
A Model of Independence and Overlap

for Transactions on Database Schemata

Stephen J. Hegner

Ume̊a University, Department of Computing Science
SE-901 87 Ume̊a, Sweden

hegner@cs.umu.se http://www.cs.umu.se/~hegner

Abstract. Traditional models of support for concurrent transactions in-
variably rely upon a notion of serializability, which involves not only com-
plex scheduling, but also primitives (such as locks) for requiring transac-
tions to wait, as well for aborting a transaction and forcing it to re-run.
For batch transactions, this approach is often the most reasonable. On
the other hand, for interactive transactions, only a very limited amount
of waiting and aborting is tolerable, and so minimizing their occurrence,
even at the cost of increased analysis of the transactions themselves, is
warranted. In this work, a systematic study of independence for trans-
actions, without any explicit serialization, is initiated. Each transaction
operates on a view of the main schema, and each such view is partitioned
into a write region and a read-only region. For a set of transactions to
run concurrently, their views may overlap only on their read-only regions.
These regions need not be specified explicitly; rather, they are defined
naturally using a component-based model of the main schema. Further-
more, when two transactions do conflict, because their views overlap on
write regions, the precise point of conflict is immediately identified. To
illustrate the utility of the framework, the case of relational schemata
governed by the most common types of constraints in practice — func-
tional and foreign-key dependencies — is developed in detail.

1 Introduction

Support for concurrent transactions has long been a crucial feature of database-
management systems. Central to all approaches is a notion of conflict. Typically,
the database is modelled as a set X = {x1, x2, . . . , xn} of data objects, each
of which may be read and modified by transactions. Two transactions are in
potential conflict if they operate on the same data object in certain ways. In
the case of a potential conflict, the standard criterion for admissibility is that
the transactions involved be interleaved in such a way that the the result is
equivalent to that obtained were they not interleaved; so-called serializability [3,
Ch. 22] [15, Ch. 2]. For enforcement, the scheduler may require a transaction to
wait (e.g., via locking) for a resource which is held by another transaction, and
in the worst case it may require a transaction to abort and re-run.

In recent years, the need to support interactive transactions has grown enor-
mously. With humans in the loop, techniques which impose long waits (such as

Final submission: 20100613 ADBIS2010 page 1



locking) are clearly undesirable, if not outright unacceptable. Therefore, such
actions must be used sparingly, if at all. Of course, there is no magical way
to avoid conflict of concurrent operations. On the other hand, with interactive
transactions, additional overhead of a few milliseconds or even a few seconds
is a reasonable tradeoff for reduced delays and aborts, so it is realistic to work
with a more complex model of data objects, providing a finer analysis of how the
operations of distinct transactions interact and resulting in fewer conflicts and a
better model of identifying those conflicts which do occur. The goal of this work
is to provide such a model. The basic idea is that data objects are not just sets
of tuples, but rather are defined by objects which are structured views. Each
such view-object has a number of sub-views which define a read-only region.
Two objects can never entail a conflict of transactions if those objects overlap at
most on their read-only regions. There is furthermore a calculus of combination
of these objects which creates larger objects. If all objects which contain a given
read-only region are combined, then that region becomes writable. The formal
model is based database schema components, as developed in [8]. As such, it dis-
tinguishes itself from other work on similar topics, such as [18] and [17], which
focus more on transaction primitives. On the other hand, it also distinguishes
itself from semantic approaches, such as [12], in which increased concurrency is
obtained by modelling the the data objects as abstract data types with explicitly
defined operations. In the work reported here, the data objects have no structure
beyond the definitions of write and read-only regions.

In describing the work in this paper, the term claim, rather than lock, will
be used to describe a data object which has been assigned to a transaction.
The reason is that this paper is not about locking or serialization, it is rather
about modelling independence and conflict. How the latter is prevented or re-
solved is not the focus. Locking is one way to prevent conflict, but solutions
which involve negotiation, for example, may also be appropriate in the context
of interactive transactions. Before proceeding to the development of the main
ideas, it is useful to illustrate the basic idea via a running example, which will
also be used in other parts of the paper. The relational schema E0 has the three
relations and integrity constraints identified in Fig. 1. The keys are underlined,

Employee(EmpID, Name, Salary, Dept, Area, Level)

Department(DptID, Mgr, Location)

Mentor(Area, Level, MntID)
︸ ︷︷ ︸

︸ ︷︷ ︸

MntID → Area

Fig. 1. Diagrammatic representation of the running example E0

Final submission: 20100613 ADBIS2010 page 2



and foreign keys are indicated by the arrows from the foreign key to the associ-
ated primary key. Thus, Department[Mgr] ⊆ Employee[EmpID], Mentor[MntID] ⊆
Employee[EmpID], and Employee[Area, Level] ⊆ Mentor[Area, Level]. The func-
tional dependency MntID → Area is shown explicitly because it is not a key
constraint. All relations are in 3NF (third normal form). The relation Mentor,
constrained by both of the FDs (functional dependencies) {Area, Level} → MntID

and MntID → Area, is a classical example of a relation which cannot be decom-
posed further into BCNF (so that the only FDs are key dependencies) while
retaining a cover of the governing dependencies [4, Sec. 10.5].

