
A Discriminative Latent Model of Object

Classes and Attributes

Yang Wang and Greg Mori

School of Computing Science, Simon Fraser University, Canada
{ywang12,mori}@cs.sfu.ca

Abstract. We present a discriminatively trained model for joint mod-
elling of object class labels (e.g. “person”, “dog”, “chair”, etc.) and their
visual attributes (e.g. “has head”, “furry”, “metal”, etc.). We treat at-
tributes of an object as latent variables in our model and capture the
correlations among attributes using an undirected graphical model built
from training data. The advantage of our model is that it allows us to in-
fer object class labels using the information of both the test image itself
and its (latent) attributes. Our model unifies object class prediction and
attribute prediction in a principled framework. It is also flexible enough
to deal with different performance measurements. Our experimental re-
sults provide quantitative evidence that attributes can improve object
naming.

1 Introduction

What can we say about an object when presented with an image containing it,
such as images shown in Fig. 1? First of all, we can represent the objects by
their categories, or names (“bird” “apple” “chair”, etc). We can also describe
those objects in terms of certain properties or attributes, e.g. “has feather” for
(a), “red” for (b), “made of wood” for (c) in Fig. 1.

In the computer vision literature, most work in object recognition focuses
on the categorization task, also known as object naming, e.g. “Does this image
window contain a person?” or “Is this an image of a dog (versus cat, chair,
table, ...)?”. Some recent work [7,19] proposes to shift the goal of recognition
from naming to describing, i.e. instead of naming the object, try to infer the
properties or attributes of objects. Attributes can be parts (e.g. “has ear”),
shape (e.g. “is round”), materials (e.g. “made of metal”), color (e.g. “is red”),
etc. This attribute-centric approach to object recognition provides many new
abilities compared with the traditional naming task, e.g. when faced with an
object of a new category, we can still make certain statements (e.g. “red” “
furry” “has ear”) about it even though we cannot name it.

The concept of attributes can be traced back (at least) to the early work
on intrinsic images [1], in which an image is considered as the product of char-
acteristics (in particular, shading and reflectance) of a scene. Conceptually, we
can consider shading and reflectance as examples of semantically meaningful

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part V, LNCS 6315, pp. 155–168, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



156 Y. Wang and G. Mori

properties (or attributes) of an image. Recently there has been a surge of in-
terest in the computer vision community on learning visual attributes. Ferrari
and Zisserman [9] propose a generative model for learning simple color and tex-
ture attributes from loose annotations. Farhadi et al. [7] learn a a richer set of
attributes including parts, shape, materials, etc. Vaquero et al. [18] introduce
a video-based visual surveillance system which allows one to search based on
people’s fine-grained parts and attributes, e.g. an example could be “show me
people with bald head wearing red shirt in the video”.

The attribute-centric approach certainly has great scientific value and practi-
cal applications. Some attributes (e.g. “red”) can indeed be recognized without
considering object names, and it is possible for people to infer attributes of ob-
jects they have never seen before. But object naming is clearly still important
and useful. Consider the image in Fig. 1(a), we as humans can easily recognize
this object has the attribute “eye”, even though the “eye” corresponds to a very
tiny region in the image. Although it is not entirely clear how humans achieve
this amazing ability, it is reasonable to believe that we are not running an “eye”
detector in our brain in order to infer this attribute. More likely, we infer the
object “has eye” in conjunction with recognizing it as a bird (or at least an
animal). The issue becomes more obvious when we want to deal with attributes
that are less visually apparent. For example, we as humans can recognize the
images in Fig. 1(b,c) have the attributes “being edible” and “being able to sit
on”, respectively. But those attributes are very difficult to describe in terms of
visual appearances of the objects – we infer those attributes most likely because
we recognize the objects. In addition, the functions of objects cannot always
easily be inferred directly from their visual attributes. Consider the two images
in Fig. 1(d,e). They are similar in terms of most of their visual attributes – both
are “blue”, “made of metal”, “3D boxy”, etc. But they have completely different
functions. Those functions can be easily inferred if we recognize Fig. 1(d) as a
mailbox and Fig. 1(e) as a trash can.

