discriminative objects, which participate in
the activity, along with discriminative human postures; and (iii) Robust and scalable
exemplar-based approach to activity detection and localization in videos.

In the following, Sec. 2 explains the video features we use, Sec. 3 presents the four
algorithms for dictionary learning and proofs of their convergence, Sec. 4 describes how
to extract and align the time-series representations of videos for activity recognition,
and Sec. 5 presents our experimental evaluation.
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(a) (b)

Fig. 2. (a) The meanshift regions (green) of all frames (orange) in avideo (blue) are character-
ized by the 2D+t HOG descriptors, called hybrid features as they combine static appearance and
motion cues. The 2D+t HOG of a meanshift region uses orientations of spatial and temporal
gradients of pixel intensities, extracted from 16 overlapping windows covering the region. (b)
Computing distances between in-class and out-of-class videos. (best viewed in color)

2 Feature Extraction

This section specifies appearance and local motion featuresthat we use in this paper.
Each frame is first partitioned into segments using the standard hierarchical meanshift
algorithm, as in [8]. The segments provide static appearance features, at multiple scales.
Each meanshift region is then described using a 2D+t HOG descriptor, which addition-
ally incorporates local motion cues. The 2D+t HOG extends the standard HOG [9],
which has been shown to exhibit invariance to partial occlusion and object deforma-
tions [10]. We first use the difference operators in time and space to compute the 2D+t
gradient vectors at every pixel of the meanshift region. Then, we project these 3D vec-
tors onto thex-y, x-t, andy-t planes. Next, each projection is covered by 16 overlapping
blocks, as shown Fig. 2a. From each block we extract a 36-dimensional histogram of
oriented gradients (9 bins for 4 cells within one block). By concatenating the three 36D
histograms fromx-y, x-t, andy-t planes, we obtain the 2D+t HOG with 108 dimensions.

3 Learning the Dictionary of Activity Codewords

In this section, we specify four alternative algorithms forlearning the dictionary of
discriminative activity features, and present their convergence analysis. We begin by
introducing some notation and basic definitions. Suppose that we are given a set of an-
notated exemplar videosD = {xi, yi}, wherexi = [xi1, . . . , xik, . . . ]T denotes all
2D+t HOG’s extracted from all frames of videoi, andyi is the associated label of ac-
tivity class. Note that different videos may have differenttotal numbers of features.
Our goal is to identify the most discriminative features in the entire setD, called code-
words. In this paper, we consider learning two types of dictionaries. If the codewords
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are learned so a given class is discriminated well against the other classes, we obtain
the dictionary of that class. If the codewords are learned todiscriminate well all classes,
they form the all-class dictionary.

We formulate dictionary learning within the large-margin framework. Margins play
a crucial role in the modern machine learning [17]. They measure the confidence of
a classifier when making a decision. There are two types of margins. The more com-
mon type, called sample-margin, used for example in SVMs, measures how far positive
and negative training examples are separated by the decision surface. In this paper,
we consider the other type called hypothesis-margin. It is defined per data instance,
and measures a distance between the hypothesis and the closest hypothesis that assigns
alternative label to that instance. In particular, for eachxi, we seek to maximize its dis-
tance to all out-of-class videos, called misses. At the sametime, we wish to minimize its
distance to all videos belonging to the same class, called hits. These two objectives can
be achieved by maximizing the hypothesis-margin of the one-nearest-neighbor classi-
fier (1NN). Maximizing the sample-margin of the SVM has been used for dictionary
learning in [16]. However, this formulation, is not suitable for videos, since it would
lead to a large scale optimization problem of prohibitive complexity.

To specify the hypothesis-margin of 1NN, we define an asymmetric distance be-
tween two videos,dij = d(xi, xj), as a weighted sum of distances between their best
matching features,dij = δT

ijwi. The vectorδij = [δij1, . . . , δijk, . . . ]T consists ofχ2

distances between the histograms of each 2D+t HOG descriptor, xik, and its best match-
ing descriptor inxj , δijk = minl χ

2(xik, xjl). The non-negative weights,wi ≥ 0, and
distancesδij are associated with features of the first video in the pair,xi, and thusxi,
wi, andδij have the same length. Note that the weightswi serve to indicate the rel-
evance of the corresponding features inxi for discriminating between activity classes
yi andyj . Our goal is to learnwi for all videosxi, so as to maximize the hypothesis-
margin of 1NN, and then extract video features with the highest weights to the dictio-
nary. We specify the hypothesis-margin of specificxi as

