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Abstract. This paper presents an exemplar-based approach to dgteaiinlo-
calizing human actions, such as running, cycling, and sw@gn realistic videos
with dynamic backgrounds. We show that such activities aodmpactly rep-
resented as time series of a few snapshots of human-bodyipaineir most dis-
criminative postures, relative to other activity clasSéss enables our approach
to efficiently store multiple diverse exemplars per acyivitass, and quickly re-
trieve exemplars that best match the query by aligning thleart time-series
representations. Given a set of example videos of all agtblasses, we extract
multiscale regions from all their frames, and then learn @ dictionary of
most discriminative regions. The Viterbi algorithm is thesed to track detec-
tions of the learned codewords across frames of each viésalting in their
compact time-series representations. Dictionary legrisitast within the large-
margin framework, wherein we study the effectd pnd/, regularization on the
sparseness of the resulting dictionaries. Our experintmtsnstrate robustness
and scalability of our approach on challenging YouTube eide

1 Introduction

This paper is about efficient, robust, and scalable actreitpgnition. Our thesis is that
certain human actions, such as cycling, diving, walkingl harseback riding, can be
compactly represented as short time series of a few stijgmats. Such a discrete ac-
tivity representation captures discriminative parts @f luman body and participating
objects (e.g., racquet in playing tennis) in moments whewg #tso assume discrimina-
tive postures. Their discriminativeness is defined redattivother human postures and
objects seen across different activity classes, so asdw atlbust activity recognition.
Since there may be only a few time instances in which a few mJbaaly parts strike
discriminative poses, the entire space-time volume of awigets hugely compressed
by representing activities as time series. This allows ugetelop a robust and scal-
able, exemplar-based approach to activity recognitioralistic videos with dynamic
backgrounds. Numerous video exemplars per activity clasbe efficiently stored as
time series for the purposes of representing diverse, aatater- and intra-class vari-
ations. Also, retrieval of exemplars that best match theygoen be efficiently done by
aligning their short time-series representations.

Our approach consists of the following four computatioegps: (1) extracting use-
ful video features, (2) learning a dictionary of discrintina features extracted from
a given set of exemplar videos, (3) representing videosrapdeal sequences of the
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learned codewords, and (4) detecting and locating a&sviti a query video by align-
ing the query and exemplar time series. In the following, \we @n overview of our
approach, and point out our main contributions.

FeatureExtraction: To represent activities, we extract hybrid features frodewss,
where the hybrid consists of appearance and local motios. € motivation for us-
ing static appearance features comes from the well-knoyaliikty of human percep-
tion to recognize human actions from still images of agthaharacteristic body pos-
tures [6, 7]. In cases when different actions (e.g., walldingd running) produce similar
static features, motion cues that we also extract will hefmlve any ambiguity about
static features. Prior work also often combines local mo#ad static features [1-5],
since their extraction is reportedly more robust than thatleer types of features, such
as 2D+t volumes, optical flow, etc. We segment each videodraynthe standard hi-
erarchical meanshift algorithm, as in [8]. Meanshift reg@re described by the HOG
descriptor [9], shown to be stable and discriminative uradeertain amount of partial
occlusion, and changes in object pose [10]. HOG is compwedjuhe spatial deriva-
tive of pixel intensities in the frame. HOG’s are invariaatdimilar camera motions
(e.g., panning) across videos, which may produce similarandeatures of distinct ac-
tions. We also compute the temporal derivative of pixelristées between two frames,
resulting in the 2D+t HOG descriptor associated with eveeanshift region.