(a) (b) (c) (d) (e)

Fig. 1. Why cannot we forget about object naming and only work on inferring at-
tributes? Look at the image in (a), it is very hard to infer the attribute “has eye” since
“eye” is a very tiny region. But we as humans can recognize it “has eyes” most likely
because we recognize it is a bird. Other attributes are difficult to infer from visual
information alone, e.g. “edible” for (b) and “sit on” for (c). Meanwhile, objects with
similar visual attributes, e.g. (d) and (e), can have different functions, which can be
easily inferred if we can name the objects.
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Our ultimate goal is to build recognition systems that jointly learn object classes
and attributes in a single framework. In this paper, we take the first steps toward
this goal by trying to answer the following question: can attributes help object
naming? Although conceptually the answer seems to be positive, there have only
been limited cases supporting it in special scenarios. Kumar et al. [11] show that
face verification can benefit from inferring attributes corresponding to visual ap-
pearances (gender, race, hair color, etc.) and so-called simile attributes (e.g. a
mouth that looks like Barack Obama). Attributes have also been shown to be use-
ful in solving certain non-traditional recognition tasks, e.g. when training and test
classes are disjoint [7,6,12]. However, when it comes to the traditional object nam-
ing task, there is little evidence showing the benefit of inferring attributes. The
work in [7] specifically mentions that attribute based representation does not help
significantly in the traditional naming task. This is surprising since object classes
and attributes are two closely related concepts. Attributes of an object convey a
lot of information about the object category, e.g. an object that “has leg” “has
head” “furry” should be more likely to be a dog than a car. Similarly, the name
of an object also conveys a lot of information about its possible attributes, e.g. a
dog tends to “have leg”, and is not likely to “have wing”. The work on joint learn-
ing of visual attributes and object classes by Wang and Forsyth [19] is the closest
to ours. Their work demonstrates that attribute classifiers and object classifiers
can improve the performance of each other. However, we would like to point out
that the improvement in their work mainly comes from the fact that the training
data are weakly labeled, i.e. training data are only labeled with object class labels,
but not with exact locations of objects in the image. In this case, an object classi-
fier (say “hat”) and an attribute classifier (say “red”) can help each other by trying
to agree on the same location in an image labeled as “red” and “hat”. That work
does not answer the question of whether attributes can help object naming with-
out this weakly labeled data assumption, e.g. when an image is represented by a
feature vector computed from the whole image, rather than a local patch defined
by the location of the object.

Our training data consist of images with ground-truth object class labels (e.g.
“person”, “dog”, “chair”, etc.) and attribute labels (e.g. “has torso”, “metal”,
“red”, etc.). During testing, we are given a new image without the ground-truth
attribute labels, and our goal is to predict the object class label of the test
image. We introduce a discriminative model for jointly modelling object classes
and attributes. Our model is trained in the latent SVM framework [8]. During
testing, we treat the attributes as the latent variables and try to infer the class
label of a test image.

The contributions of this paper are three-fold. Firstly and most importantly,
we propose a model clearly showing that attributes can help object naming. Our
model is also very flexible – it can be easily modified to improve upon many dif-
ferent performance measurements. Secondly, most previous work (e.g. [7,19])
assumes attributes are independent of each other. This is clearly not true.
An object that “has ear” is more likely to “has head”, and less likely to be
“made of metal”. An important question is how to model the correlations among
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attributes. We introduce the attribute relation graph, an undirected graphical
model built from training data, to capture these correlations. Thirdly, our model
can be broadly applied to address a whole class of problems which we call recogni-
tion with auxiliary labels. Those problems are characterized as classification tasks
with certain additional information provided on training data. Many problems in
computer vision can be addressed in this framework. For example, in pedestrian
detection, auxiliary labels can be the body part locations. In web image classi-
fication, auxiliary labels can be the textual information surrounding an image.
There has been work that tries to build recognition systems that make use of
those auxiliary labels, e.g. [17] for pedestrian detection and [20] for object image
classification. However, those work typically use a simple two-stage classification
process by first building a system to predict the auxiliary labels, then learning
a second system taking into account those auxiliary labels. Conceptually, it is
much more appealing to integrate these two stages in a unified framework and
learn them jointly, which is exactly what we do in this paper.

