
Architecture-based Unit Testing of the Flight software
Product Line

Dharmalingam Gatuesan', Mikael Lindvall', David McComas', Maureen
Bartholomew', Steve Slegeh, Barbara Medina'-

1 Fraunhofer Center for Experimental Software Engineering,
20740 College Park, Maryland, USA,
{dganesan, mlindvall}@fc-nnd.umd.edu

2 NASA Goddard Space Flight Center (GSFC),
20771 Greenbelt, Maryland, USA,

I david.c.nncconnas, maureen.o.bartholomew, steve.slegel, barbara.b.medinaI @nasa.gov

Abstract. This paper presents an analysis of the unit testing approach
developed and used by the Core Flight Software (CFS) product line team at the
NASA GSFC. The goal of the analysis is to understand, review, and
reconunend strategies for improving the existing unit testing infrastructure as
well as to capture lessons learned and best practices that can be used by other
product line teatns for their unit testing. The CFS unit testing framework is
designed and implemented as a set of variation points, and thus testing support
is built into the product line architecture. The analysis found that the CFS unit
testing approach has many practical and good solutions that are worth
considering when deciding how to design the testing architecture for a product
line, which are documented in this paper along with some suggested
innprovennents.

Keywords: unit testing, implemented architecture, mock, function hook,
coverage, flight software.

1 Introduction

It is a well-known fact that the cost of finding and fixing a bu g at the time of unit
testing is cheaper than finding and fixing bugs that are found during integration
testing, system testin g or in the field. In addition, unit tests help developers while
perfonuing software changes because they indicate when changes break existing
functionality. However, unit testing is not easy in practice for reasons including a)
modules often depend on other modules, making them hard to separate and unit test in
an independent fashion, and b) modules call depend on unique features and
functions provided by the operating systems, and they may require the hardware in-
the-loop for the software to function properly, making it difficult to set up a controlled
unit test environment. In the context of software product lines, one of the important
concerns is the capability to unit test core modules without running and being
dependent on the behavior of any other core modules, which mi ght not be developed
or correct at all times and for all possible scenarios. This capability is important

because the whole point of unit testing is to test an individual unit and to produce
early and quick feedback regarding the test results.

In the context of product lines the situation is even more complex. For example,
the core team must demonstrate the quality of their unit tests to the application team
in order to build confidence regarding the quality of the core modules. Furthermore,
when the application teams configure the variation points (e.g., features and modules
to enable) of core modules or when they modify the source code of core modules,
they need unit tests to help them quickly validate the correctness of the software.
Because flight software is mission critical and needs to be of very high quality, the
flight software branch at NASA GSFC has developed a practical approach for unit
testing of its fli ght software product line (CFS). The Lunar Renaissance Orbit (LRO)
mission which is currently orbiting the moon is one successful example usage of the
cFE (core Flight Executive), which is the core of the CFS.

This paper discloses the architecture of the unit tests that are used in CFS, with the
hope that other product line organizations may benefit from these ideas and concepts.
The unit testing strategies described in this paper are sufficiently general and
therefore also applicable to other product lines. The central ideas of the unit test
architecture provided here include the ability to manipulate return codes of functions
that are defined in dependent modules, used by the function under test. In fact, the
CFS unit testing framework is designed and implemented as yet another set of
variation points, and therefore testing is built into the product line architecture. Thus,
the architecture supports plug-and-play of modules where modules call bound to
stub modules for testing, and each instance of a product line call assembly of mock
modules. This supports incremental unit and integration testing because when it has
been determined that a certain application works as expected using the stubbed
modules, the "real" modules call 	 be added, one by one, and the same
unit tests call 	 executed again with growing confidence in the final product variant.

The results of the analysis of the CFS unit testing strategy and collection of unit
tests show that they share a common look-and-feel in terms of the way they set-up the
tests, manipulate return codes of functions defined in other modules they use as well
as how they set-up nnakefiles to nn the unit tests. Furthermore, the dependent
modules need not compile or run, thus this strategy provides early and quick feedback
on unit test results of the module under test.

The analysis of test coverage shows that all publicly visible APIs have dedicated
test programs, and many of the internal functions are indirectly tested through the test
programs developed for public APIs. Thus, all functions of each core module can be
unit tested automatically. For each configuration parameter, there is a dedicated set of
unit tests that test the behavior of the relevant functions with respect to the boundaries
of the values of individual variation points. The analysis also identified a few design
problems from the unit testin g point of view. One of the problems is that some
functions return the same return code from different paths, snaking it difficult to
determine whether or not the given test input data traversed the intended path of the
function under test. This example demonstrates the importance of design for unit
testing. Another problem is that some of the unit tests are lengthy due to the fact that
they try to test more than one scenario inside one test function, making it difficult to
trace back from test failures to the exact scenarios that failed. These problems are
already added to the CFS issue tracking system and are being addressed by the CFS

team. Au important premise of this statement is that the unit tests are considered all
integral part of the product, and configuration is managed just like the source code.