Dictionary Learning: Given a large set of 2D+t HOG's, extracted from all exem-
plar videos, we learn a sparse dictionary of codewords, egmiesenting the most dis-
criminative 2D+t HOG’s in the set. Since the HOG's are aneldat meanshift regions
of video frames, the learned codewords may correspond terttiee human body, or
body part, as well as to an object taking part in the actiwatyg(, horses head in horse-
back riding, or swing in swinging). Existing work typicaltiyusters video features by K-
means [1,11,12], yielding codewords that may not be reldeaudiscriminating among
the action classes. There is very little work on dictionagning for activity recogni-
tion, with few exceptions [4, 13]. Their information-b@tleck formulation, however,
is intractable and requires approximation, which may natrighe optimal dictionary.
In contrast, we cast dictionary learning within the largargin framework, and derive
an efficient, linear-complexity algorithm, with strong tretical guarantees of small
generalization error. Another key difference from priontvs that our codewords may
represent objects defining the activity, in addition to harbady parts. This is critical
for differentiating between very similar activities in vehi the human body undergoes
similar motions but interacts with different objects (g @gting a banana vs. answer-
ing the phone). Most existing methods, however, do not atidimu objects that people
interact with while performing the activity. This is becaubey seek to crop out only
people from the videos by various means of background sttiwire[14], or by apply-
ing people detectors [2,12]. Recent studies show thatigctecognition may improve
when co-occurring objects in the context are identified [Utjlike all previous work,
we use only video labels, i.e., weak supervision, for outigin@ry learning.

Time-Series Representation: We represent videos as temporal sequences of code-
words of the dictionary, learned in the previous step. Gigevideo, its time series
is computed by tracking candidate detections of the cod#svor each frame, as il-
lustrated in Fig. 1. For this tracking, we use the Viterbicaithm which sequentially
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Fig.1. Compact video representation: Meanshift regions, exthdtom video frames, are
matched with the codewords representing discriminativednt:body parts and activity-defining
objects. Best matching candidates are tracked acrosstes$rby the Viterbi algorithm, resulting
in a short time series of a few discriminative, still snagshmarked red).

pursues the bast track at any given state, defined by a proflatt codewords and
meanshift segments in the visited frame. The codewordy thaerinformation about
their relative time locations in the exemplar videos fromichhthey have been ex-
tracted. This allows the Viterbi algorithm to enforce thé\aty-characteristic temporal
consistency of the resulting time-series representafoior work also seeks to rep-
resent videos as sequences of shape-motion prototypesH@®&kver, they detect the
prototypes in each frame, and thus generate long sequehpestatypes spanning all
frames. Also, their prototypes represent the entire hunoaly,lgiving our part-based
codewords advantage in the presence of partial occlusions.

Recognition: Given a query video, and its time-series representatias atigned
with the exemplar sequences by the cyclic dynamic time warpCDTW) [15]. The
activity label of the best aligned exemplar is transfercetthe query, where their CDTW
alignment also localizes the activity’s occurrence in tha&ce-time volume of the query.
As shown in Sec. 5, we achieve the average recognition rat&.8%6 on challenging
YouTube videos, outperforming the state-of-the-art rtiesul 1.2% from [4].

Our Contributions include: (i) Four alternative, weakly supervised methaats f
learning a sparse dictionary of video features, formulaii¢tin the large-margin frame-
work, using/; or {5 regularizations; (ii) Proofs that the four methods coneetg
their respective globally optimal solutions, subject te thur distinct objective func-
tions considered; (iii) Accounting for the co-occurrentaistics of objects and human
actions in the scene, and thus extracting discriminatijeatd, which participate in
the activity, along with discriminative human posturesg 4iii) Robust and scalable
exemplar-based approach to activity detection and lcatidia in videos.

In the following, Sec. 2 explains the video features we use, 3 presents the four
algorithms for dictionary learning and proofs of their cenyence, Sec. 4 describes how
to extract and align the time-series representations afosdor activity recognition,
and Sec. 5 presents our experimental evaluation.
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Fig. 2. () The meanshift regions (green) of all frames (orange)video (blue) are character-
ized by the 2D+t HOG descriptors, called hybrid featureshag tombine static appearance and
motion cues. The 2D+t HOG of a meanshift region uses oriemstof spatial and temporal
gradients of pixel intensities, extracted from 16 overlagpvindows covering the region. (b)
Computing distances between in-class and out-of-clagosid best viewed in color)