2 Model Formulation

A training example is represented as a tuple (x,h, y). Here x is the image itself.
The object class label of the image is represented by y ∈ Y, where Y is a finite
label alphabet. The attributes of the image x are denoted by a K-dimensional
vector h = (h1, h2, ..., hK), where hk ∈ Hk (k = 1, 2, ...,K) indicates the k-th
attribute of the image. We use Hk to indicate the set of possible configurations
of the k-th attribute. For example, if the k-th attribute is “2D boxy”, we will
have Hk = {0, 1}, where hk = 1 means this object is “2D boxy”, while hk = 0
means it is not. If the k-the attribute is “leg”, hk = 1 means this object “has
leg”, while hk = 0 means it does not. The datasets used in this paper only
contain binary-valued attributes, i.e. Hk = {0, 1} (k = 1, 2, ...,K). For ease of
presentation, we will simply write H instead of Hk from now on when there are
no confusions. But we emphasize that our proposed method is not limited to
binary-valued attributes and can be generalized to multi-valued or continuous-
valued attributes.

We assume there are certain dependencies between some attribute pairs
(hj , hk). For example, hj and hk might correspond to “head” and “ear”, re-
spectively. Then their values are highly correlated, since an object that “have
head” tends to “have ear” as well. We use an undirected graph G = (V , E), which
we call the attribute relation graph, to represent these dependency relations be-
tween attribute pairs. A vertex j ∈ V corresponds to the j-th attribute, and an
edge (j, k) ∈ E indicates that attributes hj and hk have a dependency. We only
consider dependencies of pairs of attributes in this paper, but it is also possible
to define higher-order dependencies involving more than two attributes. We will
describe how to obtain the graph G from training data in Sec. 5.

Given a set of N training examples {(x(n),h(n), y(n))}N
n=1, our goal is to learn

a model that can be used to assign the class label y to an unseen test image
x. Note that during testing, we do not know the ground-truth attributes h of
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the test image x. Otherwise the problem will become a standard classification
problem and can be solved using any off-the-shelf classification method.

We are interested in learning a discriminative function fw : X × Y → R

over an x image and its class label y, where w are the parameters of this func-
tion. During testing, we can use fw to predict the class label y∗ of the input
x as y∗ = argmaxy∈Y fw(x, y). Inspired by the latent SVM [8] (also called the
max-margin hidden conditional random field [21]), we assume fw(x, y) takes the
following form: fw(x, y) = maxh w�Φ(x,h, y), where Φ(x,h, y) is a feature vec-
tor depending on the image x, its attributes h and its class label y. We define
w�Φ(x,h, y) as follows:

w�Φ(x,h, y) = w�
y φ(x) +

∑

j∈V
w�

hj
ϕ(x) +

∑

j∈V
w�

y,hj
ω(x)

+
∑

(j,k)∈E
w�

j,kψ(hj , hk) +
∑

j∈V
vy,hj (1)

The model parameters w are simply the concatenation of the parameters in all
the factors, i.e. w = {whj ;wy,hj ;wj,k;wy; vy,hj}y∈Y,hj∈H,j∈V,(j,k)∈E . The details
of the potential functions in Eq. (1) are described in the following.

Object class model w�
y φ(x): This potential function represents a standard

linear model for object recognition without considering attributes. Here φ(x) ∈
R

d represents the feature vector extracted from the image x, the parameter wy

represents a template for object class y. If we ignore other potential functions in
Eq. (1) and only consider the object class model, the parameters {wy}y∈Y can
be obtained by training a standard multi-class linear SVM.

In our current implementation, rather than keeping φ(x) as a high dimensional
vector of image features, we simply represent φ(x) as the score of a pre-trained
multi-class linear SVM. In other words, we first ignore the attributes in the
training data and train a multi-class SVM from {(x(n), y(n))}N

n=1. Then we use
φ(x; y) to denote the SVM score of assigning x to class y. Note that we explicitly
put y in the notation of φ(·) to emphasize that the value depends on y. We use
φ(x; y) as the feature vector. In this case, wy is a scalar used to re-weight the
SVM score corresponding to class y. This significantly speeds up the learning
algorithm with our model. Similar tricks have been used in [3,22].