ρi = dim − dih = (δim − δih)Twi , (1)

where indexm denotes thatδim is computed with the nearest miss ofxi, and index
h denotes thatδih is computed with the nearest hit ofxi. From (1), it follows that
maximizing the hypothesis-margin of 1NN will amount to maximizing the distances
of all videos from their respective out-of-class videos, and simultaneously minimizing
the distances of all videos to their respective in-class videos. This can be formulated
using the following notation. Letw be a column vector of concatenated weightswi

for all xi ∈ D; zm be a column vector of concatenated feature distancesδim for all
xi ∈ D to their respective nearest misses; andzh be a column vector of concate-
nated feature distancesδih for all xi ∈ D to their respective nearest hits. Finally, let
z= max(0, zm−zh). Then, dictionary learning can be specified as the followinglinear
program (LP):

argmax
w

zTw, s. t. w ≥ 0, and ‖w‖ ≤ γ , (2)

whereγ is a positive constant, and‖·‖ is eitherℓ1 or ℓ2 norm. After solving (2), features
with non-zero weights will be selected as codewords in the dictionary.
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Whenw andz represent the concatenation of feature weights and distances across
all videos, the resulting dictionary will be all-class. Similarly, the dictionary of a specific
class can be derived by concatenating intow andz the appropriate values for only those
videos that belong to that class.

Note that (2) represents an extremely large optimization problem. Any naive use of
general LP solvers, such as simplex or interior point methods, would be computationally
too expensive. In the sequel, we propose four alternative algorithms to solve (2), which
are very efficient, with linear complexity in the number of input video features.

3.1 Logistic-Regression Formulation

In this subsection, we employ the logistic regression formulation to solve our large
LP problem, given by (2). Specifically, to eliminate the constraint ‖w‖ ≤ γ from (2),
we add a penalty term,λ ‖w‖, directly to the objective function, whereλ is a non-
negative input parameter. Note, however, that the objective function of (2) represents
maximization, whereas the constraint‖w‖ ≤ γ requires minimization. This can be
resolved by reformulating (2) as

argmin
w

log[1 + exp(−zTw)] + λ ‖w‖ , s. t. w ≥ 0 . (3)

Note thatλ controls the sparseness of the solution, and thus the numberof selected
codewords in the dictionary.

Eq. (3) is a constrained convex optimization problem. Due tothe non-negative con-
straint onw, it cannot be solved directly by gradient descent. To overcome this diffi-
culty, we use the following substitutionw = [v2

1 , . . . , v2
k, . . . ]T, wherevk are auxiliary

variables, andk is the index over all 2D+t HOG’s. This gives

argmin
w

log[1 + exp(−
∑

k zkv2
k] + λR(v), (4)

whereR(v) = ‖v‖
2
2 for ℓ1 regularization, orR(v) =

√

∑

k v4
k for ℓ2 regularization.

Consequently, we obtain an unconstrained optimization problem. It is straightforward
to derive the following gradient-descent solution of (4):

LR-ℓ1 : vk ← vk − η

(

λ−
exp(−

∑

k zkv2
k)

1 + exp(−
∑

k zkv2
k)

)

· vk, for ℓ1, (5)

LR-ℓ2 : vk ← vk − η

(

λ
v2

k
√

∑

k v4
k

−
exp(−

∑

k zkv2
k)

1 + exp(−
∑

k zkv2
k)

)

· vk, for ℓ2, (6)

whereη is the learning rate determined by the standard line search.Oncevk are esti-
mated, we then compute the feature relevances aswk = v2

k, k = 1, 2, . . . . The conver-
gence of this logistic-regression based algorithm is explained at the end of this section,
after we specify the other two alternative algorithms.
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3.2 Alternative LP Formulation

In practice, the update rules given by (5) and (6) have a serious limitation. In particular,
if the term

∑

k zkv2
k is large, thenexp(−

∑

k zkv2
k) drops exponentially to zero, and the

update depends only on the penalty term. To overcome this problem, we modify the LP
given by (2), as follows.