2 Feature Extraction

This section specifies appearance and local motion featiia¢sve use in this paper.
Each frame is first partitioned into segments using the stahlierarchical meanshift
algorithm, as in [8]. The segments provide static appea&rfaatures, at multiple scales.
Each meanshift region is then described using a 2D+t HOGrigesi; which addition-
ally incorporates local motion cues. The 2D+t HOG extenasdtandard HOG [9],
which has been shown to exhibit invariance to partial oéctusind object deforma-
tions [10]. We first use the difference operators in time guate to compute the 2D+t
gradient vectors at every pixel of the meanshift region.rl v project these 3D vec-
tors onto thex-y, x-t, andy-t planes. Next, each projection is covered by 16 overlapping
blocks, as shown Fig. 2a. From each block we extract a 36+tiimral histogram of
oriented gradients (9 bins for 4 cells within one block). Bycatenating the three 36D
histograms fronx-y, x-t, andy-t planes, we obtain the 2D+t HOG with 108 dimensions.

3 Learningthe Dictionary of Activity Codewords

In this section, we specify four alternative algorithms fearning the dictionary of
discriminative activity features, and present their cageace analysis. We begin by
introducing some notation and basic definitions. Suppcesevtl are given a set of an-
notated exemplar vided® = {x;,y;}, wherex; = [x;1,...,x,...|" denotes all
2D+t HOG's extracted from all frames of vidépandy; is the associated label of ac-
tivity class. Note that different videos may have differéotal numbers of features.
Our goal is to identify the most discriminative featurestie entire seb, called code-
words. In this paper, we consider learning two types of di@ries. If the codewords
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are learned so a given class is discriminated well agaiesbther classes, we obtain
the dictionary of that class. If the codewords are learnetidcriminate well all classes,
they form the all-class dictionary.

We formulate dictionary learning within the large-margiarhework. Margins play
a crucial role in the modern machine learning [17]. They meashe confidence of
a classifier when making a decision. There are two types ofimarThe more com-
mon type, called sample-margin, used for example in SVMssuees how far positive
and negative training examples are separated by the dedsidace. In this paper,
we consider the other type called hypothesis-margin. Itefinéd per data instance,
and measures a distance between the hypothesis and thst tiggethesis that assigns
alternative label to that instance. In particular, for eaghwe seek to maximize its dis-
tance to all out-of-class videos, called misses. At the sammes we wish to minimize its
distance to all videos belonging to the same class, callsdTFiese two objectives can
be achieved by maximizing the hypothesis-margin of the me&rest-neighbor classi-
fier (LNN). Maximizing the sample-margin of the SVM has besedifor dictionary
learning in [16]. However, this formulation, is not suitaldbr videos, since it would
lead to a large scale optimization problem of prohibitivenpdexity.

To specify the hypothesis-margin of 1NN, we define an asymimédistance be-
tween two videosd;; = d(z;, x;), as a weighted sum of distances between their best
matching features];; = &];w;. The vectom;; = [di;1,..., 04k, ...]" consists ofy
distances between the histograms of each 2D+t HOG desgcriptpand its best match-
ing descriptorine;, §;, = min (i, x;;). The non-negative weightay; > 0, and
distances);; are associated with features of the first video in the pairand thuse;,
w;, andd,;; have the same length. Note that the weigltsserve to indicate the rel-
evance of the corresponding featurescinfor discriminating between activity classes
y; andy;. Our goal is to learnw; for all videosz;, so as to maximize the hypothesis-
margin of 1NN, and then extract video features with the higleeights to the dictio-
nary. We specify the hypothesis-margin of specifjas

pi = dim — dip, = (8im — i) Tw; 1)

where indexm denotes thad;,, is computed with the nearest miss®f, and index
h denotes thab;;, is computed with the nearest hit af. From (1), it follows that
maximizing the hypothesis-margin of 1NN will amount to nrakiing the distances
of all videos from their respective out-of-class videos] amultaneously minimizing
the distances of all videos to their respective in-claseeid This can be formulated
using the following notation. Letv be a column vector of concatenated weights
for all z; € D; z,, be a column vector of concatenated feature distangggor all
x; € D to their respective nearest misses; andbe a column vector of concate-
nated feature distanceés, for all ; € D to their respective nearest hits. Finally, let
z=max(0, z,,—2z5). Then, dictionary learning can be specified as the follovimegr
program (LP):

argmax z'w, s.t.w >0, and |w| <7, (2)

w

wherey is a positive constant, anjd|| is either; or £ norm. After solving (2), features
with non-zero weights will be selected as codewords in thgatiary.
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Whenw andz represent the concatenation of feature weights and dessaaaross
all videos, the resulting dictionary will be all-class. Samly, the dictionary of a specific
class can be derived by concatenating imtandz the appropriate values for only those
videos that belong to that class.