Global attribute model w�
hj
ϕ(x): This potential function is a standard linear

model trained to predict the label (1 or 0) of the j-th attribute for the image x,
without considering its object class or other attributes. The parameter whj is a
template for predicting the j-th attribute to have label hj. If we only consider this
potential function, the parameters {whj}hj∈H can be obtained via a standard
binary linear SVM trained from {(x(n), h

(n)
j )}N

n=1. Similarly, instead of keeping
ϕ(x) as a high dimensional vector of image features, we simply represent it using
a scalar ϕ(x; j, hj), which is the score of predicting the j-th attribute of x to be
hj by the pre-trained binary SVM.

Class-specific attribute model w�
y,hj

ω(x): In addition to the global attribute
model, we also define a class-specific attribute model for each object class y ∈ Y.
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Here wy,hj is a template for the j-th attribute to take the label hj if the object
class is y. If we only consider this potential function, wy,hj (hj ∈ {0, 1}) for a
fixed y can be obtained by learning a binary linear SVM from training examples
of object class y. Similarly, we represent ω(x) as a scalar ω(x; y, j, hj), which is
the score of predicting the j-th attribute to be hj by an SVM pre-trained from
examples of class y.

The motivations for this potential function are two-fold. First, as pointed out
by Farhadi et al. [7], learning an attribute classifier across object categories is
difficult. For example, it is difficult to learn a classifier to predict the attribute
“wheel” on a dataset containing cars, buses, trains. The learning algorithm might
end up learning “metallic” since most of the examples of “wheels” are surrounded
by “metallic” surfaces. Farhadi et al. [7] propose to address this issue by learn-
ing a “wheel” classifier within a category and do feature selection. More specif-
ically, they learn a “wheel” classifier from a single object category (e.g. cars).
The “wheel” classifier learned in this fashion is less likely to be confused by
“metallic”, since both positive and negative examples (i.e. cars with or without
“wheel”) in this case have “metallic” attributes. Then they can select features
that are useful for differentiating “wheel” from “non-wheel” based on the clas-
sifier trained within the car category. The disadvantage of the feature selection
approach in [7] is that it is disconnected from the model learning and requires
careful manual tuning. Our class-specific attribute model achieves a goal similar
to the feature selection strategy in [7], but in a more principled manner since
the feature selection is implicitly achieved via the model parameters returned by
the learning algorithm.

Second, the same attribute might appear differently across multiple object
classes. For example, consider the attribute “leg”. Many object classes (e.g. peo-
ple, cats) can “have leg” . But the “legs” of people and “legs” of cats can be very
different in terms of their visual appearances. If we learn a “leg” attribute classifier
by considering examples from both people and cat categories, the learning algo-
rithm might have a hard time figuring out what “legs” look like due to the appear-
ance variations. By separately learning a “leg” classifier for each object category,
the learning becomes easier since the positive examples of “legs” within each cat-
egory are similar to each other. This allows the learning algorithm to use certain
visual properties (e.g. furry-like) to learn the “leg” attribute for cats, while use
other visual properties (e.g. clothing-like) to learn the “leg” attribute for people.

One might think that the class-specific attribute model eliminates the need
for the global attribute model. If this is the case, the learning algorithm will set
whj to be zero. However, in our experiment, both whj and wy,hj have non-zero
entries, indicating these two models are complementary rather than redundant.

Attribute-attribute interaction w�
j,kψ(hj , hk): This potential function repre-

sents the dependencies between the j-th and the k-th attributes. Here ψ(hj , hk)
is a sparse binary vector of length |H| × |H| (i.e. 4 in our case, since |H| = 2)
with a 1 in one of its entries, indicating which of the four possible configurations
{(1, 1), (1, 0), (0, 1), (0, 0)} is taken by (hj , hk), e.g. ψ(1, 0) = [0, 1, 0, 0]�. The
parameter wj,k is a 4-dimensional vector representing the weights of all those
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configurations. For example, if the j-th and the k-th attributes correspond to
“ear” and “eye”. The entries of wj,k that correspond to (1,1) and (0,0) will prob-
ably tend to have large values, since “ear” and “eye” tend to appear together in
any object.