Without a loss of generality, we replace the constraint‖w‖ ≤ γ by ‖w‖ = γ,
leading to the following new LP formulation

argmax
w

zT w

‖w‖
, s. t. w ≥ 0. (7)

As in Sec. 3.1, the non-negative constraint in (7) can be reformulated by using the
following substitutionw = [v2

1 , . . . , v
2
k, . . . ]T, wherevk are auxiliary variables, andk

is the index over all video features. This gives

argmax
w

1

R(v)

∑

k

zkv2
k, w = [v2

1 , . . . , v
2
k, . . . ]T, (8)

where, as in (4),R(v)= ‖v‖
2
2 for ℓ1, or R(v)=

√
∑

k v4
k for ℓ2 regularization. It is

straightforward to derive the following gradient-ascent solution of (8):

LP -ℓ1 : vk ← vk + η

(

zk

√

R(v)−
∑

k zkv2
k

)

R(v)
· vk, for ℓ1, (9)

LP -ℓ2 : vk ← vk + η

(

zk

√

R(v)−
v2

k

R(v)

∑

k zkv2
k

)

R(v)
· vk, for ℓ2, (10)

whereη is the learning rate determined by the standard line search.Oncevk are esti-
mated, we then compute the feature relevances aswk = v2

k, k = 1, 2, . . . .

Convergence: In both LP formulations, presented in Sec. 3.1 and 3.2, we reformulate
the non-negative constraints in (3) and (7). The resulting objective functions, given by
(4) and (8), are convex and concave, respectively. Consequently, the gradient descent in
(5)–(6), and the gradient ascent in (9)–(10) converge to their respective globally optimal
solutions. The full proof that (4) is convex, and (8) is concave is given in the supple-
mental material. The proof first shows that the substitutionwk = v2

k, k = 1, 2, . . . , does
not change the concavity of the original LP formulation, given by (2). Then, we use the
classical theoretical results in convex optimization about the convexity and concavity of
a composition of two functions (f ◦ g) to prove that the logistic regression formulation
is convex, and the alternative normed objective is concave.

Complexity of both formulations presented in Sec. 3.1 and 3.2 is linear in the num-
ber of input video features. Since our features are descriptors of meanshift segments,
the total number of our features is significantly smaller than interest-point features, typ-
ically used in existing approaches to activity recognition.

After convergence, all 2D+t HOG’s from all videos inD whose weights are nonzero
are declared as codewords. Finally, the 2D+t HOG descriptorof each codeword is aug-
mented with the time stamp of a frame from which the codeword has been extracted,
normalized relative to the length of the originating video.This is used to enforce the
temporal consistency of codewords along time series representing videos.
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4 Representing Videos as Time Series of Activity Codewords

This section describes how to compute the time-series representation of a video. We
first extract multiscale meanshift regions in each video frame, and then match their
2D+t HOGs with the codewords. The standard Viterbi algorithm is applied to track the
best matches (Fig. 1), where for each frame only one best matching codeword-region
pair is selected. Tracking seeks to maximize the joint likelihood of all matches along the
Viterbi path, under the constraint that the tracked codewords along the path are locally
smooth in the 2D space, and temporally consistent. In the following, we specify the
Viterbi algorithm.

Let Ω = {ωl}l=1,2,... denote the dictionary of activity codewords, and letx(t) =

{x
(t)
k }k=1,2,... denote 2D+t HOG’s extracted from framet of videox. In each framet,

the goal of the Viterbi algorithm is to select a single, best matching pair(x(t)
k , ωl) out

of the entire product spacex(t) × Ω. The selected, unique pair(x
(t)
k , ωl) is referred to

as instantiation of codewordωl in framet, and denoted aŝω(t)
l = (x

(t)
k , ωl). Across all

frames, the goal of the Viterbi algorithm is to satisfy the temporal constraints between
the instantiated codewords{ω̂(t)

l }t=1,2,..., and produce a locally smooth trajectory in
the 2D space. Temporal consistency is enforced via a Markov chain which is informed
by the time stamps associated with codewords, as mentioned in the previous section.
To formalize the above two goals of the Viterbi algorithm, webelow first specify the
likelihood that measures the quality of matches between video features and codewords,
and then define the transition probability of the Markov chain which favors spatially
smooth and temporally consistent codeword instantiationsfrom one frame to another.