Note that (2) represents an extremely large optimizatiobl@m. Any naive use of
general LP solvers, such as simplex or interior point metheduld be computationally
too expensive. In the sequel, we propose four alternaty@réhms to solve (2), which
are very efficient, with linear complexity in the number opirt video features.

3.1 Logistic-Regression Formulation

In this subsection, we employ the logistic regression fdation to solve our large
LP problem, given by (2). Specifically, to eliminate the doaisit ||w| < ~ from (2),
we add a penalty term) |w||, directly to the objective function, whereis a non-
negative input parameter. Note, however, that the obgdtinction of (2) represents
maximization, whereas the constraips|| < ~ requires minimization. This can be
resolved by reformulating (2) as

argmin log[l + exp(—zTw)] + A |jw||, s.t. w>0. (3)
w

Note that) controls the sparseness of the solution, and thus the nuofitssiected
codewords in the dictionary.

Eq. (3) is a constrained convex optimization problem. Dutaéonon-negative con-
straint onw, it cannot be solved directly by gradient descent. To ovethis diffi-
culty, we use the following substitutiom = [v?,...,v2,...]T, wherev, are auxiliary
variables, and is the index over all 2D+t HOG's. This gives

argmin log[l 4+ exp(— Y, 2kv7] + AR(v), 4
w

whereR(v) = |\v||§ for ¢; regularization, otR(v) = />, v} for ¢5 regularization.
Consequently, we obtain an unconstrained optimizatioblpro. It is straightforward
to derive the following gradient-descent solution of (4):

exp(— Y, 2kV}) )
LR-(; : —n{A— -V, for ¢1, (5
1 Vg < V. — 1) ( 14+ exp(— Zk zkv,%) vk 1 ( )
V2 exp(— X, 2kv})
e o k Ak Uk -vg, for e, (6
21 Vg U —1N < \/m 1+ exp(— Zk zkvi) Uk 2 ( )

wheren is the learning rate determined by the standard line se@bev, are esti-
mated, we then compute the feature relevances,as v7, k = 1,2, .... The conver-
gence of this logistic-regression based algorithm is erpthat the end of this section,
after we specify the other two alternative algorithms.
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3.2 Alternative LP Formulation

In practice, the update rules given by (5) and (6) have asefimitation. In particular,
if the term", zj,v7 is large, therxp(— ", zxv}) drops exponentially to zero, and the
update depends only on the penalty term. To overcome thidgg we modify the LP
given by (2), as follows.

Without a loss of generality, we replace the constrdiat] < ~ by |Jw| = 7,
leading to the following new LP formulation

argmax le, s.t.w > 0. (7
w [[wll
As in Sec. 3.1, the non-negative constraint in (7) can bermafitated by using the
following substitutionw = [vf,...,vZ,...]T, wherev, are auxiliary variables, ank
is the index over all video features. This gives

1 E 2 2 2 T
argmax ——— ZEVL, w = |V{y ., Vpy---| » 8
g R(’U) - kUL [1 k ] ()

where, as in (4)R(v)= ||v|\§ for ¢4, or R(v)=+/)_, vi for {5 regularization. It is
straightforward to derive the following gradient-ascesitigon of (8):

(zk\/R(v) - zkvi)

R(v)

7j2
(1 VR(0) — 7k S 50}
R(v)
wheren is the learning rate determined by the standard line se@ubev, are esti-
mated, we then compute the feature relevances.as v, k = 1,2,....