Object-attribute interaction vy,hj : This is a scalar indicating how likely the
object class being y and the j-th attribute being hj . For example, let y correspond
to the object class “people” and the j-th attribute is “torso”, then vy,1 will
probably have a large value since most “people” have “torso” (i.e. hj = 1).

3 Learning Objective

If the ground-truth attribute labels are available during both training and test-
ing, we can simply consider them as part of the input data and solve a standard
classification problem. But things become tricky when we want to take into ac-
count the attribute information on the training data, but do not want to “overly
trust” this information since we will not have it during testing. In this section,
we introduce two possible choices of learning approaches and discuss why we
choose a particular one of them.

Recall that an image-label pair (x, y) is scored by the function of the form
fw(x, y) = maxh w�Φ(x,h, y). Given the model parameter w, we need to solve
the following inference problem during testing:

h∗ = argmax
h

w�Φ(x,h, y) ∀y ∈ Y (2)

In our current implementation, we assume h forms a tree-structured model. In
this case, the inference problem in Eq. (2) can be efficiently solved via dynamic
programming or linear program relaxation [16,21].

Learning with latent attributes: Given a set of N training examples S =
{(x(n),h(n), y(n))}N

n=1, we would like to train the model parameter w that tends
to produce the correct label for an image x. If the attributes h are unobserved
during training and are treated as latent variables, a natural way to learn the
model parameters is to use the latent SVM [8,21] formulation as follows:

min
w,ξ

β||w||2 +
N∑

n=1

ξ(n)

s.t.max
h

w�Φ(x(n),h, y(n)) − max
h

w�Φ(x(n),h, y) ≥ Δ(y, y(n)) − ξ(n), ∀n, ∀y(3)

where β is the trade-off parameter controlling the amount of regularization, and
ξ(n) is the slack variable for the n-th training example to handle the case of soft
margin, Δ(y, y(n)) is a loss function indicating the cost of misclassifying y(n) as
y. In standard multi-class classification problems, we typically use the 0-1 loss
Δ0/1 defined as:

Δ0/1(y, y(n)) =
{

1 if y �= y(n)

0 otherwise
(4)
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Learning with observed attributes: Now since we do observe the ground-
truth attributes h(n) on the training data, one might think a better choice would
be to fix those values for y(n) rather than maximizing over them, as follows:

min
w,ξ

β||w||2 +
N∑

n=1

ξ(n)

s.t.w�Φ(x(n),h(n), y(n)) − max
h

w�Φ(x(n),h, y) ≥ Δ(y, y(n)) − ξ(n), ∀n, ∀y (5)

The two formulations Eq. (3) and Eq. (5) are related as follows. First, let us
define ĥ(n) as ĥ(n) = arg maxh w�Φ(x(n),h, y(n)). Then it is easy to show that
Eq. (3) is a non-convex optimization, while Eq. (5) is convex. In particular,
Eq. (5) provides a convex upper-bound on Eq. (3). The bound is tight if ĥ(n)

and h(n) are identical for ∀n.

Discussion: Even though Eq. (5) provides a surrogate of optimizing Eq. (3) as
its upper bound, our initial attempt of using the formulation in Eq. (5) suggests
that it does not work as well as that in Eq. (3). We believe the reason is the
optimization problem in Eq. (5) assumes that we will have access to the ground-
truth attributes during testing. So the objective being optimized in Eq. (5) does
not truthfully mimic the situation at run-time. This will not be an issue if the
bound provided by Eq. (5) is tight. Unfortunately, having a tight bound means
we need to set the parameters w to almost perfectly predict h given (x(n), y(n)),
which is obviously difficult.