In most approaches to defining data objects for transactions, even those
which forward using so-called predicate locks such as [5] and [14], the data
objects always return a set of tuples from a relation. However, it is advanta-
geous, and also a natural feature of the theory developed here, to allow claim
sets to be defined by views, since two transactions may be able to update dif-
ferent fields of the same tuple. Consider two simple transactions. T1 is to give
a 5% raise to each employee in the Research department, and T2 is to change
the names of employees in the set NSet (because they married, say). It is clear
that these two operations may be carried out concurrently, even though they
may operate on the same tuples (in the case that NSet contains employees who
work in the Research department). Formally, T1 operates on the view defined by
σDept=Research〈Employee[EmpID, Salary,Dept]〉; i.e., the selection to the Research
department of the projection Employee[EmpID, Salary], while T2 operates on the
view defined by σName=NSet〈Employee[EmpID,Name]〉. These two data objects
overlap on their read claims, but not on their write claims. Specifically, the
write claim of T1 involves only the values of the Salary field, while that for T2

involves only the name field. Their read claims overlap on the EmpIDs of their
common tuples. Since neither transaction may alter these EmpIDs, they may
be shared. More complex operation on this example schema and others will be
considered in that which follows.

The remainder of the paper is composed of two main sections. In Section
2, the formal model is developed, independently of any specific data model. In
Section 3, these ideas are applied to the relational model, constrained by FDs and
foreign-key dependencies (FKDs). The basic components identified via vertical
decomposition (i.e., projections) are augmented with a further decomposition
into horizontal components, defined by selection. Finally, Section 4 provides a
summary and indication of possible further directions.

2 Component-Based Independent Updates

In this section, the fundamental ideas of the model for complex update objects
for transactions are developed. As they do not depend upon any particular data
model, they are developed within a general framework of set-based schemata.
The basic definitions of schema, morphism, view, complement, and the like par-
allel those developed in [6], to which the reader is referred for details. A summary
of some of these ideas may be found in [7, Sum. 2.1] as well. The basic ideas for

Final submission: 20100613 ADBIS2010 page 3



the component-based concepts are based upon those in [8]. The relational model
will nevertheless be used for some examples. Because it is so widely known, the
standard notation and terminology surrounding it, as may be found in textbooks
such as [4] and [13], will not be reviewed but rather assumed.

Definition 2.1 (Database schemata, views, and updates). A set-based

database schema D is one for which a finite set LDB(D) of legal database

states is given. In the relational model, LDB(D) is the set of states which
satisfy the integrity constraints of the schema. A morphism f : D1 → D2 of
set-based schemata is given by a function LDB(f) : LDB(D1) → LDB(D2).
Since no confusion can result, the qualifier LDB will usually be dropped; i.e.,
f : LDB(D1) → LDB(D2). For the rest of this section, unless stated specifically
to the contrary, the term database schema will mean set-based database schema.

A view of the database schema D is a pair Γ = (V, γ) in which V is a
database schema and γ : D → V is a database morphism for which the un-
derlying function γ : LDB(D) → LDB(V) is surjective. The surjectivity en-
sures that every state of the view schema V is the image of some state of the
main schema D. The equivalence relation Congr(Γ ) = {(M1,M2) ∈ LDB(D) ×
LDB(D) | γ(M1) = γ(M2)} is called the congruence of Γ . If Γ1 = (V1, γ1) and
Γ2 = (V2, γ2) are views with Congr(Γ1) ⊆ Congr(Γ2), then Γ2 may be thought of
as a smaller view than Γ1, in that Γ1 preserves more information about the state
of D than does Γ2. The special notation Γ2 ⊑D Γ1 will be used to indicate that
Congr(Γ1) ⊆ Congr(Γ2). To make this idea more precise, given that Γ2 ⊑D Γ1,
define the function λ〈Γ1, Γ2〉 : V1 → V2 by N 7→ γ1(M) for any M ∈ γ−1

1 (N).
This function is well defined, since if M1,M2 ∈ γ−1

1 (N), then γ2(M1) = γ2(M2),
owing to the fact that Congr(Γ1) ⊆ Congr(Γ2). Furthermore, Γ2 may be regarded
as a view Λ(Γ1, Γ2) = (V2, λ〈Γ1, Γ2〉) of V1. As a concrete example, let E1 be
the relational schema with the single relation schema R[ABC], constrained by
the functional dependencies (FDs) A → C and B → C. Let ΠE1

AB = (E1AB
, πE1

AB)
be the view which defines the projection of R[ABC] onto AB; the single relation
symbol of E1AB

is R[AB]. Similarly, let ΠE1

B = (E1B , π
E1

B ) be the view which
defines the projection of R[ABC] onto B; the single relation symbol of E1B is

R[B]. The function λ〈ΠE1

AB , Π
E1

B 〉 is just the projection πEAB1

B of R[AB] onto

R[B], with the relative view Π
E1AB

B = (E1B , π
EAB1

B ).

It is also important to note that each equivalence relation r ⊆ LDB(D) ×
LDB(D) defines a set-based view Γ[r] = (V[r], γ[r]) with LDB(V[r]) = LDB(D)/r,
the blocks of the equivalence relation r, and with γ[r] : M 7→ {M ′ | r(M,M ′)}.
Indeed, the congruence of a set-based view Γ = (V, γ) characterizes it up to a
renaming of the elements of LDB(V). More formally, a morphism h : Γ1 → Γ2

of views is given by a morphism h : V1 → V2 on the underlying schemata with
the property that h◦γ1 = γ2. In the case of set-based views, h is bijective (hence
an isomorphism) iff Congr(Γ1) = Congr(Γ2).