Convergence: In both LP formulations, presented in Sec. 3.1 and 3.2, warmadilate
the non-negative constraints in (3) and (7). The resultinjgative functions, given by
(4) and (8), are convex and concave, respectively. Consdlguine gradient descentin
(5)—(6), and the gradient ascent in (9)—(10) converge tio tespective globally optimal
solutions. The full proof that (4) is convex, and (8) is core# given in the supple-
mental material. The proof first shows that the substitutign= v7, k = 1,2, ..., does
not change the concavity of the original LP formulation agivoy (2). Then, we use the
classical theoretical results in convex optimization dlloe convexity and concavity of
a composition of two functionsf(c g) to prove that the logistic regression formulation
is convex, and the alternative normed objective is concave.

Complexity of both formulations presented in Sec. 3.1 and 3.2 is linedré num-
ber of input video features. Since our features are descsiuf meanshift segments,
the total number of our features is significantly smallentherest-point features, typ-
ically used in existing approaches to activity recognition

After convergence, all 2D+t HOG's from all videoslihwhose weights are nonzero
are declared as codewords. Finally, the 2D+t HOG descrggteach codeword is aug-
mented with the time stamp of a frame from which the codewasl heen extracted,
normalized relative to the length of the originating vid&ais is used to enforce the
temporal consistency of codewords along time series reptieg) videos.

LP-ly: vy« v +1n

Uk, for /4, 9

LP-ly: vy —vp+1n

Uk, for /-, (10)
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4 Representing Videos as Time Series of Activity Codewords

This section describes how to compute the time-series septation of a video. We
first extract multiscale meanshift regions in each videanaand then match their
2D+t HOGs with the codewords. The standard Viterbi algonite applied to track the
best matches (Fig. 1), where for each frame only one besthingtcodeword-region

pair is selected. Tracking seeks to maximize the jointiit@d of all matches along the
Viterbi path, under the constraint that the tracked codeéwatong the path are locally
smooth in the 2D space, and temporally consistent. In tHevigig, we specify the

Viterbi algorithm.

Let 2 = {w;};=1.2,.. denote the dictionary of activity codewords, and4&t =

{ml(:)}k:LQ-,--- denote 2D+t HOG's extracted from framef videox. In each frame,

the goal of the Viterbi algorithm is to select a single, beatehing pair(mgf), w;) out

of the entire product spacel”) x 2. The selected, unique pa('m,(:),wl) is referred to

as instantiation of codeword; in framet, and denoted asl(t) = (:cgf), wy). Across all
frames, the goal of the Viterbi algorithm is to satisfy thenperal constraints between
the instantiated codeworqsbl(t)}t:m,___, and produce a locally smooth trajectory in
the 2D space. Temporal consistency is enforced via a Markainavhich is informed
by the time stamps associated with codewords, as mentiontiek iprevious section.
To formalize the above two goals of the Viterbi algorithm, laedow first specify the
likelihood that measures the quality of matches betweeeosfdatures and codewords,
and then define the transition probability of the Markov ahahich favors spatially
smooth and temporally consistent codeword instantiatimm one frame to another.
Video featurez!” matches codeword; with likelinood P(x." lwr ) oce— X" (@ w1
wherea = 0.01 (empirically found at equal error rate) weights th# histogram dis-

tance (for equal error rate, we get ). The Markov-chain itemsprobability is de-

fined asP(d;l(t)|w§t_1))o<e*5T|"ft)*"J('Fl)‘, whereB = [0.1,0.1]" (empirically found

at equal error rate), anjd denotes the absolute difference of the correspondingadpati
and time coordinates of the instantiated codewafv{:f% and ab;tfl). Specifically, for
their spatial coordinates, we take the centroids of me#inrsigions that got matched to
w; andw; in framest and(t—1). For their time coordinates, we take the time stamps
thatw; andw; carry from their source exemplar videos. With these defingj we spec-

ify the Viterbi algorithm as finding the optimal sequence oflewords so the following
Markov chain is maximized:

P@")= max PG\ )P@ oY) Pl o), (11)

L(-1) (1)
@ , Ty,

whereP(d;f’l)) is recursively defined. The Viterbi algorithm retrieves test path
across the frames (Fig. 1) with linear complexity in the nemtif video features.
Extracting the Compact Representation: The obtained Viterbi path is character-
ized by a sequence of Iikelihood%(a:g) |obl(t)), t=1,2,.... This sequence has modes
and valleys, as illustrated in Fig. 1. The valleys indicat® tonfidence in the corre-
sponding codeword instantiations. We identify and elirtérthe valleys in this likeli-
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hood sequence by the popular quick-shift mode-seekingittigo[18]. As a result, we
obtain the compact time-series representation.