Contributions of the paper. While the software product line connununity has a
growing collection of articles related to modeling and managing variability, there are
only a few practically inspired and validated technical papers focusing on unit testing
in the context of software product lines. To this end, we hope this paper makes the
following contributions:

1. A practical method for unit testing in the context of product lines. The
method is derived from the way the CFS team implemented unit testing and
examples for the CFS are used to explain the method.

2. A simple, yet effective approach for extracting and analyzing the architecture
of the unit tests including a list of criteria was used for reviewing the unit
tests and which call be used by other analysis teams.

3. An improved understanding of the relationship between software
architectural design and unit tests. That is, all of what makes
unit testing easier or harder to develop and maintain. In addition, the paper
demonstrates, usin c, concrete examples, the importance of following
architectural rules to facilitate unit testing.

It should be noted that while this paper focuses oil testing, other important
types of testing such as integration and system testing are also needed, and are briefly
discussed at the end of the paper.

2 The CFS Product Line Architecture

This section introduces the CFS product line architecture as a context for
understanding the architecture of unit tests. For CFS business goals and heritage, see
[2]. The CFS has a layered structure. The top level layer has a cataloc, of reusable
mission independent modules (a.k.a. applications), which may be used in one or more
missions. Mission-specific modules (a.k.a. applications), i.e. they are only used ill one
mission, are also part of this top level layer. The second level layer (the Core Flight
Executive (cFE) services layer) is the core of the CFS. The core layer offers several
services, for example, the software bus module for inter-application comuiiunicatiom,
and the executive service module that manages the lifecycle of each application on the
top level. Below the core layer, there is all abstraction layer (OSAL) which offers
a common API for all operating systems supported by CFS (e.g. Vxworks, Rtenns, and
Unix), which was also released as open source [4]. There is also a board support
package layer (BSP) which loads the configured OS and boots the CFS as well as a
hardware abstraction layer, which offers a hardware-independent API for different
types of hardware processors and ports, see Fig. 1. The cFE services and its lower
layers are offered to various missions both inside and outside the NASA including a
catalog of CFS applications that call reused. Each cFE core service is configurable
by choosing the values for appropriate constants declared ill the interface or header
files of each service.

	

CFS App i cat ion A	 CFSAppI ication 6 	 CFSAppli cation C

Core Flight Executive (cFE) Services Layer

	

Software Bus (SB)	 Executive Servim (ES)	 Table Services(TBL)

	

File Service (FS))	 Event Services(EVS)
services

OS Abstraction Layer 	 cFE Board Support	 Hardware Abstraction Layer
Package(BSP)Layer

	

Real time OS	 Board Support Package (BSP) 	 Device Drivers

Hardware

Fig. 1. The structure of the CFS Product Line.

All CFS modules are fully implemented in the progranuning language C. Each
module has a set of C files with confi guration parameters and public API functions
declared in header files. There are dedicated makefiles for each module, which
compiles all its files and produces all file. All core modules are linked into one
shared core library. Missions reuse this shared library and develop applications using
the APIs offered by the core modules. Missions call their own application
modules to the top level application layer. However, in order to preserve the built-in
flexibility and run-tine reconfigurability, applications do not communicate directly
with each other. Instead, applications conununicate by subscribing to and publishing
messages from the software bus and it is the responsibility of the software bus to
deliver messages to all subscribed applications, see Fig. 2. The software bus is an
abstraction built oil 	 of OS queues and sockets making the applications unaware of
the cotmnunication mechanism, which thus call chosen at build time.

In [2], the CFS source code was analyzed with respect to its compliance to
architectural rules. The detected violations of the architectural rules have now been
removed and a new version of the CFS has been released. The previous analysis
concluded that the CFS implementation is indeed consistent with the specified
architecture. That is, layering is in place, and all CFS applications conununicate only
using the software bus. In this paper, we focus oil 	 CFS' unit testing strategy and
will explain the architecture of unit tests based oil 	 software architecture of the
CFS. The overall high level question is how we call 	 CFS-like product lines, which
have to be of very high quality. The first step towards such testing is unit testing.