This might be surprising given the fact that the formulation in Eq. (3) seems
to ignore some information (i.e. ground-truth attribute labels) during training.
At first glance, this argument seems to be reasonable, since Eq. (3) does not
require the ground-truth attributes h(n) at all. But we would like to argue that
this is not the case. The information provided by the ground-truth attributes on
training data has been implicitly injected into the feature vectors ϕ(x) and ω(x)
defined in the global attribute model and class-specific attribute model (see the
descriptions in Sec. 2), since ϕ(x) and ω(x) are vectors of SVM scores. Those
scores are obtained from SVM classifiers trained using the ground-truth attribute
labels. So implicitly, Eq. (3) already makes use of the information of the ground-
truth attributes from the training data. In addition, Eq. (3) effectively models
the uncertainty caused by the fact that we do not know the attributes during
testing and it is difficult to correctly predict them. So in summary, we choose
the learning with latent attributes (i.e. non-convex version) formulated in
Eq. (3) as our learning objective. But we would like to emphasize that the convex
version in Eq. (5) is also a reasonable learning objective. In fact, it has been
successfully applied in other applications [3]. We leave the further theoretical
and empirical studies of these two different formulations as future work.

4 Non-convex Cutting Plane Training

The optimization problem in Eq. (3) can be solved in many different ways.
In our implementation, we adopt a non-convex cutting plane method proposed
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in [4] due to its ease of use. First, it is easy to shown that Eq. (3) is equivalent
to minw L(w) = β||w||2 +

∑N
n=1R

n(w) where Rn(w) is a hinge loss function
defined as:

Rn(w) = max
y

(
Δ(y, y(n)) + max

h
w�Φ(x(n),h, y)

)
− max

h
w�Φ(x(n),h, y(n))(6)

The non-convex cutting plane method in [4] aims to iteratively build an in-
creasingly accurate piecewise quadratic approximation of L(w) based on its
sub-gradient ∂wL(w). The key issue here is how to compute the sub-gradient
∂wL(w). Let us define:

h(n)
y = arg max

h
w�Φ(x(n),h, y) ∀n, ∀y ∈ Y

y∗(n) = argmax
y

(
Δ(y, y(n)) + w�Φ(x(n),h(n)

y , y)
)

(7)

As mentioned in Sec. 2, the inference problem in Eq. (7) can be efficiently solved
if the attribute relation graph forms a tree. It is easy to show a sub-gradient
∂wL(w) can be calculated as follows:

∂wL(w) = 2β · w +
N∑

n=1

Φ(x(n),h(n)

y∗(n) , y
∗(n)) −

N∑

n=1

Φ(x(n),h(n)

y(n) , y
(n)) (8)

Given the sub-gradient ∂wL(w) computed according to Eq. (8), we can mini-
mize L(w) using the method in [4]. In order to extend the algorithm to handle
more general scenarios involving multi-valued or continuous-valued attributes,
we can simply modify the maximization over h in Eq. (6,7) accordingly. For
example, arg maxh will be replaced by some continuous optimization in the case
of continuous attributes.

5 Attribute Relation Graph

We now describe how to build the attribute relation graph G = {V , E}. In order
to keep the inference problem in Eq. (2) tractable, we will assume G is a tree-
structured graph. Our approach is inspired by the Chow-Liu algorithm [2] for
learning Bayesian network structures.

A vertex j ∈ V corresponds to the j-th attribute. An edge (j, k) ∈ E means
the j-th and the k-th attributes have dependencies. In practice, the dependencies
between certain attribute pairs might be weaker than others, i.e. the value of one
attribute does not provide much information about the value of the other one.
We can build a graph that only contains edges corresponding to those strong de-
pendencies. The graph G could be built manually by human experts. Instead, we
adopt an automatic process to build G by examining the co-occurrence statistics
of attributes in the training data. First, we measure the amount of dependency
between the j-th and the k-th attributes using the normalized mutual infor-
mation defined as NormMI(j, k) = MI(j,k)

min{H(j),H(k)} , where MI(j, k) is the mutual
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information between the j-th and the k-th attributes, and H(j) is the entropy
of the j-th attribute. Both MI(j, k) and H(j) can be easily calculated using the
empirical distributions p̃(hj), p̃(hk) and p̃(hj , hk) estimated from the training
data.