Exemplar-based Recognition: Given a query video, we use the same algorithm to
extract its time series of codewords. For recognition, wgnathe time series of the
query and exemplar videos. Note that the sought activity noagtart at the beginning,
or finish at the end of the query video. Therefore, the quagmlar alignment is not
only aimed at finding the best matching exemplar, but als@¢alize a subsequence
of codewords, in the query time series, that representsdtigitp. The label of the
best aligned exemplar is taken as the activity class of tleeygélso, the codewords
identified to represent the activity in the time series amekkaacked to the space-time
locations of the corresponding meanshift regions in theyguieleo. All this results in
the simultaneous detection and localization of the agtivitthe query video. In this
paper, two temporal sequences of codewords are alignedebgyttlic dynamic time
warping (CDTW), presented in [15]. CDTW finds correspondsizetween codewords
of the two sequences by identifying the optimal path in a coatrix of all pairwise
codeword matches. This is done by respecting the orderiegaf input sequence. The
costs arey? distance between the 2D+t HOG histograms of each codewogscusa/
the cyclic variant of DTW, because it efficiently identifiétoptimal start and end of
the alignment path in the cost matrix, regardless of thetlengf the input sequences.
Complexity of CDTW is linear in the total number of elememntghe two sequences.

5 Results

Experiments are conducted on five benchmark datasets: \&@eizactivities [14], KTH
[19], UM “Gestures” [12], CMU “Crowded” videos [8], and UCFYbuTube” [4]. KTH
contains a varied set of challenges, including scale changeiation in the speed of
activity execution, and indoor and outdoor illuminationigéions. In UM “Gestures”,
training videos are captured by a static, high-resoluteomera, with the person stand-
ing in front of a uniform background; whereas test videosaagtured by a moving
camera, in the presence of a background clutter, and otheinmobjects. The CMU
“Crowded” videos are acquired by a hand-held camera, innstcained environments,
with moving people or cars in the background. Each CMU videxy montain several
target actions, where we identify only one. This datasehallenging due to signifi-
cant spatial- and temporal-scale differences in how thgstsperform the actions. In
the UCF “YouTube” videos the actors interact with objects;hsas a horse, bicycle,
or dog, which define the corresponding activities. This skttés challenging due to: a
mix of steady and shaky cameras, cluttered background,dselution, and variations
in scale, viewpoint, and illumination.

For activity recognition, we use 5 exemplars per each class the considered
dataset. The activity class of a given query is defined by @ritgjvoting of M, best-
aligned exemplars, where M is estimated by the leave-onét@0) strategy. We re-
port the average classification accuracy at equal errof EEE®), where the accuracy
is averaged over all classes in the dataset. On all datasetachieve EER for input
parameters\ = 1073, @ = 0.01, and3 = [0.1,0.1]. In the following, we present
evaluation of the individual steps of our approach.
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Fig. 3. (a) Average dictionary size per activity class in the UCFUYabe” dataset as a function
of the regularization parametarin LR-¢; and L R-¢>. (b) Classification accuracy at EER aver-
aged over the UCF “YouTube” classes vs. the average sizedafitionary generated by R-/¢1,
LR-(2, LP-{1, LP-{>, and unsupervised K-means clustering of 2D+t HOGs. (c) &yerclassi-
fication accuracy on all datasets vs. the number of avaitd@eplar videos, when the dictionary
is learned byL P-¢; . (best viewed in color)
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Dictionary L earning: In the following two experiments, we use the UCF “YouTube”
dataset to extract distinct dictionaries for each classtfmall-class dictionary). First,
we evaluate our sensitivity to the specific choicexoin LR-¢; and LR-¢>. Fig. 3a
shows the average dictionary size as a function of inprglues, where each dictionary
is learned on five exemplar videos per class, and the diatjosiae is averaged over
all “YouTube” classes. As can be seen, for a wide rangk wdlues, whem < 1072,
both L R-¢, and L R-¢5 produce a “stable” number of codewords. Second, we evaluate
our classification accuracy at equal error rate (EER) vetsuaverage size of different
dictionary types produced by R-¢1, LR-{s, LP-¢1, LP-(5, as well as by unsuper-
vised K-means clustering. Fig. 3b shows that all our legymrethods outperform the
unsupervised clustering of video features by K-means. Adeaseen in Fig. 3b, when
using all four learning methods we achieve similar classiifio accuracy.