3. Technical Set-up and Process for Reviewing Unit Tests

This section introduces the approach followed for the independent review of unit
testing strategies and their accompanying unit tests etc. For this paper, the review was
applied ill independent way: the CFS team provided the artifacts to the Fraunhofer
team, which has not been involved in any way with the development or testing of
CFS, for review, feedback and recommendations for improvements. The Fraunhofer
team used their reverse engineering and software architecture competency to review
the unit tests of the CFS. It was the task of the Fraunhofer team to independently

understand how the unit testing is performed, and to identify issues with the current
practice. These issues were then presented to the CFS team in technical nneetings with
the CFS engineers, project leaders, test leaders, etc. This process has been going on
for 2 years and is reiterated whenever new releases or test suites have been developed.

House-	
Checksum	

Memory	 Memory
keeping	 Manager	 Dwell

OcFE rare Applkations

Inter-ts* Massage Router (SW Bus)O

Some CF111pp1ic. s

OSome Mission Applkatiom

Telemetry	 Command	 ^ Software	 Time	 Executive	 Event	 Tahle	 File
Out ut	 in a	 Bus	 ervice	 ervice	 ervice

Fig. 2. The context diagram of the software bus in the CFS. Each module (a bubble) runs in
a separate task, and conununicates with other modules by publishing and subscribing to
messages using the software bus.

The main goal of the review process is to get a good overview of the current state
of the test suites. In order to do so, the review process attempts to formulate answers
to the questions listed in Table 1. The approach to answering the questions is based on
first extracting the architecture of unit tests from the test code. After that, the
extracted unit test architecture was analyzed to understand the strengths and
weakness. The practically relevant questions listed here are answered using a semni-
automatic approach based oil reverse en gineering and visualization tool suite used
by the Fraunhofer team in projects with customers.

Table 1. Questions for reviewing the existing unit test code

Question Pill ose
1.	 Can core modules To a) understand whether modules have unit tests, b)

be	 tested if there are architectural design issues that make unit
independently	 of testing hard.
the core modules it
uses?

2-	 How are variation To understand how to unit test the behavior with
points	 of	 each respect to each variation point (e.g. maximum number
module	 being of messages in the software bus).
handled during unit
testing?

3.	 How easy is it to To understand how complex it is to set-up so-called
create mock or stub mock or stub implementations of dependent modules.
implementations of Ideally, mock implementations are simple and their
dependent return values are easy to manipulate to traverse all
modules? I paths.

4-	 Can	 modules	 be I To understand whether modules call 	 unit tested on

unit tested without standard	 desktop	 applications	 without	 requiring
access	 to	 special developers to access special hardware and real-time
hardware	 and/or operating system.
OS?

5.	 How easy it is to To understand whether it is easy to set-up unit tests.
set-up the unit tests Ideally, with a couple of instructions it should be
of a module9 possible to unit test a function.

6.	 Are there dedicated To understand, from the coverage point of view: are
test	 programs	 for there	 unit	 test	 programs	 developed	 to	 test	 each
each	 public individual publicly visible API. From a reuse point of
function	 of	 a view, the trust increases if there are dedicated test
module? programs for each API.

7.	 How lengthy and To understand the complexity of unit tests. Ideally,
complex	 is	 each unit tests focuses just oil 	 scenario and do not mix
test program? multiple scenarios into one test program. Measuring

the length and the number of conditional statements of
each test program shed light oil 	 well unit tests are
structured internally.

8.	 How	 are	 the	 test To understand whether developers or testers can easily
results	 collected track back from test failures to the exact scenario. Are
and	 reported	 for the code coverage results collected and stored either
further analysis? for further investigation or to derive new test cases.

9.	 Is there a common To	 understand	 whether	 there	 is	 a	 well-defined
look-and-feel	 in architecture for unit tests, including constraints or
terms of the way rules for setting-up mocks, makefiles, set-up of tests
the	 modules	 are and reporting of test execution results. Common look-
unit tested? and-feel a) helps programmers or testers to easily

develop new unit tests, b) facilitates understanding of
unit tests developed by different developers, and c)
improves maintainability of unit test programs.

The Data Extraction Step: This first step involves parsing the existing source
code and test suites to extract relations between entities (e.g. call relations, include
relations) at the code level. The extracted relations are stored in a relational format in
two databases: one database stores source code relations, and the other database stores
relations of the test suite. This extraction is completely automated using parsers
developed at Fraunbofer. The makefiles are also needed for the analysis because a)
they contain information related to compiler switches, preprocessor symbols, and
header files b) they contain information related to which object file is linked with the
other object files. This linking knowledge is vital to extract correct dependency
diagrams among modules, among test suites, and from test suites to source code
modules. The ifnarnes tool is used to extract all conditional preprocessor symbols
(excluding header file guards), which are basically variation points supported by the
system. These variation points are later used to analyze how test suites handle them.

source Code I I I	 I	 Makefiles

I	 Data Extraction
Test suites	 u	 (Automated)

Call relation, Include

Makefiles oftest	
relation, variation

suites	
poi nts for source cod.