The zero view on D, denoted ZViewD , is a view whose congruence is
LDB(D) × LDB(D). Thus, its schema has only one state, and so it conveys
no information about the state of the main schema. Dually, the identity view

Final submission: 20100613 ADBIS2010 page 4



IdViewD = (D, IdMorD) on D is the view which is the identity on LDB(D).
Each will be useful in certain constructions.

The join of two set-based views Γ1 and Γ2 is the set-based view (unique up to
isomorphism) whose congruence is Congr(Γ1)∩Congr(Γ2). It is denoted Γ1 ⊔Γ2.
In the case of relational views, the join may be constructed explicitly by taking
the view schema to be the (disjoint) union of the schemata of the two views.
See [9, Def. 4.3] for details. Since the join is associative, the definition extends
naturally to an arbitrary finite set. The join of a finite set S = {Γ1, . . . , Γn} of
views is denoted Γ1 ⊔ . . . ⊔ Γn, or

⊔n
i=1 Γi, or just

⊔
S.

An update on the schema D is a pair (M1,M2) ∈ LDB(D) × LDB(D), with
M1 the old state and M2 the new state. The set of all updates on D is denoted
Updates(D). Let u = (N1, N2) ∈ Updates(V) be an update on the view schema
V, and let M1 ∈ LDB(D) with γ(M1) = N1. A reflection (or translation) of the
view update u to D relative to M1 is an update u′ = (M1,M2) on D with the
property that γ(M2) = N2.

The update (M1,M2) ∈ Updates(D) is constant on Γ if γ(M1) = γ(M2).

Notation 2.2. Throughout this section, unless specifically stated to the con-
trary, D will be taken to be a set-based database schema. Furthermore, Γ =
(V, γ), as well as Γx = (Vx, γx) for any subscript x, will be taken to be a
set-based view over D.

If Ex is a relational schema with single relation R[U] for some set U of
attributes, and W ⊆ U, then ΠEx

W
= (ExW

, πEx

W
) is the projection view on W

whose relation symbol is denoted by R[W].

Definition 2.3 (Complementary sets and pairwise definability). Let
C = {Γ1, Γ2, . . . , Γn} be a finite set of views of D. Call C a complementary set

if
⊔N

i=1 Γi = IdViewD . If n = 2, C is also called a complementary pair. The
decomposition mapping for C is γ1 × . . . × γk : LDB(D) → LDB(V1) × . . . ×
LDB(Vk), given on elements by M 7→ (γ1(M), . . . , γk(M)). It is immediate that
u is a complementary set iff γ1× . . .×γk is injective. Thus, a complementary set
of views defines a way to recover the state of the main schema from the combined
states of the views. In classical terms, it defines a lossless decomposition.

Think of C as representing the set X of data objects in the concurrency
model, as identified in Section 1. A transaction T wishes to effect an update u
which involves some subset ST ⊆ C; formally, u is specified as an update on the
schema of

⊔
ST . Ideally, other transactions could then be allowed to update the

views not in ST . Unfortunately, for most realistic schemata, it is not possible
to find a useful set C of views whose members are independent in the sense
that each may be updated without affecting the states of the others. Rather,
the elements of such a set of views typically overlap, and the updates which are
permitted must respect that overlap. The necessary additional condition is found
in a classical result in the theory of database decomposition. In [2], a number
of “desirable” aspects of universal relational schemata are presented. One of
these is pairwise definability. Let U be a finite set of attributes, and consider
EU , as defined in Notation 2.2, constrained by some set F of dependencies. Let

Final submission: 20100613 ADBIS2010 page 5



Z = {Π
EU

Ui
| 1 ≤ i ≤ k}. be a finite set of projections of EU and assume that

Z is a complementary set of views. Call a sequence S = 〈M1,M2, . . . ,Mk〉 with
Mi ∈ LDB(EUi

), 1 ≤ i ≤ k, compatible for Z if there is an M ∈ LDB(EU) with

the property that π
EU

Ui
(M) = Mi for 1 ≤ i ≤ n, and call S pairwise compatible for

Z if whenever Ui ∩Uj 6= ∅, then π
EUi

Ui∩Uj
(Mi) = π

EUj

Ui∩Uj
(Mj). Call Z pairwise

definable if every pairwise compatible set for Z is compatible for Z; that is,
agreement on the overlapping columns is sufficient to ensure consistency. Within
this model, there is a simple characterization of pairwise definability; namely,
that a cover of F embed into the members of Z. For a complementary pair, a
proof may be found in [6, 2.17]; the extension to larger sets is straightforward.

To extend this idea to the general case of a set C = {Γ1, Γ2, . . . , Γn} of views
of D, first define a sequence S = 〈M1, . . . ,Mn〉 of states with Mi ∈ LDB(Vi)
for 1 ≤ i ≤ k to be compatible for C if there is an M ∈ LDB(D) with the
property that γi(M) = Mi for 1 ≤ i ≤ n. To obtain a notion of pairwise
compatibility, the idea is to specify a set P of views on which the elements of
C = {Γ1, Γ2, . . . , Γn}must agree, called the set of ports. More precisely, say that S
is pairwise compatible for C with respect to P if λ〈Γi, Γ 〉(Mi) = λ〈Γj , Γ 〉(Mj) for
every pair {Γi, Γj} ⊆ C and every Γ ∈ P for which Γ ⊑D Γi and Γ ⊑D Γj . Say
that C is pairwise definable via P if every pairwise compatible set is compatible.