Video featurex(t)
k matches codewordωl with likelihoodP (x

(t)
k |ωl)∝e−αχ2(x

(t)
k

,ωl),
whereα = 0.01 (empirically found at equal error rate) weights theχ2 histogram dis-
tance (for equal error rate, we get ). The Markov-chain transition probability is de-

fined asP (ω̂
(t)
l |ω̂

(t−1)
j )∝e−βT|ω̂

(t)
l

−ω̂
(t−1)
j

|, whereβ = [0.1, 0.1]T (empirically found
at equal error rate), and|·| denotes the absolute difference of the corresponding spatial

and time coordinates of the instantiated codewordsω̂
(t)
l andω̂

(t−1)
j . Specifically, for

their spatial coordinates, we take the centroids of meanshift regions that got matched to
ωl andωj in framest and(t−1). For their time coordinates, we take the time stamps
thatωl andωj carry from their source exemplar videos. With these definitions, we spec-
ify the Viterbi algorithm as finding the optimal sequence of codewords so the following
Markov chain is maximized:

P (ω̂
(t)
l ) = max

ω̂
(t−1)
j , x

(t)
k

P (ω̂
(t−1)
j )P (ω̂

(t)
l |ω̂

(t−1)
j )P (x

(t)
k |ω̂

(t)
l ), (11)

whereP (ω̂
(t−1)
j ) is recursively defined. The Viterbi algorithm retrieves thebest path

across the frames (Fig. 1) with linear complexity in the number of video features.
Extracting the Compact Representation: The obtained Viterbi path is character-

ized by a sequence of likelihoodsP (x
(t)
k |ω̂

(t)
l ), t = 1, 2, . . . . This sequence has modes

and valleys, as illustrated in Fig. 1. The valleys indicate low confidence in the corre-
sponding codeword instantiations. We identify and eliminate the valleys in this likeli-
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hood sequence by the popular quick-shift mode-seeking algorithm [18]. As a result, we
obtain the compact time-series representation.

Exemplar-based Recognition: Given a query video, we use the same algorithm to
extract its time series of codewords. For recognition, we align the time series of the
query and exemplar videos. Note that the sought activity maynot start at the beginning,
or finish at the end of the query video. Therefore, the query-exemplar alignment is not
only aimed at finding the best matching exemplar, but also to localize a subsequence
of codewords, in the query time series, that represents the activity. The label of the
best aligned exemplar is taken as the activity class of the query. Also, the codewords
identified to represent the activity in the time series are back-tracked to the space-time
locations of the corresponding meanshift regions in the query video. All this results in
the simultaneous detection and localization of the activity in the query video. In this
paper, two temporal sequences of codewords are aligned by the cyclic dynamic time
warping (CDTW), presented in [15]. CDTW finds correspondences between codewords
of the two sequences by identifying the optimal path in a costmatrix of all pairwise
codeword matches. This is done by respecting the ordering ofeach input sequence. The
costs areχ2 distance between the 2D+t HOG histograms of each codeword. We use
the cyclic variant of DTW, because it efficiently identifies the optimal start and end of
the alignment path in the cost matrix, regardless of the lengths of the input sequences.
Complexity of CDTW is linear in the total number of elements in the two sequences.

5 Results

Experiments are conducted on five benchmark datasets: Weizmann activities [14], KTH
[19], UM “Gestures” [12], CMU “Crowded” videos [8], and UCF “YouTube” [4]. KTH
contains a varied set of challenges, including scale changes, variation in the speed of
activity execution, and indoor and outdoor illumination variations. In UM “Gestures”,
training videos are captured by a static, high-resolution camera, with the person stand-
ing in front of a uniform background; whereas test videos arecaptured by a moving
camera, in the presence of a background clutter, and other moving objects. The CMU
“Crowded” videos are acquired by a hand-held camera, in unconstrained environments,
with moving people or cars in the background. Each CMU video may contain several
target actions, where we identify only one. This dataset is challenging due to signifi-
cant spatial- and temporal-scale differences in how the subjects perform the actions. In
the UCF “YouTube” videos the actors interact with objects, such as a horse, bicycle,
or dog, which define the corresponding activities. This dataset is challenging due to: a
mix of steady and shaky cameras, cluttered background, low resolution, and variations
in scale, viewpoint, and illumination.