Call relation, Include
relation, variation

oointsfortestsuites

Visualization, query and Analysis

Fig. 3. Two major steps in the analysis of unit test architecture.

The Analysis, Query, and Visualization Step: In this step, the extracted data is
analyzed using SQL-like queries written based oil RPA toolkit [1]. The RPA
language supports several relation and set theoretic operators to query the extracted
data. For example, it is possible to extract all functions defined in the source code
which are not referenced by any of the test suites. Several RPA queries were
developed for answering questions such as: 1) Is the given fuunction tested at all by a
test program or is the given function tested indirectly by a test program`? 2) Is there is
a stub or mock implementation of this function? 3) How many test programs call this
given function, and 4) Which test cases refer the given variation point. While
querying is useful to extract information, visualization is very powerful in revealing
patterns in the structure of unit tests. Module level dependency diagrams and
dependencies of test suites to source code modules were extracted using RPA and
visualized usin g the SAVE tool, whereas the call graph of test suites are visualized
using the Prefuse toolkit. The nodule dependency diagrams were used to review the
structure of the test suites in terms of how dependencies to other nodules are rnnocked.

4. Unit Testing of Core Modules

This section discusses the extracted architecture of the CFS unit tests based oil
tool-supported process introduced in the previous section, see Fig. 4. Although it is
almost a complete graph, only the offered public interfaces are used and no internal
details of modules are shared with other modules. Also, there are clear reasons for
each dependency. For example, the Executive Services (ES) nodule is responsible for
initializing all modules, and all nodules use the ES to re gister, create new tasks, or
exit their execution. Similarly, all nodules use the Software Bus to send and receive
rnnessages. The Event Service (ES) nodule helps nodules lo c, important events, and
thus it is used by all modules. The File Service (FS) nodule helps nodules write and
read file data. The Tinning Service rnnodule provides tinning services to all modules.
The Table Service (TS) module helps application layer modules register data tables to

share data with other modules. The dependencies were extensively reviewed by the
CFS team members and all were deemed valid and necessary. The CFS' Interface
Control Document (ICD), which is provided to application teams, specifies the
interfaces of each core module. This English specification explains the behavior of
each publicly visible function in terms of constraints on the input and the output.

cFE- Core
Executive Service (ES)

Software Bus (SB)	 Event Service (EVS)

File Service (FS)	 Table Service (TBL)

Ti mi ng Se rvi ce (Ti me)

Fig. 4. Dependencies between core modules, extracted from the source code. Arrows

represent code relations such as include, call, access of data structures, etc.

Variability in the Core Layer: As described ill 	 there are only a few conditional
preprocessor statements (e.g. #ifdef, #ifndef statements) ill core layer. For
example, the timing service controls some variation points using #ifdefs, such as the
Mission Elapsed Time (MET) and Greenwich Mean Time (GMT) formats. There are
variation points ill 	 modules, but instead of using #ifdefs, they are declared ill
header files of the modules and call be configured individually for each mission.
These variation points are basically constants. For example, the software bus has a
variation point: maximum number of messages in the bus. Even though there are no
#ifdefs, the cFE core call executed oil OS and hardware architectures
because all modules of the core are programmed to the abstract interfaces of OS,
hardware, and board support package abstraction layers. Given this brief overview of
the architecture of the core layer and how variability is managed at the code level, the
remainin g section focuses oil each module is unit tested independent of other
modules it uses. Fig. 5 shows an example of the high level unit test structure. This
example view for the Executive Services (ES) module shows that the stub concepts
are used in unit testing. For each core module, such a view was extracted from the test
source code. It shows that the ES module depends on stub implementations of
interfaces of the EVS, the S13, the Time Services, the Table Services, the File Services
module, and also the stubs of OS and board support package APIs. This view is
consistent with the source code dependencies of the ES module, shown in the
previous Fig. 4, in that instead of using the real implementations of dependent
modules, corresponding stubs are used. Note that stubs implement exactly the same
interfaces that are implemented by real modules, and stubs are orthogonal — that is
they are independent and don't need each other. At link time, the makefile of the
module under test links its object files with the object files of stubs it uses. All stubs
nrn in the same thread with the test suite. This analysis has shown that all core
modules have the same high level structure as in Fig. 5, and that all their makefiles are
customized in the same way in order to link to stub implementations of dependent

modules. Thus, they result in a good common look-and-feel in the hi gh level structure
of unit tests. Furthermore, developers can also replace stubs by real modules and can
perform incremental module integration and validation.