In the relational example above, the set of ports is {Π
EU

W
| W ⊆ U}; that is,

the set of all projections. There is a useful visualization of pairwise definability,
using the conventions introduced in [8]. Each main view in C (corresponding
to a component in [8] is represented using a rectangle, and each port in P is
represented using a circle, with lines connecting the components to the ports
which they subsume. Fig. 3 shows the representation for a decomposition of the
schema E0 of Sec. 1 (to be discussed in detail in the next section), and Fig.
2 illustrates this idea for the views {ΠE3

AB, Π
E3

BC , Π
E3

CD, Π
E3

CE} of the relational
schema E3 with the the single relation R[ABCDE], constrained by the FDs in
F3 = {A → B,B → C,C → DE}. The set of ports is taken to be the three
projections {ΠE3

A , ΠE3

B , ΠE3

C }.

R[AB]

A → B

R[BC]

B → C

R[CD]

C → D

R[CE]

C → E

R[B] R[C]

R[A]

πB πB πC

πC

πC

πA

Fig. 2. The components of E3

In Fig. 2, the port R[A] is shown with dashed lines because it is not necessary,
as it is connected to only one component. Such a port is called irrelevant. More

Final submission: 20100613 ADBIS2010 page 6



generally, returning to the general case of C and P, call Γ ∈ P a port of Γi ∈ C

if Γ ⊑D Γi, and call it an essential port of Γi if there is at least one other
component Γj , distinct from Γi, for which it is also a port. Call Γ ∈ P relevant

for C if it is an essential port for at least two distinct members of C, and call P
completely relevant for C if every Γ ∈ P is relevant for C. It is always possible to
render P completely relevant by removing elements which are not relevant. Let
RelRedC〈P〉 denote the subset of P obtained by removing all elements which are
not relevant for C.

Definition 2.4 (Independent updates). Using pairwise definability, it is
possible to give a formal definition of what is meant by independent updates.
First, let u = 〈(N1, N

′
1), . . . , (Nn, N

′
n)〉 ∈ Updates(V1) × . . . × Updates(Vn).

Call u initial-state compatible (resp. final-state compatible) for C if 〈N1, . . . , Nn〉
(resp. 〈N ′

1, . . . , N
′
n〉) is compatible for C. If u is both initial-state and final-state

compatible, it is called simply compatible for C. It is immediate that the set
of all elements of Updates(V1) × . . . × Updates(Vn) which are compatible for
C is in bijective correspondence with Updates(D). Of interest here, however, is
the subset of the compatible updates which are independent. To this end, let
u ⊆ Updates(V1) × . . . × Updates(Vn) consist of compatible n-tuples. Call u
independent for C if it is compatible for C and the following two conditions are
satisfied.

(ind1) For every M ∈ LDB(D), the corresponding identity n-tuple
〈(γ1(M), γ1(M)), . . . , (γn(M), γn(M)〉 is in u as well.

(ind2) For every n-element set {〈Ni1, N
′
i1), . . . , (Nin, N

′
in)〉 | 1 ≤ i ≤ n} ⊆ u,

the diagonal tuple 〈(N11, N
′
11), . . . , (Nii, N

′
ii), . . . , (Nnn, N

′
nn)〉 is in u when-

ever it is initial-state compatible.

Condition (ind2) is the core of the definition, allowing one to “mix and match”
updates from distinct n-tuples, subject only to the condition that the result is
initial-state compatible. Condition (ind1) ensures that each view update may be
considered alone, by matching it with identity updates from the other views.

For Γi ∈ C, define UpdFam〈Γi,P〉 to be the set of all updates on the schema
Vi of Γi on which every Γ ∈ P is constant and define IndUpd〈C,P〉 to be the set
of initial-state compatible pairs in UpdFam〈Γ1,P〉 × . . .× UpdFam〈Γn,P〉. The
following result then provides the largest independent set.

Proposition 2.5. Let C = {Γ1, . . . , Γn} and P be finite sets of views of D,

and suppose further that P is completely relevant for C and that C is pairwise

definable via P. Then for any u ⊆ Updates(V1) × . . . × Updates(Vn) which is

independent for C, u ⊆ IndUpd〈C,P〉.

Proof. Let u ⊆ Updates(V1) × . . . × Updates(Vn) be independent for C, and
let u = 〈(N1, N

′
1), . . . , (Nn, N

′
n)〉 ∈ u. Choose i ∈ {1, . . . , n} and let u′ =

〈(N1, N1), . . . , (Ni−1, Ni−1), (Ni, N
′
i), (Ni+1, Ni+1), . . . , (Nn, Nn)〉. Thus, u′ is

obtained from u by retaining (Ni, N
′
i) and replacing each other entry with the

identity which keeps it initial-state compatible. In view of the complete relevance
of P, u′ is constant on every view in P, since every such view is contained in

Final submission: 20100613 ADBIS2010 page 7



at least two distinct members of C, at least one of which is held constant by
the update. In particular, (Ni, N

′
i) is constant on all views Γ ∈ P for which

Γ ⊑D Γi. Since i was chosen arbitrarily, it follows that all of u must be constant
on every view in P. 2

Definition 2.6 (Compound components and external ports). The ideas
of Definition 2.4 and Proposition 2.5 identify the conditions under which up-
dates may be executed independently on the components in the set C of data
objects. However, not all updates are so representable. In particular, any up-
date would change the state of of an essential port of P is disallowed. Thus,
this framework, by itself, is not adequate. When no atomic component in C is
adequate to support an update, the solution is to combine several components
into one complex one. For example, referring to E3 of Definition 2.3 and Fig. 2,
suppose that a transaction wishes to update the AB projection of R[ABCDE].
This is not possible within any single component; indeed, it requires an update
on a port. The solution is to combine the components R[AB] and R[BC] into
a single component defined by R[ABC]. The new set of components is then
{ΠE3

ABC , Π
E3

CE , Π
E

CF }, and an update to the AB-projection is now possible. The
port R[B] of this combination becomes internal, and hence irrelevant.