A large NormMI(j, k) means a strong interaction between the j-th and the
k-th attributes. We assign a weight NormMI(j, k) to the connection (j, k), then
run a maximum spanning tree algorithm to find the edges E to be included
in the attribute relation graph G. Similar ideas have been used in [13] to find
correlations between video annotations. The attribute relation graph with 64
attributes built from our training data is shown in Fig. 2.
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Fig. 2. Visualization of the attribute relation graph learned from the training data
from the a-Pascal dataset

6 Other Loss Functions

This paper mainly deals with multi-class classification problems, where the per-
formance of an algorithm is typically measured by its overall accuracy. It turns
out we can modify the learning approach in Sec. 3 to directly optimize other
performance measurements. In this section, we show how to adapt the learning
objective so it optimizes a more sensible measurement for problems involving
highly skewed class distributions.

First we need a new interpretation of Eq. (3). From Eq. (3), it is easy to
show ξ(n) ≥ Δ(y∗(n), y(n)), where y∗(n) = argmaxy fw(xn, y) is the predicted
class label of x by the model fw. So ξ(n) can be interpreted as an upper bound
of the loss incurred on x(n) by the model. The cumulative loss on the whole
training data is then upper bounded by

∑N
n=1 ξ

(n). In the case of 0-1 loss, the
cumulative loss is exactly the number of training examples incorrectly classified
by the model, which is directly related to the overall training error. So we can
interpret Eq. (3) as minimizing (an upper bound of) the overall training error,
with a regularization term β||w||2.

If the distribution of the classes is highly skewed, say 90% of the data are of a
particular class, the overall accuracy is not an appropriate metric for measuring
the performance of an algorithm. A better performance measure is the mean per-
class accuracy defined as follows. Let npq (p, q ∈ Y) be the number of examples
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in class p being classified as class q. Define mp =
∑

q npq, i.e. mp is the number
of examples with class p. Then the mean per-class accuracy is calculated as
1/|Y| ×

(∑|Y|
p=1 npp/mp

)
.

We can define the following new loss function that properly adjust the loss
according to the distribution of the classes on the training data:

Δnew(y, y(n)) =
{ 1

mp
if y �= y(n) and y(n) = p

0 otherwise
(9)

It is easy to verify that
∑N

n=1Δnew(y∗(n), y(n)) directly corresponds to the mean
per-class accuracy on the training data. The optimization in Eq. (3) with Δnew

will try to directly maximize the mean per-class accuracy, instead of the overall
accuracy. This learning algorithm with Δnew is very similar to that with Δ0/1.
All we need to do is use Δnew in Eq. (3).

Our learning approach can also be extended for detection tasks [8]. In that
case, we can adapt our algorithm to directly optimize other metrics more appro-
priate for detections (e.g. F-measure, area under ROC curve, or the 50% over-
lapping criterion in Pascal VOC challenge [5]) using the technique in [10,15].
We omit the details due to space constraints. The flexibility of optimizing dif-
ferent performance measurements is an important advantage of the max-margin
learning method compared with other alternatives, e.g. the hidden conditional
random fields [14].

7 Experiments

We test our algorithm on two datasets (called a-Pascal and a-Yahoo) intro-
duced in [7]. The first dataset (a-Pascal) contains 6340 training images and 6355
test images collected from Pascal VOC 2008 challenge. Each image is assigned
one of the 20 object class labels: people, bird, cat, cow, dog, horse, sheep, aero-
plane, bicycle, boat, bus, car, motorbike, train, bottle, chair, dining table, potted
plant, sofa, and TV/monitor. Each image also has 64 binary attribute labels, e.g.
“2D boxy”, “has hair”,“shiny”, etc. The second dataset (a-Yahoo) is collected
for 12 object categories from Yahoo images. Each image in a-Yahoo is described
by the same set of 64 attributes. But the object class labels in a-Yahoo are
different from those in a-Pascal. Object categories in a-Yahoo are: wolf, zebra,
goat, donkey, monkey, statue of people, centaur, bag, building, jet ski, carriage,
and mug.