The test suite for the	 Initializes data
Executive Service (ES)	

es_ut.c	 ut_stuhs	
structures for stubs

xecutive

ut_evs_stubs	 ut_sb_stubs	 ut_time_stubs	 ut_thl_stubs	 ut_fs_stubs	 ut_osapi_stubs	 ut_bsp_stubs

Fig. 5. The High level structure of Unit Tests (example view for the Executive Services
(ES) module). Arrows denote dependencies (e.g. calls). Dotted arrows are dependencies
established at link time. The ES module is linked to stubs that implement the interfaces of
modules ES depends on. The main function is defined in es_ut.c (ES unit test) which runs all
test programs implemented in es_ut.c.

Table 2. The number of stub functions used for testin g each core module.
Stub SB Stub ES Stub EVS Stub Ti— Stub TBL Stub FS

SB NA 11 3 l 0 1

ES 10 NA 1 3 l 3

EVS 8 10 NA l 0 1

Tune 9 8 2 NA 0

TBL 9 15 3 l NA

FS 0 2 0 l 0 NA

How the stubs are designed and implemented. The CFS implements stubs for
each of the publicly visible APIs of its modules. The test suite for a specific module
uses stub implementations of functions of other modules in order to fully run each
function of the module under test (see Table 2) and in order to provide an
environment that produces guaranteed results for each possible function call. In order
to achieve 100% path coverage of each function under test, developers or testers also
need a way to manipulate return values of the stubbed functions. Otherwise, unit tests
will take a lot of time to run and it may also be difficult to pinpoint where a test
actually failed. Keeping these requirements in mind, the CFS team has defined the
data structure in Fig. 6 for unit testing purpose.

tyoede` struct
{	 void UT SetRtnCode (UT_SetRtn_t *varPtr,int32 rtnVal,int32 cnt){

uint32 count;	 var Ptr->value = rtnval;
uint32 value;	 var Ptr->ceunt = cnt;

} UT SetRtn t;	 }

Fig. 6. The Key data structure used for controlling return values of functions. Each stub
implementation of core module functions has its own instance of this structure. Testers
manipulate the instance of this data structure. Stubs are programmed to return values of interest
based on the state of the count variable. The logic of each stub is based on the state of the
count. For example, a stub function can be implemented to return 0, if count is positive, and
otherwise -1. Fig. 8 shows an example stub function. Right: Setting up the return values for
each instance of the UT_SetRnt_t (in ut_stubs.c). The stub implementation for each function
returns values based on the state of the count initialized using this function.

The ut—stubs module, shown earlier, creates several instances of the above data
structure — one for each stub implementation of the core module functions. It is the
responsibility of the tester to write stubs and manipulate return values using the state
of count variable shown in Fig. 6. Note that all stubs have exactly the same function
signature as the real the implementation. This is an important requirement otherwise
the source code of the function under test has to be chanc led in order to unit test it,
which is, of course, not a good engineering practice.

Consider the interface specification of the create pipe function of the software bus
module, see Fig. 7. Tlie ori ginal implementation returns one of four possible return
values. However, the original implementation also creates real queues using the OS
abstraction layer. If we want to unit test a function defined in another module that
uses this create pipe function, the developer or tester should be given an easy way to
manipulate return values so that different paths can be traversed easily. Also, in this
scenario, the mock implementation does not need to create queues for unit testing of
other modules. Such a mock implementation of create pipe is shown in Fig. 8. As we
can see, it does not do too much in contrast to the original implementation.
Nevertheless, it is remarkably useful from the testing point of view because of the
capability it offers to control return values using the SB_CreatePipeRtn instance of
the UT SetRtn t data structure.

/*.xxxxxxxxxkxkxxkxkxkkxxxxxxkxxxkkkkxkxkkkkxkkkkxxxkkkxxxxkkxkxkkkxxkxkx*.xxxx

** Name:	 CFE_SB_CreatePipe
kk

** Purpose: API to create a pipe for receiving messages
** Inputs:
** PipeIdPtr - Ptr to users empty PipeId variable, to be filled by this function.
** Depth	 - The depth of the pipe (max number of messages the pipe can hold at any time).
** PipeName - The name of the pipe displayed in event messages
kx