More generally, returning to the general case of C and P of Definition 2.3, a
compound component over C is any join of views in C. For S ⊆ C, the essential
ports of the compound component

⊔
C are exactly those Γ ∈ P which are ports

for some Γi ∈ S as well as some Γj ∈ C \ S. Thus, for the join ΠE3

AB ⊔ΠE3

BC , the
only essential port is R[C].

Discussion 2.7 (The support of independent updates). Continuing with
the above framework, a transaction whose task is to perform an update must
identify the components in C which are necessary for the operations which it is
to perform. The claim set S ⊆ C which it is to hold must satisfy the following
two conditions.
(u1) The update operations which it is to perform must be expressible within

the view
⊔
S.

(u2) All essential ports of
⊔
S must be constant under these update operations;

that is, they are read(-only) claims but not write claims.
For a set of transactions to proceed independently, their claim sets may overlap
only on their ports, and these overlaps identify the read claims. Any update
is supportable by choosing S sufficiently large; indeed, by choosing S = C, all
updates are possible (but without any parallelism).

It might seem a suitable strategy to allow a transaction to express its goal
to update an arbitrary view Γ and then to seek a subset S ⊆ C which “covers”
Γ . However, this is not possible in general. Consider the example schema E0 of
Sec. 1 and Figs. 1 and 3. Suppose that the view to be updated is the projection
of Employee[Salary]. It makes no sense, in general, to insert salaries. They must
be associated with employees. Thus, the transaction itself must have knowledge
of the set C of components and determine which ones to claim for its operations.

There is one further point which should be discussed briefly, and that is read
claims. If a transaction claims an object

⊔
S, it may not need to be able to

Final submission: 20100613 ADBIS2010 page 8



update all of it. For example, considering again the example E0, the task of a
transaction may be to update employee salaries, based upon information about
the department of each employee. Such a transaction would need to read claim
the department information, but it would not require write access. The extension
the model presented here to such read claims is straightforward, but due to space
limitations it will not be developed further.

3 The Basic Components of a Relational Schema

The examples of Sec. 2 were all based upon classical “vertical” decomposition
of relational schemata, which is not by itself adequate for defining useful read
or write claims. In the context of the running schema E0, a transaction which
is to update the salary of Alice should not need to claim the entire projec-
tion Employee[EmpID, Salary]. Rather, it should suffice to claim just those tuples
involving Alice. Thus, a complementary theory of horizontal decomposition is
needed. That which is required for this work is very different from the hor-
izontal decomposition of in [16, Ch. 5], which is based upon exceptions and
afunctional dependencies. Unfortunately, that form of decomposition does not
lead to pairwise definability. Rather, what is needed is an approach to horizontal
decomposition which is based upon the relational operation of selection, just as
vertical decomposition is based upon projection.

The context for this section is relational schema which are constrained by
functional dependencies (FDs) and foreign-key dependencies (FKDs), which are
undeniably the two most important types of constraints in real-world database
schemata. Since classical vertical decomposition almost never considers inclusion
dependencies (of which FKDs are a special case), it is prudent to begin with a
short description of how they are incorporated into a vertical decomposition. To
keep the focus on the key ideas, null values will not be considered; it will be
assumed that all values are non null.

Discussion 3.1 (Conventions for vertical decomposition). The overall
approach is to begin with a vertical decomposition, and then decompose each
component into its horizontal sub-components. Thus, it is important to begin
with a clarification of exactly what properties the vertical decomposition must
have. First of all, the theory only applies to acyclic decompositions, which is
equivalent to the existence of pairwise definable decompositions [2, Cond. 3.7].
Although that topic is usually approached from the perspective of join depen-
dencies, cyclicity can also arise from decompositions arising entirely from FDs
[1, Thm. 4]. Fortunately, such schemata occur rarely, if ever, in practice, but in
any case, they are not covered by the theory presented here.

Figure 3 depicts the vertical decomposition for the schema E3, introduced
in Sec. 1 and Fig. 1. For compactness, the relations Employee, Department, and
Mentor are abbreviated to E, D, and M in the ports (the circles). Keys are un-
derlined, while

::::::

foreign
:::::

keys have a wavy line beneath them. These abbreviations
and conventions will also be used in that which follows.

Final submission: 20100613 ADBIS2010 page 9



Employee[EmpID,Area, Level]

Mentor[Area, Level
::::::::

]

Employee[EmpID,Dept]

Department[DptID
::::

]

Employee[EmpID,Salary]

Employee[EmpID,Name] Mentor[Area, Level,MntID]

Department[DptID,Mgr]

Employee[EmpID
:::::

]

Department[DptID, Location]

Mentor[Area,MntID]

E[EmpID]

D[DptID]

M[Area,

Level]

M[Area,

MntID]