We follow the experiment setup in [7] as close as possible. However, there is
one caveat. These two datasets are collected to study the problem of attribute
prediction, not object class prediction. Farhadi et al. [7] use the training images
in a-Pascal to learn their model, and test on both the test images in a-Pascal and
images in a-Yahoo. We are interested in the problem of object class prediction, so
we cannot use the model trained on a-Pascal to predict the class labels for images
in a-Yahoo, since they have different object categories. Instead, we randomly
split a-Yahoo dataset into equal training/testing sets, so we can train a model
on a-Yahoo training set and test on a-Yahoo test set.
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We use the training images of a-Pascal to build the attribute relation graph
using the method in Sec. 5. The graph is shown in Fig. 2. We use the exact
same graph in the experiments on the a-Yahoo dataset. In order to do a fair
comparison with [7], we use exactly the same image features (called base feature
in [7]) in their work. Each image is represented as a 9751-dimensional feature
vector extracted from information on color, texture, visual words, and edges.
Note that since the image features are extracted from the whole image, we have
essentially eliminated the weakly labeled data assumption in [19].

Figure 3 (left) shows the confusion matrix of our model trained with Δ0/1

on the a-Pascal dataset. Table 1 summarizes our results compared with other
baseline methods. Since this dataset is heavily biased toward “people” category,
we report both overall and mean per class accuracies. Here we show the results
of our approach with Δ0/1 and Δnew. The baseline algorithm is to train an SVM
classifier based on the base features. To make a fair comparison, we also report
results of SVM with Δ0/1 and Δnew. We also list the result of the baseline algo-
rithm taken from [7] and the best reported result in [7]. The best reported result
in [7] is obtained by performing sophisticated feature selection and extracting
more semantic attributes. We can see that both of our models outperform the
baseline algorithms. In particular, the mean per class accuracies of our models
are significantly better. It is also interesting to notice that models (both our
approach and SVMs) trained with Δnew achieve lower overall accuracies than
Δ0/1, but higher mean per class accuracies. This is exactly what we would ex-
pect, since the former optimizes an objective directly tied to the mean per class
accuracy, while the latter optimizes one directly tied to the overall accuracy.
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Fig. 3. Confusion matrices of the classification result of our approach with Δ0/1 on the
a-Pascal (left) and a-Yahoo (right) datasets. Horizontal rows are ground truths, and
vertical columns are predictions. Each row is normalized to sum to 1. The mean per
class accuracy is calculated by averaging the main diagonal of this matrix. Dark cells
correspond to high values.

The results on a-Yahoo are summarized in Table 2. Here we compare with
baseline SVM classifiers using the base features. Farhadi et al. [7] did not perform
object category prediction on this dataset, so we cannot compare with them. On
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this dataset, the performances of using Δ0/1 and Δnew are relatively similar.
We believe it is because this dataset is not heavily biased toward any particular
class. So optimizing the overall accuracy is not very different from optimizing the
mean per-class accuracy. But the results still show the benefits of attributes for
object classification. Figure 3(right) shows the confusion matrix of our approach
trained with Δ0/1 on this dataset.

Table 1. Results on the a-Pascal dataset. We report both overall and mean per class
accuracies, due to the fact that this dataset is heavily biased toward “people” category

method overall mean per-class

Our approach with Δ0/1 62.16 46.25
Our approach with Δnew 59.15 50.84

SVM with Δ0/1 58.77 38.52
SVM with Δnew 53.74 44.04

[7] (base features+SVM) 58.5 34.3

[7] (best result) 59.4 37.7

Table 2. Results on the a-Yahoo dataset. Similarly, we report both overall and mean
per class accuracies

method overall mean per-class

Our approach with Δ0/1 78.67 71.45
Our approach with Δnew 79.88 73.31

SVM with Δ0/1 74.43 65.96
SVM with Δnew 74.51 66.74

8 Conclusion

We have presented a discriminatively trained latent model for joint modelling of
object classes and their visual attributes. Different from previous work [7,19], our
model encapsulates the correlations among different attributes via the attribute
relation graph built from training data and directly optimize the classification
accuracy. Our model is also flexible enough to be easily modified according to
different performance measurements. Our experimental results clearly demon-
strate that object naming can benefit from inferring attributes of objects. Our
work also provides a rather general way of solving many other classification tasks
involving auxiliary labels. We have successfully applied a similar technique to
recogize human actions from still images by considering the human poses as
auxiliary labels [22].
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