** Outputs:
** PipeId	 - The handle of the pipe to be used when receiving messages.
kx

** Return Values:
**	 Status - CFE SUCCESS, CFE SB BAD ARGUMENT, CFE SB MAX PIPES MET, CFE SB PIPE CR ERR_	 _ _ _	 _ _ _	 _	 _ _ _ _
kx
*k**xkx*k**x*k**xkxxk*kx*k*kx*x*k*k**x*x****x***xx*x kkk xxx***x*x*xk*x*k*kx*x*k/

int32 CFE SB CreatePipe(CFE SB PipeId t *Pipe IdPtr, uintl6 Depth, char *PipeName)

Fig. 7. Interface specification of the create pipe function of the software bus module.

extern UT SetRtn t SB CreatePipeRtn;

int32 CFE_SB_Create Pipe (CFE SB PipeId t *Pipe IdPtr, uint16 Depth, char *PipeName){
if (SB CreatePipeRtn.count > 0)
{

SB CreatePipeRtn.count--;

if(SB_CreatePipeRtn.count = 0)
{

return SB Create PipeRtn.value;

}

return CFE SUCCESS;
}

Fig. S. The mock implementation of the create pipe function (in ut —sb—stubs.c file). This
example shows how the UT —SetRtn—t data structure is manipulated to return different values.

Suppose we want to force the create pipe to return CFE_SUCCESS, all we need to
do is just call the UT_SetRtnCode function as shown in Fig. 9 in our test function.
This enables the test program to systematically control return values of other
functions in order to traverse different paths of the program under test.

// forces CreatePipe to return CFE SUCCESS

UT SetRtnCode(&SB CreatePipeRtn, -1, 2);

Fig. 9 Example of forcing a function to returi the value of interest. See Fig. 6 (right) for die
definition of this UT SetRtnCode function.

The review has shown that all mocked functions and test programs follow this
technique to manipulate return values. In addition, all mock implementations are very
small, as little as 10 lines or so. Thus, it indicates that this technique works in practice
and requires neither si gnificant learning time nor major shift in the way of working.
Table 3 shows that there are dedicated test programs for each public function of each
core module. The two ES functions and one TBL function have no unit tests because
they are single line get functions. The right hand side of the below table shows that
not all internal functions are directly tested. However, further analysis has shown that
they are transitively tested using the test programs of the public interfaces. This shows
that the stub-based unit test architecture is possible to develop and works well in
practice even though stubs and unit tests are manually developed at this point.

Table 3. Left: Interface coverage by unit tests. Right: The total number of functions unit
tested directly. Some intenhals functions are also directly unit tested because they are defined as
non-static C functions, otherwise internal functions are transitively tested using public APIs.

Core Module
4 of Functions
in Interface

4 Directly invoked
m Unit Tests

SB 30 30

ES 33 31

EVS 7 7

Time 24 24

TBL 14 13

FS 1 6 1 5

Core Module
of Functions

Defined
k Directly invoked
in Unit Tests

SB 86 45

ES 117 68

EVS 33 12

Time 72 42

TBL 60 41

FS 1 11 1 11

Some design issues that make unit testing harder

Consider the code snippet defined in the software bus module (see the right of Fig.
10). It shows that the function returns the same value "bad argument" from two
different conditional blocks. As a consequence, the unit testing code of this function
becomes slightly more complex than necessary because it needs to determine exactly
which one of the two code snippets returned that value. It does so by calling the stub
implementation of the send event (similar to logging) function to snake sure the
number of times it was called is equal to 1 if MsgPtr is null, otherwise 2 if the nnnsg id
is invalid. This review identified a few functions that suffer from this design problem
with respect to return values. These issues are being addressed by the CFS team. The
reconnnended fix is to change such functions so that they all return a unique return
value from each of its path, and thus make the unit testing code clearer.

int32 CFE SB_SendM.sg(CFE_S3_Msg_t	 *MSgPtr) i

/* check input parameter */

if(MsgPtr = NULL){

CFE_Ev5_SendEventWith pppID("Send Erx:Bad input argument",...);

return CFE SB 3pD ARGUNCNT;

MsgId = CFE_SB_GetMSgId(MSgPtr);

/* validate the msgid in the message */

if ICFE SB ValidateMsgId(MsgId) != CFE SUCCESS) {
CFE_EVS Send EVentWith pppID("Send Err :Invalid MsgId", ...);

return CFE SB 3AD ARGUN NT;

7cid Test_SendMsg_Null Ptr(vcid){

ActRtn = CFE SB SendMsg(NULL);

ExpRtn = CFE SB BAD ARGUMENT;
if(ActRtn != ExpRtn)[

TestStat = CFE FAIL;

ExpRtn = 1;
ActRtn = U^_ G=_tNUmEvents Sent();
if(ActRtn != ExpRtn)[

TestStat = CFE FAIL;

Fig. 10. An example code snippet that makes unit testing difficult. It shows that the same
return code is used for different issues. To unit test this function, the mock implementation of
send event function counts the number of times the send event function is called, ill to
make sure the correct path is tested for the test data. The right figure shows that the test case
has to also test the side effect, that is, the number of logging events it was sent out by the
function under test. UT_ GetNuinEventsSent gets the number of logging event using the data
structure manipulated by the mock implementation of the SendEventwitlnAppId function, which
simply counts the number of times it is being called.