Fig. 3. The vertical components of the running example E0

In the classical theory of vertical decomposition, there is a tradeoff between
3NF, which always admits dependency-preserving decompositions but which
may require non-key dependencies in some of the components, and BCNF,
in which each component is governed only by key dependencies but for which
dependency-preserving decomposition is not always possible. For this work, de-
pendency preservation is essential. However, support for non-key dependencies
within a component is also to be avoided. To address this dilemma, there is a trick
which is arguably useless for classical normalization but which serves the pur-
poses of support of independent updates very well. It is illustrated by the example
of Mentor[MntID,Area, Level], governed by {Area, Level} → MntID and MntID →
Area. The relation Mentor is “decomposed” into Mentor[MntID,Area, Level], in
which only the key dependency is enforced, and Mentor[MntID,Area], in which
only the local key dependency EmpID → Area is enforced. The latter FD is en-
forced in Mentor[MntID,Area, Level] via the common port M[Area,MntID]. This
approach is taken also when a relation has more than one key, which must be split
into several components, one for each key. For example, if the relationDepartment

were to have an additional attribute DName which were also a (secondary) key, it
would necessary to have two additional components, Department[DptID,DName]
and Department[DptID,DName]. Their common port would be the entire rela-
tion Department[DptID,DName], but each key would be checked separately in its
component. Thus, it is always possible to arrange things so that only one key
dependency need be checked in each vertical component. In Fig. 3, the key to
be checked in a given component is exactly that which is underlined.

In most cases each component relation may have only one non-key attribute.
The only exception is foreign keys consisting of more than one attribute, which
must be grouped. An example of the latter is
Employee[EmpID,Area, Level]. Otherwise, for example, the relation

Final submission: 20100613 ADBIS2010 page 10



Employee[EmpID, Salary,Dept] must be decomposed into Employee[EmpID, Salary]
and Employee[EmpID,Dept], even though the composite is already in BCNF.

FKDs are of the form R1[F ] ⊆ R2[K], in which K is the (primary) key of R2

and F is a set of attributes of R1, called the foreign key. The case that F includes
some key attributes of R1 is not excluded. To preserve such a dependency in
the component framework, both sides of the FKD must be contained in a single
component. The convention that R2[K] be included in the component containing
R1[F ] is adopted. The satellite projection (e.g., R2[K]) is then connected, via a
port, to the corresponding component containing the full R2 as the main relation.
This is illustrated in three cases in Fig. 3.

Given a relational schema D, a simple key schema is a set of projections of
D with the following properties. First, it contains a main relation R, governed
by a single key dependency; i.e., an FD which determines all other attributes.
Second, it contains all projections onto their primary keys of the other relations
R′ in D for which the primary key of R′ is a foreign key for R. It thus embodies
the FKDs. All of the schemata in Fig. 3 are simple key schemata.

Convention 3.2 (The finite domain property). In that which follows for
horizontal decomposition, it will always be assumed that each attribute A has
the finite domain property; that is, the set Dom(A) of domain elements for A,
the set of all possible values for attribute A, is finite. This condition is always
met in real examples, and it simplifies the theory substantially by keeping the
number of basic components in a horizontal decomposition finite.

Definition 3.3 (Views defined by selection). Just as projection is the
defining operation for vertical decomposition, so too is selection the operation
for horizontal decomposition. For a schema D whose relation symbols include
{R1, . . . , Rk}, the notation σϕ〈R1, . . . , Rk〉 will be used to denote the selection
ϕ applied to those relations. The select view Σϕ〈R1, . . . , Rk〉 has σϕ〈R1, . . . , Rk〉
as its underlying morphism.

The selects which will be applied to simple key schemata to obtain hor-
izontal decompositions will always be of a particular form. The selection is
defined only on the main relation, with all other relations “following” that
select, based upon the embodied FKDs. The notation σ(ϕ)+〈R1, . . . , Rk〉 will
be used to denote such a selection, with Σ(ϕ)+〈R1, . . . , Rk〉 the corresponding
view. For example, considering the schema defined by the upper-left rectan-
gle of Fig. 3, Σ(EmpID=Alice)+〈E[EmpID,Dept],D[DptID

:::::

]〉 has selection morphism

σ((EmpID=Alice))+〈E[EmpID,Dept],D[DptID
:::::

]〉 which is the same as the selection

σ(EmpID=Alice)∧(Dept=DptID)〈E[EmpID,Dept],D[DptID
:::::

]〉, while the selection

σ((EmpID=Alice)∧(Dept=Research))+〈E[EmpID,Dept],D[DptID
:::::

]〉 is identical to

σ(EmpID=Alice)∧(Dept=Research)∧(Dept=DptID)〈E[EmpID,Dept],D[DptID
:::::

]〉.

If D is a simple key schema, simple key select on E is a select view
Σ(K=t)+〈E〉, where K = A1 . . . Ak is the key of the main relation of D and
t = (a1, . . . , ak) ∈ Dom(A1)× . . .× Dom(Ak). Thus, in a simple key select, only

Final submission: 20100613 ADBIS2010 page 11



a selection on the primary key of the main relation is allowed, with that selec-
tion extending to those parts of foreign keys which reference the primary key.
For example, Σ(EmpID=Alice)+〈(E[EmpID,Dept],D[DptID

:::::

])〉 is a simple key select

while Σ((EmpID=Alice)∧(Dept=Research))+〈(E[EmpID,Dept],D[DptID
:::::

])〉 is not.

Simple key schemata may be decomposed on a key-by-key basis into simple
key selects, with complete independence. The following observation, whose proof
is immediate, recaptures this.