Depending on a particular application, one may prefer tokwdth the dictionary
generated by. P-¢;, becausd.P-/; yields the sparsest solution with the fewest code-
words, and it does not require any input parameter (unlike/; and L R-¢5). There-
fore, in the following, we continue with evaluation of ourpapach when using only
L P-¢; for dictionary learning.

Accuracy vs. Number of Exemplars: We test our performance on each dataset
versus the number of randomly selected exemplar videodass. cClassification accu-
racy is averaged over all classes within the specific datBsget3c shows that only few
exemplars are needed to achieve high accuracy for the ngaig datasets.

HOG vs. 2-D+t HOG: We test whether adding motion cues to the standard HOG in-
creases performance. Fig. 4 shows that our performancesdui@ifr “YouTube” videos
is better with 2D+t HOG's than that with HOG’s, since the dibdial motion features
help disambiguate similar static appearance features.

Viterbi-based Codewor d Tracking: We evaluate recall of our Viterbi-based detec-
tion of relevant video parts for activity recognition. Taglend, we use the ground-truth
bounding boxes around actors, provided in the Weizmann, ldmel UM “Gestures”
datasets. Ideally, the Viterbi algorithm would associagewords with those meanshift
regions that fall within the bounding boxes in every videanfie. We estimate recall as a
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ZZ W 2D+tHOG Weizmann 0.95
75 KTH 0.94
70 UM “Gestures’| 0.95
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Table 1. Recall of detecting rel-
evant video parts for activity
A r_ecognition by our_Viterbi algo-
S A rithm, evaluated with respect to
the manually annotated bounding

o S AT
Fig.4. Classification accuracy at EER when using HOG@0Xes around actors, and aver-
and 2D+t HOG's on the UCF “YouTube” dataset, foP-¢,. @ged over all videos and classes.
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ratio between the number of true positives and the total mirobframes, where a true
positive is a detected meanshift region with more than 50%s @frea falling within the
bounding box. Our recall averaged over all videos and ckissshown in Table 1.

Viterbi vs. Bag-of-Words. Tracking codewords by the Viterbi algorithm increases
complexity vs. a simpler Bag of Words (BoW) approach, whichrs all meanshift
regions, and finds the best matching region-codeword pagach frame, irrespective of
the results in other frames. The increased complexity tfied by significant increase
in our classification accuracy vs. BoW, as shown in Fig. 5a.

Long vs. Short Time Series. After the Viterbi algorithm has identified the opti-
mal path of codewords in a video, we eliminate a number of wode detections with
low confidence, and thus extract the short time series reptaton. Fig. 5a shows
significant performance gains, on the the "YouTube” datas®en using the short
time series vs. the long sequence of codewords instantiatedery video frame, as
the video representation. In addition, the short time saxi@ble nearly two-orders-of-
magnitude speed ups of recognition. On the "YouTube” videsxsognition by aligning
long sequences (whose size is the same as the number of xadeed) takes on average
302.2ms, whereas short time series are aligned in only 4 ®onsimplementation is in
Con 2.8GHz 8GB RAM PC.