Some design decisions that make unit testing easier.

Our review of unit tests has derived some insights on the influence of product line
architectural design decisions on unit testin g . Here, some product line specific
examples from the CFS are disclosed.

The key to flexible unit testing is programming to abstract interfaces and proving
out conceptually orthogonal variation points to the right module. For example, in the
CFS case, the core layer is designed and implemented in such a way that it is
completely agnostic to the OS, hardware, and board support packages. More
concretely, consider the simple case of creating a queue, and sending and receiving
messages using the queue. Naturally, different OSes offer different Queue APIs. If the
system is programmed with a hard binding to the OS specific APIs then it is of course
very difficult to unit test such a system, and a different sets of unit tests have to be
developed for each OS type. In the CFS case, abstract interfaces with diversified
implementations are developed, and thus conceptually orthogonal variation points are
moved out of the module (see Fig. 11).

Sc_̀tw a Bus (SB)

limy/osapi.c rtems/osapi.c vxw orks6/osapi.c Test/ut osapi stubs.c

int32 OS	 ePUt(._Queu	 ..)[int32 OS_Que—P'ut(... !{ int32 OS_Queue2ut(...)[int32 OS_Que—Eut (...)	 {

... // Mock Irlementation
serdTO!...);

)

items message queve_send(...);

1

msgQSend	 (...);

]

]

Fig. 11. A common abstract API with different implementations, including a mock
implementation for unit testing. The SB module is progrannuned to the abstract interface, and
the actual binding to a specific implementation is only at the link time.

Some internal details of modides should be node public. While hiding modules'
secrets is one of the fundamental principles of software engineering [3], this principle
has to be weakened in order to write good unit tests. For example, consider the load
library function snippet (see Fig. 12), which loads the given shared library (LibNatne)
and calls the function with the given name (EntryPoint). This is defined in the
Executive Service module. The CFE _ES_MAX—LIBRARIES is a variation point
defined in a public header file that must be set to a particular value. This function
should return all code if it is called more than the number of times set during
configuration. Note that it uses the CFE _ES_Global data structure for keeping track
of number of libraries that are already loaded. This data structure is hidden inside the
ES module, meaning that no other module is allowed to access this data structure or
know about it or its details. However, in order to test that this function will return an
error code if it is called more than the configured number of times, the unit test must
have access to CFE—ES—Global data structure; otherwise it is very difficult to
simulate this error scenario. To this end, the CFS designers had made this global
variable public to other internal files of the ES module, and thus the unit test can
access and manipulate this variable. Architectural rules were defined to make sure
such publicly visible secret variables are not referenced by other modules using the
approach presented ill 	 This is all 	 of how the risk of violating some
engineerin g principles can be mitigated by adding architecture/design rules.

nt32 CFE ES LoadLibrary(char *EntryPoint, char *LibName, ...)
boolean LibSlotFound = FALSE;
for (i = 0; i < CFE ES MAX LIBRARIES; i++) {

if (CFE _ES_Global.LibTable[i].RecordUsed == FALSE)
LibSlotFound = TRUE;
break;

I
if(LibSlotFound = FALSE) return CFE ES ERR LOAD LIB;

I

Fig. 12: The Load library function loads the library (LibNanne) and calls a function
(EntryPoint) of that library. CFE_ES_MAX_LIBRARIES is a variation point defined in a
header file. CFE—ES —Global is a global variable, allowing the runt test to change the state to
validate the scenario that if this function is called nnore than the configured number of tines, an
error will be returned code (see Fig. 13).

/ x Test for loading more than max number of libraries */
for (j= 0; j < CFE ES MAX LIBRARIES; j++) (

CFE_ES_Global.LibTable[j].RecordUsed = TRUE;
]
Return = CFE_ ES_LoadLibrary("EntryPoint","LibName", ...);
UT Report(Return == CFE ES ERR—LOAD—LIB, "CFE ES LoadLibrary",

"No free	 library slots");

Fig. 13. Test code front the load library function that tests the behavior of the load library
function when it is called more than the allowed number of tines
(CFE

—
ES _MAX_LIBRARIES) (see Fig. 12). It mairipulates the ES module's internal data

stnlcture that keeps track of the number of loaded libraries.