For activity recognition, we use 5 exemplars per each class from the considered
dataset. The activity class of a given query is defined by a majority voting of M, best-
aligned exemplars, where M is estimated by the leave-one-out (LOO) strategy. We re-
port the average classification accuracy at equal error rate(EER), where the accuracy
is averaged over all classes in the dataset. On all datasets,we achieve EER for input
parametersλ = 10−3, α = 0.01, andβ = [0.1, 0.1]. In the following, we present
evaluation of the individual steps of our approach.
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(a) (b) (c)

Fig. 3. (a) Average dictionary size per activity class in the UCF “YouTube” dataset as a function
of the regularization parameterλ in LR-ℓ1 andLR-ℓ2. (b) Classification accuracy at EER aver-
aged over the UCF “YouTube” classes vs. the average size of the dictionary generated byLR-ℓ1,
LR-ℓ2, LP -ℓ1, LP -ℓ2, and unsupervised K-means clustering of 2D+t HOGs. (c) Average classi-
fication accuracy on all datasets vs. the number of availableexemplar videos, when the dictionary
is learned byLP -ℓ1. (best viewed in color)

Dictionary Learning: In the following two experiments, we use the UCF “YouTube”
dataset to extract distinct dictionaries for each class (not the all-class dictionary). First,
we evaluate our sensitivity to the specific choice ofλ in LR-ℓ1 andLR-ℓ2. Fig. 3a
shows the average dictionary size as a function of inputλ values, where each dictionary
is learned on five exemplar videos per class, and the dictionary size is averaged over
all “YouTube” classes. As can be seen, for a wide range ofλ values, whenλ < 10−2,
bothLR-ℓ1 andLR-ℓ2 produce a “stable” number of codewords. Second, we evaluate
our classification accuracy at equal error rate (EER) versusthe average size of different
dictionary types produced byLR-ℓ1, LR-ℓ2, LP -ℓ1, LP -ℓ2, as well as by unsuper-
vised K-means clustering. Fig. 3b shows that all our learning methods outperform the
unsupervised clustering of video features by K-means. As can be seen in Fig. 3b, when
using all four learning methods we achieve similar classification accuracy.

Depending on a particular application, one may prefer to work with the dictionary
generated byLP -ℓ1, becauseLP -ℓ1 yields the sparsest solution with the fewest code-
words, and it does not require any input parameter (unlikeLR-ℓ1 andLR-ℓ2). There-
fore, in the following, we continue with evaluation of our approach when using only
LP -ℓ1 for dictionary learning.

Accuracy vs. Number of Exemplars: We test our performance on each dataset
versus the number of randomly selected exemplar videos per class. Classification accu-
racy is averaged over all classes within the specific dataset. Fig. 3c shows that only few
exemplars are needed to achieve high accuracy for the challenging datasets.

HOG vs. 2-D+t HOG: We test whether adding motion cues to the standard HOG in-
creases performance. Fig. 4 shows that our performance on the UCF “YouTube” videos
is better with 2D+t HOG’s than that with HOG’s, since the additional motion features
help disambiguate similar static appearance features.

Viterbi-based Codeword Tracking: We evaluate recall of our Viterbi-based detec-
tion of relevant video parts for activity recognition. To this end, we use the ground-truth
bounding boxes around actors, provided in the Weizmann, KTHand UM “Gestures”
datasets. Ideally, the Viterbi algorithm would associate codewords with those meanshift
regions that fall within the bounding boxes in every video frame. We estimate recall as a
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Fig. 4. Classification accuracy at EER when using HOG’s
and 2D+t HOG’s on the UCF “YouTube” dataset, forLP -ℓ1.

Recall
Weizmann 0.95

KTH 0.94
UM “Gestures” 0.95

Table 1. Recall of detecting rel-
evant video parts for activity
recognition by our Viterbi algo-
rithm, evaluated with respect to
the manually annotated bounding
boxes around actors, and aver-
aged over all videos and classes.

ratio between the number of true positives and the total number of frames, where a true
positive is a detected meanshift region with more than 50% ofits area falling within the
bounding box. Our recall averaged over all videos and classes is shown in Table 1.

Viterbi vs. Bag-of-Words: Tracking codewords by the Viterbi algorithm increases
complexity vs. a simpler Bag of Words (BoW) approach, which scans all meanshift
regions, and finds the best matching region-codewordpair, in each frame, irrespective of
the results in other frames. The increased complexity is justified by significant increase
in our classification accuracy vs. BoW, as shown in Fig. 5a.

Long vs. Short Time Series: After the Viterbi algorithm has identified the opti-
mal path of codewords in a video, we eliminate a number of codeword detections with
low confidence, and thus extract the short time series representation. Fig. 5a shows
significant performance gains, on the the ”YouTube” dataset, when using the short
time series vs. the long sequence of codewords instantiatedin every video frame, as
the video representation. In addition, the short time series enable nearly two-orders-of-
magnitude speed ups of recognition. On the ”YouTube” videos, recognition by aligning
long sequences (whose size is the same as the number of video frames) takes on average
302.2ms, whereas short time series are aligned in only 4.6ms. Our implementation is in
C on 2.8GHz 8GB RAM PC.