Observation 3.4 (Horizontal decomposition of a simple key schema).
Let D be a simple key schema with primary key K = A1 . . . Ak, and whose

relations include {R1, . . . , Rk}. Then {Σ(K=S)+〈R1, . . . , Rk〉 | S ∈ Dom(A1) ×
. . .×Dom(Ak)} is pairwise definable, with the ports the relativized zero views. 2

Examples 3.5 (Combined horizontal and vertical decomposition). To
visualize the nature of decomposition using simple key selects as the horizontal
part of a vertical-horizontal decomposition, it is best to begin with a schema
which is simpler and more regular than that running example E0. To that end, let
E2 be as defined in Definition 2.3, having a vertical decomposition into the basic
schema components {ΠE2

AB, Π
E2

BC , Π
E2

CD}, The combined horizontal and vertical
decomposition is depicted in Fig. 4. Each horizontal decomposition is actually

ΣA=a1 〈R[AB]〉

ΣA=a2 〈R[AB]〉

...

ΣA=akA
〈R[AB]〉

ΣB=b1 〈R[BC]〉

ΣB=b2 〈R[BC]〉

...

ΣB=bkB
〈R[BC]〉

ΣC=c1 〈R[CD]〉

ΣC=c2 〈R[CD]〉

...

ΣC=ckC
〈R[CD]〉

Σ
R[B]
B=b1

Σ
R[B]
B=b2

...

Σ
R[B]
B=bkB

Σ
R[C]
C=c1

Σ
R[C]
C=c2

...

Σ
R[C]
C=ckC

Fig. 4. Visualization of the horizontal and vertical components for E6

represented by a vertical stack of components defined by simple key selects. Note
that the ports are each selections on single elements. The horizontal components
associated with R[AB] and R[BC] have connections to each projection on the
non-key attribute.

Now return to the running example E0 of Fig. 3, the vertical component
defined by Employee[EmpID, Salary]. There is one horizontal component for each
element of Dom(EmpID). To update the salary of Alice, only the component

Final submission: 20100613 ADBIS2010 page 12



Σ(EmpID=Alice)+〈E[EmpID, Salary]〉 need be claimed; the salary of any other em-

ployee may be updated independently.

Next consider changing the department of Alice. The relevant component is
Σ((EmpID=Alice))+〈E[EmpID,Dept],D[DptID]〉 Again, only the tuple corresponding
to Alice need be claimed; all others are available to other transactions. However,
the entire set of names of departments is read claimed, since
Σ((EmpID=Alice))+〈E[EmpID,Dept],D[DptID]〉 has a port connecting to each hori-
zontal component of Department[DptID, Location]. Thus, while it is possible to
execute other updates concurrently which read the list of department names, it
is not possible for any transaction to update this list. More will be said about
this point in Discussion 3.6.

Finally, suppose that a transaction wishes to add (French, 1,DuBois) and
(German, 1,Dimpflmeier) to Mentor[Area, Level,MntID]. The constraint
MntID → Area must be verified to support this change. This update may be ef-
fected with support from a write claim for
Σ((Area∈{French,German})∧(Level=1))+〈Mentor[Area, Level,MntID]〉, which is the join
Σ((Area=French)∧(Level=1))+〈Mentor[Area, Level,MntID]〉

⊔Σ((Area=German)∧(Level=1))+〈Mentor[Area, Level,MntID]〉
of two simple key selects. It also effects a read claim on the port defined by
Mentor[Area,MntID]. The transaction read claims this port, and hence the en-
tire component of the same name. If DuBois is a already a mentor for French, and
Dimpflmeier is already a mentor for German (as recorded in
Mentor[Area,MntID]), then no further claims are necessary. However, if this is
not the case, then Mentor[Area,MntID] must be write claimed for DuBois and
Dimpflmeier as well. Since this read claims all Area values inMentor[Area,MntID],
this effectively claims the entireMentor relation, and no parallel updates are pos-
sible (although much may still be read).

Discussion 3.6 (Range restriction). As illustrated in Examples 3.5, claim-
ing a relation even for one key value claims every non-key value. For example, for
a transaction T1 to place new employee Alice in the Research department, the
view Σ(EmpID=Alice)+〈E[EmpID,Dept],D[DptID]〉 must be claimed, which reserves
every possible value for Dept as a new value for the tuple with key Alice. Thus, a
second transaction T2, whose task it is to delete the Education department, could
not proceed independently because it is not known that T1 will not change the de-
partment for Alice to Education. It might seem that a solution would be for T1 to
claim only Σ((EmpID=Alice)∧(Dept=Research))+〈E[EmpID,Dept],D[DptID

:::::

]〉 However,

that would open the door for another transaction to put Alice into another de-
partment, say TechSupport, concurrently, since it is impossible to verify within
Σ((EmpID=Alice)∧(Dept=Research))+〈E[EmpID,Dept],D[DptID

:::::

]〉 whether the FD

EmpID → Dept is satisfied for EmpID = Alice. Since the whole purpose of this ap-
proach is to detect and prevent such conflicts and support truly independent up-
dates, simply ignoring this conflict is not acceptable. Fortunately, there is a solu-
tion, provided the transaction provides a bit more information. Roughly, the idea
is that the transaction claims the data object

Final submission: 20100613 ADBIS2010 page 13



Σ((EmpID=Alice)∧(Dept=Research))+〈E[EmpID,Dept],D[DptID
:::::

]〉 as suggested, and for

the life of that claim, the system excludes any other possibilities for tuples with
EmpID = Alice. This does not reduce possible parallelism in any way, since only
one transaction may have write privileges on a field of a tuple with a given key.
Furthermore, it allows the transaction which is to delete the Education depart-
ment to proceed independently (provided that no other employee works in that
department). This approach may be used to increase the possible concurrency
for the examples involving the Mentor at the end of Examples 3.5 as well.