Table 4 Answers to questions based oil 	 analysis

Question Answer and Comments
1. Can a core module be Yes. Because of the novel desi gn of simple stubs,

tested independently of it only takes 3 minutes or so to run all the unit
core modules it uses? tests of the core modules.

2. How	 are	 variation There is a unit test program for each variation
points of each module point that checks the behavior for upper and
being	 handled	 during lower bound constraints. Some internal details of
unit testing? a module are made public to support unit testing.

3. How easy is it to create Mock or stub implementations are easy to create.
mock	 or	 stub At link-time, a module call 	 linked to one or
implementations	 of more stubs of dependent modules. This capability
dependent modules? supports incremental integration too.

4. Can modules be unit Yes. Testers can test oil 	 desktop and do not
tested without access to need to go to the test lab for unit testing. The
special hw and OS? UTF framework provides simulators with the

same API as the original code.
5. How easy it is to set-up Just a couple of instructions are needed to set-up

unit tests for a module? a test program.
6. Are	 there	 dedicated Yes, all interfaces have one or more dedicated

tests	 for	 each	 public unit test programs.
function of a module?

7. How	 lengthy	 and Some are lengthy (-100 lines) because they test
complex	 is	 each	 test more than one scenario and could be split into
program? smaller ones. Some are complex because the

function under test retunis the same return code
from multiple paths requiring extra test code.

8. Ho y are the tests results Currently, they use the gcov (GNU coverage) line
collected	 and reported coverage tool. All failures are reported in a text
for further analysis? file that is manually reviewed by the tester.

9. Is there a connmon look- Yes.	 All	 core	 modules	 consistently	 use	 the
and-feel in the way the concept of stubs to do unit testing. Also, all test
modules are unit tested? I makefiles for test suites share the same structure.

5. Closing Remarks

In this paper, we described the analysis of the CFS product lines' unit testing strategy
and accompanying unit test cases and testing environment. The CFS has been refined
over more than 10 years and has gone throu gh rigorous inspections and improvement
initiatives. In addition, the CFS captures knowledge from implementin g dependable
flight software for more than 20 years of specifying, developing, testing and flying
such software. Thus, we are grateful that we can analyze and use CFS as an example
of good software engineering that we call learn from, even though there are still
some issues that call removed and improved. For example, the CFS has tackled the

difficult practical unit testing problem that modules often depend on other modules,
making them hard to separate and unit test in an independent fashion. In addition,
modules can also depend on unique features and functions provided by the operating
systems, and they may require the hardware in-the-loop for the software to function
properly, making it difficult to set up a controlled unit test enviromnent. The CFS
team's approach to unit testing also handles the use of modules (real modules or stubs
for testin g) as a set of variation points. This introduces a level of flexibility that
allows the user of CFS to also use the same set up for incremental integration testing
because stubs for testing can be swapped in or out depending on the situation, thus
limiting the risks that are associated with bi c, bang integration testing. A future paper
will disclose the unit testing framework that allows application developers to unit test
their applications without running the core modules. Unit testing and the type of
incremental integration testing described above are only two aspects of testing, and
other forms of testin g needs to be conducted in order to detect those types of defects
that such testing cannot detect. Supported by the NASA IV&V center, Fraunnhofer, in
collaboration with the CFS team and using CFS as a testbed, are researching ways to
develop new testing techniques that address these challenges.

Acknowledgments. Lisa Montgomery and her NASA IV&V team and Sally
Godfrey NASA GSFC for supporting this work; Charles Wildermann, all members of
the GSFC CFS team for comments and discussions; Rene Krikhaar for the RPA
tooMt; The Prefuse visualization team, at Stanford University, for making it available
to us; Lyly Yonkwa for fruitful discussions; three anonymous reviewers for
comments.

References

1. Feijs, L., Krikhaar, R.. and Van Ornniering, R.: A Relational Approach to Support
Software Architecture Analysis. Software Practice and Experience, 28(4):371-400,
1998.

2. Ganesan, D., Lindvall, Ackennann, C., M., McComas, D., and Bartholomew, M.:
Verifying Architectural Design Rules of the Flight Software Product Line. SPLC,
2009.

3. Hoffinan, D., Weiss, D.: Software Fundamentals — Collected Papers of David L.
Pamas. Addison-Wesley Publications, 2001.

4. The OS Abstraction Layer of the CFS, http://opensource.gsfe.nasa.gov