All-class dictionary vs. class-based dictionaries: Fig. 5b compares our perfor-
mance, when using a set of dictionaries learned per class vs.the all-class dictionary.
As can be seen, the all-class dictionary yields inferior performance. This is because the
all-class dictionary is typically very sparse, so that an activity class may not be even
represented by any codeword (see ‘bshooting’, ‘s juggling’ and ‘swinging’). Interest-
ingly, for a few classes, BoW with the all-class dictionary outperforms our approach
with the all-class dictionary.

Training Transfer: We evaluate whether our approach can be trained on a simple,
sanitized setting of the Weizmann videos, and then used for activity recognition on the
challenging CMU “Crowded” videos. Specifically, we use 5 exemplar videos per class
from the Weizmann dataset, and take queries from the CMU “Crowded” videos. Table 2
shows the area under the ROC curve (AUC) that we have obtainedfor LP -ℓ1 by varying
the values of input parametersα andβ. As can be seen, even when our training occurs
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(a) (b)

Fig. 5. Classification accuracy at EER of Bag-of-words, and our approach withLP -ℓ1, on the
UCF “YouTube” dataset: (a) Our approach uses short time series, and long sequence of code-
words as the video representation. The short time series enables faster and more accurate activity
recognition. (b) Our approach uses the all-class dictionary and a set of dictionaries learned per
class. The class-based dictionary learning gives better performance.

on the sanitized dataset, our AUC values, for four differentactivity classes, are better
than that of the competing approaches [3,8].

[3] [8] Ours (LP -ℓ1)
pick-up 0.58 0.47 0.60

one-hand wave0.59 0.38 0.64
jumping jack 0.43 0.22 0.45

two-hands wave0.43 0.64 0.65
Table 2. AUC for CMU “Crowded” videos

[14] [12] [4] [3] Ours (LP -ℓ1)
Weizmann 97.5 X X X 99.7

KTH X 95.7 91.8 87.8 94.2
UM “Gestures” X 95.2 X X 96.3
UCF “YouTube” X X 71.2 X 77.8

Table 3. Average classification accuracy at EER

Other Evaluation: Table 3 shows that we compare favorably with the state-of-the-
art. We also provide confusion matrices for KTH and UCF “YouTube” datasets in Fig.
5 and Fig. 5. Fig. 8 shows two examples of the learned codewords for each class of the
“YouTube” dataset. As can be seen, the codewords may represent only a body part, or
objects defining the activity (the trampoline for ‘tjumping’ or the swinging gear for
‘swinging’).

6 Conclusion

We have shown that certain human actions can be efficiently represented by short time
series of activity codewords. The codewords represent still snapshots of human body
parts in their discriminative postures, relative to other activity classes. In addition, the
codewords may represent discriminative objects that people interact with while per-
forming the activity. Typically, our time series representation compresses the original
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Fig. 6. Our confusion matrix for KTH Fig. 7. Our confusion matrix for UCF videos

Fig. 8. Examples of the learned codewords from the UCF “YouTube” dataset. The codewords are
highlighted in the frames of exemplar videos from which the codewords have been extracted.

hundreds of video frames to only about 10 key human postures.This carries many ad-
vantages for developing a robust, efficient, and scalable activity recognition system. Our
main focus has been on specifying four alternative methods for learning the dictionary
of codewords from a large set of static and local-motion video features, under only weak
supervision. We have formulated this learning as maximization of the hypothesis mar-
gin of the 1-NN classifier withℓ1 andℓ2 regularization. For the four learning methods,
we have presented strong theoretical guarantees of their convergence to the globally op-
timum solution. The methods have linear complexity in the number of video features,
and small generalization error. We have evaluated the proposed time-series representa-
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tion on the challenging problem of activity detection and localization in realistic videos
(YouTube) with dynamic, cluttered backgrounds. Our activity recognition yields better
performance when using a set of dictionaries learned per each activity class than the
all-class dictionary. Interestingly, significant classification-accuracy gains are achieved
when using the short time series of codewords vs. a long sequence of codewords (one
per each video frame) as the video representation. Our results show that, with small
computation times, we outperform the state of the art on the benchmark datasets.
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