It is a straightforward exercise to extend the framework of Sec. 2 to incor-
porate these additional features, called range restriction. Unfortunately, space
limitation preclude a full presentation here.

4 Conclusions and Further Directions

A theory of updateable data objects has been presented. A key of this approach
is that transactions may claim data objects which overlap on read areas. It
requires more structural analysis of the schema, but in return it supports a finer
grain of concurrency than in achievable with traditional models. It is particularly
suited to interactive applications, which can tolerate more preprocessing for a
transaction to begin but are much more sensitive to long waits and aborts.

Important further directions include the following.

Application to cooperative update: An approach to the support of cooperative
updates which is based upon components has been developed recently [11],
[10]. Indeed, the ideas for this paper began as a search for appropriate ways to
support concurrency in such an environment, and the topic will be developed
further.

Application to nondeterministic update requests: A key aspect of the approach
to cooperative updates in [11] and [10] is that requests may be nondetermin-

istic; that is, a user may request that one of a number of alternative updates
be supported. For example, a business travel request may involve alternatives
regarding hotel, flight, date, etc.. Some of these alternatives may become im-
possible as the processing of the transaction proceeds. The model of conflict
developed here seems well suited to identifying and eliminating parts of the
nondeterministic request which conflict with other needs and thus cannot be
supported, while allowing the others to proceed.

Acknowledgement: Some of the ideas reported here have their origins in discus-
sions with Peggy Schmidt. Her contribution is gratefully acknowledged.

References

1. A. V. Aho, C. Beeri, and J. D. Ullman. The theory of joins in relational databases.
ACM TODS, 4(3):297–314, 1979.

Final submission: 20100613 ADBIS2010 page 14



2. C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of acyclic
database schemes. JACM, 30(3):479–513, 1983.

3. P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Re-
covery in Database Systems. Addison-Wesley, 1987.

4. R. Elmasri and S. B. Navathe. Fundamentals of Database Systems. AddisonWesley,
fifth edition, 2006.

5. K. P. Eswaran, J. Gray, R. A. Lorie, and I. L. Traiger. The notions of consistency
and predicate locks in a database system. Comm. ACM, 19(11):624–633, 1976.

6. S. J. Hegner. An order-based theory of updates for closed database views. Ann.
Math. Art. Intell., 40:63–125, 2004.

7. S. J. Hegner. The complexity of embedded axiomatization for a class of closed
database views. Ann. Math. Art. Intell., 46:38–97, 2006.

8. S. J. Hegner. A model of database components and their interconnection based
upon communicating views. In H. Jakkola, Y. Kiyoki, and T. Tokuda, editors,
Information Modelling and Knowledge Systems XIX, Frontiers in Artificial Intelli-
gence and Applications, pages 79–100. IOS Press, 2008.

9. S. J. Hegner. Semantic bijectivity and the uniqueness of constant-complement
updates in the relatiional context. In K.-D. Schewe and B. Thalheim, editors,
International Workshop on Semantics in Data and Knowledge Bases, SDKB 2008,
Nantes, France, March 29, 2008, Proceedings, volume 4925 of Lecture Notes in
Computer Science, pages 172–191. Springer-Verlag, 2008.

10. S. J. Hegner. A simple model of negotiation for cooperative updates on database
schema components. In Y. Kiyoki, T. Tokuda, A. Heimbürger, H. Jaakkola, and
N. Yoshida., editors, Frontiers in Artificial Intelligence and Applications XX11,
2011. in press.

11. S. J. Hegner and P. Schmidt. Update support for database views via cooperation.
In Y. Ioannis, B. Novikov, and B. Rachev, editors, Advances in Databases and
Information Systems, 11th East European Conference, ADBIS 2007, Varna, Bul-
garia, September 29 - October 3, 2007, Proceedings, volume 4690 of Lecture Notes
in Computer Science, pages 98–113. Springer-Verlag, 2007.

12. M. Herlihy and W. E. Weihl. Hybrid concurrency control for abstract data types.
J. Comput. System Sci., 43(1):25–61, 1991.

13. A. Kemper and A. Eickler. Datenbanksysteme. Oldenbourg, 6. Auflage, 2006.
14. A. C. Klug. Locking expressions for increased database concurrency. J. Assoc.

Comp. Mach., 30(1):36–54, 1983.
15. C. Papadimitriou. The Theory of Database Concurrency Control. Computer Sci-

ence Press, 1986.
16. J. Paredaens, P. De Bra, M. Gyssens, and D. Van Gucht. The Structure of the

Relational Database Model. Springer-Verlag, 1989.
17. M. C. Sampaio and S. Turc. Cooperative transactions: A data-driven approach.

In 29th Annual Hawaii International Conference on System Sciences (HICSS-29),
January 3-6, 1996, Maui, Hawaii, pages 41–50. IEEE Computer Society, 1996.

18. W. Wieczerzycki. Transaction management in databases supporting collabora-
tive applications. In W. Litwin, T. Morzy, and G. Vossen, editors, Advances
in Databases and Information Systems, Second East European Symposium, AD-
BIS’98, Poznan, Poland, Spetember 7-10, 1998, Proceedings, volume 1475 of Lec-
ture Notes in Computer Science, pages 107–118. Springer, 1998.

Final submission: 20100613 ADBIS2010 page 15