All-class dictionary vs. class-based dictionaries: Fig. 5b compares our perfor-
mance, when using a set of dictionaries learned per claghesll-class dictionary.
As can be seen, the all-class dictionary yields inferiofgrenance. This is because the
all-class dictionary is typically very sparse, so that ativitg class may not be even
represented by any codeword (seestmooting’, ‘sjuggling’ and ‘swinging’). Interest-
ingly, for a few classes, BoW with the all-class dictionamtmerforms our approach
with the all-class dictionary.

Training Transfer: We evaluate whether our approach can be trained on a simple,
sanitized setting of the Weizmann videos, and then usedcfasity recognition on the
challenging CMU “Crowded” videos. Specifically, we use 5Sraydar videos per class
from the Weizmann dataset, and take queries from the CMUW@eal” videos. Table 2
shows the area under the ROC curve (AUC) that we have obtéanéd>-¢, by varying
the values of input parametersand3. As can be seen, even when our training occurs
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Fig. 5. Classification accuracy at EER of Bag-of-words, and our @gghn with L P-¢1, on the
UCF “YouTube” dataset: (a) Our approach uses short timeseand long sequence of code-
words as the video representation. The short time seridgesntaster and more accurate activity
recognition. (b) Our approach uses the all-class dictipaad a set of dictionaries learned per
class. The class-based dictionary learning gives bettéonpeance.

on the sanitized dataset, our AUC values, for four diffewetivity classes, are better
than that of the competing approaches [3, 8].

[3] | [8] |Ours LP-¢1) [14]([12]| [4] | [3] |Ours (LP-¢1)
pick-up 0.580.47 0.60 Weizmann |97.5 X | X | X 99.7
one-hand wave0.590.38 0.64 KTH X 195.791.887. 94.2
jumping jack [0.430.22, 0.45 UM “Gestures”| X [95.2 X | X 96.3
two-hands wav.430.64] 0.65 UCF “YouTube X | X |71.2 X 77.8
Table 2. AUC for CMU “Crowded” videos Table 3. Average classification accuracy at EER

Other Evaluation: Table 3 shows that we compare favorably with the state-ef-th
art. We also provide confusion matrices for KTH and UCF “Yab@&” datasets in Fig.
5 and Fig. 5. Fig. 8 shows two examples of the learned codesforceach class of the
“YouTube” dataset. As can be seen, the codewords may reyresly a body part, or
objects defining the activity (the trampoline forjttmping’ or the swinging gear for
‘swinging’).

6 Conclusion

We have shown that certain human actions can be efficierhgsented by short time
series of activity codewords. The codewords represemtss@pshots of human body
parts in their discriminative postures, relative to othetivity classes. In addition, the
codewords may represent discriminative objects that geimpéract with while per-

forming the activity. Typically, our time series represaiin compresses the original
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Fig. 6. Our confusion matrix for KTH Fig. 7. Our confusion matrix for UCF videos

b_shooting cycling diving g_swinging h_riding h_juggling

fam 7

RN ©

swinging t_swinging t_jumping v_spiking walking

Fig. 8. Examples of the learned codewords from the UCF “YouTubedsktt The codewords are
highlighted in the frames of exemplar videos from which tbdewords have been extracted.

hundreds of video frames to only about 10 key human postiites.carries many ad-
vantages for developing a robust, efficient, and scalalidtgaecognition system. Our
main focus has been on specifying four alternative methodke&rning the dictionary
of codewords from a large set of static and local-motioneidatures, under only weak
supervision. We have formulated this learning as maxiriunatf the hypothesis mar-
gin of the 1-NN classifier witl{; and/, regularization. For the four learning methods,
we have presented strong theoretical guarantees of theieocgence to the globally op-
timum solution. The methods have linear complexity in thenber of video features,
and small generalization error. We have evaluated the gexpttme-series representa-
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tion on the challenging problem of activity detection ancHlization in realistic videos
(YouTube) with dynamic, cluttered backgrounds. Our attivgcognition yields better
performance when using a set of dictionaries learned pér aetivity class than the
all-class dictionary. Interestingly, significant clagsafion-accuracy gains are achieved
when using the short time series of codewords vs. a long segua codewords (one
per each video frame) as the video representation. Ourtsestibw that, with small
computation times, we outperform the state of the art on émebmark datasets.
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