
“SOPLE-DE: An Approach to Design Service-Oriented
Product Line Architectures”

by

Flávio Mota Medeiros
M.Sc. Dissertation

Universidade Federal de Pernambuco
posgraduacao@cin.ufpe.br

www.cin.ufpe.br/~posgraduacao

Recife, March/2010

www.cin.ufpe.br/~posgraduacao

Universidade Federal de Pernambuco

Centro de Informática
Pós-graduação em Ciência da Computação

Flávio Mota Medeiros

“SOPLE-DE: An Approach to Design Service-Oriented
Product Line Architectures”

Trabalho apresentado ao Programa de Pós-graduação em
Ciência da Computação do Centro de Informática da Univer-
sidade Federal de Pernambuco como requisito parcial para
obtenção do grau de Mestre em Ciência da Computação.

A M.Sc. Dissertation presented to the Federal University of
Pernambuco in partial fulfillment of the requirements for the
degree of M.Sc. in Computer Science.

Advisor: Silvio Romero de Lemos Meira
Co-Advisor: Eduardo Santana de Almeida

Recife, March/2010

Medeiros, Flávio Mota
 SOPLE-DE: an approach to design service-oriented

product line architectures / Flávio Mota Medeiros. - Recife: O
Autor, 2010.
 xii, 133 p. : il., fig., tab.

 Dissertação (mestrado) – Universidade Federal de
Pernambuco. CIN. Ciência da Computação, 2010.

 Inclui bibliografia, glossário e apêndice.

 1. Engenharia de software. 2. Reuso de software. 3.
Arquitetura de software. I. Título.

 005.1 CDD (22. ed.) MEI2010 – 056

iii

I dedicate this dissertation to my wonderful family, friends,
and my lovely girlfriend.

Acknowledgements

Initially, I would like to thank all the professors from the Federal University of Alagoas
(UFAL) and Federal University of Pernambuco (UFPE) who gave me the necessary
educational support to get here.

Next, I would like to thank CNPq for the financial support, which helped me to live
in Recife during my master degree. Without this support, I could not spend my time
researching and trying to do my best to complete this dissertation on time.

The results of this dissertation could not be achieved without the support of the Reuse
in Software Engineering (RiSE) group. My gratitude to the RiSE members for their
patience during the experiment, seminars, presentations, and discussions about my work.

Some key researchers in the software reuse area offered valuable feedback for this
work. My gratitude to John McGregor and Sholom Cohen for their suggestions during
our discussions that improved the quality of my work.

Finally, I would like to thank my great family, friends, and my wonderful girlfriend.
Especially, my parents that always stood by me with everything I needed during my life,
and my girlfriend for her patience and comprehension.

v

Resumo

O reuso de software é um fator extremamente importante para empresas interessadas em
aumentar sua produtividade, diminuir os custos e o tempo durante o desenvolvimento de
sistemas e melhorar a qualidade de seus produtos e serviços. Nesse contexto, Linhas de
Produto de Software (LPS) e Arquitetura Orientada a Serviços (SOA) são duas estratégias
que estão atualmente recebendo uma grande atenção, tanto na área acadêmica quanto
na indústria de software. Os conceitos de linhas de produto e arquitetura orientada
a serviços compartilham alguns objetivos e características que podem ser usados em
conjunto para aumentar as taxas de reuso de software. No entanto, para o resultado dessa
junção ser otimizado, é necessário utilizar um processo de desenvolvimento bem definido.
Caso contrário, a equipe de desenvolvimento poderá produzir software de maneira não
sistemática, aumentando as chances de falha, o tempo e o custo de desenvolvimento. Com
essa visão, esse trabalho apresenta uma abordagem para o projeto de arquiteturas para
linhas de produto orientada a serviços, constituída de um conjunto de atividades e sub
atividades com entradas e saídas especificadas, sendo cada uma delas realizada por um
conjunto predefinido de papéis com responsabilidades definidas. Essa abordagem visa
ajudar arquitetos de software a projetar arquitetura orientada a serviços para domínios
específicos. Para garantir a qualidade da abordagem desenvolvida, uma pesquisa extensiva
foi realizada para analisar o atual estado da arte de processos para o desenvolvimento
orientado a serviços. Foram então considerados os pontos fracos e fortes dos processos
estudados com o intuito de identificar e preencher as lacunas neles existentes. Por fim,
essa abordagem foi validada e refinada por meio de um estudo acadêmico experimental
preliminar.

Palavras-chave: Linhas de Produto de Software (LPS), Arquitetura Orientada a Serviços
(SOA), Arquitetura de Software e Processos de Desenvolvimento de Software.

vi

Abstract

Software reuse is a key factor for enterprises interested in productivity gains, decreased
development costs, improved time-to-market, and software quality. In this context,
Software Product Line (SPL) and Service-Oriented Architecture (SOA) are two reuse
strategies that are getting a lot of attention in research and practice lately. SPL and
SOA share some goals and characteristics, which motivate the use of both together with
the purpose of increasing reuse rates. However, this combination needs a well-defined
development process. Without this process, the development team may develop in an
ad-hoc manner with success relying on the effort of a few individual members, what may
increase the risks of failure, development costs and time-to-market. In this sense, this
dissertation presents an approach to design service-oriented product line architectures
with a well-defined sequence of activities and sub-activities with clearly defined inputs
and outputs, and performed by a predefined set of roles with specific responsibilities. This
approach aims to aid software architects during the design of service-oriented product
line architectures. In order to ensure the quality of the proposed approach, an extensive
study was performed to analyze the current state-of-the-art of existing service-oriented
development processes. In addition, the approach was defined based on the drawbacks
and strengths of the processes available with the purpose of filling the gaps in the area.
Moreover, the approach was also applied in an academic and preliminary experimental
study performed with the intention of evaluating and refining the proposed solution.

Keywords: Software Product Line (SPL), Service-Oriented Architecture (SOA), Soft-
ware Architecture and Software Development Process.

vii

Contents

Acronyms 1

1 Introduction 2
1.1 Motivation . 3
1.2 Problem Statement . 5
1.3 Overview of the Proposed Solution . 5

1.3.1 Context . 5
1.3.2 Outline of the Proposal . 7

1.4 Out of Scope . 8
1.5 Statement of the Contributions . 9
1.6 Organization of the Dissertation . 10

2 Software Product Line (SPL): An Overview 11
2.1 Introduction . 11
2.2 Motivations of Software Product Line Engineering 12
2.3 Software Product Line Engineering . 13
2.4 Software Product Line Adoption Models 15
2.5 Product Line Architecture (PLA) . 16

2.5.1 The Benefits of the Software Architecture 17
2.5.2 Factors that Influence the Architecture 18

2.6 Chapter Summary . 19

3 Service-Oriented Architecture (SOA): An Overview 20
3.1 Introduction . 20
3.2 SOA Characteristics . 21

3.2.1 Distributed Systems . 21
3.2.2 Different Owners . 22
3.2.3 Heterogeneity . 22

3.3 SOA Origins and Influences . 22
3.3.1 Object-Oriented Programming 23
3.3.2 Web Services . 23
3.3.3 Business Process Modeling (BPM) 24
3.3.4 Enterprise Application Integration (EAI) 24
3.3.5 Aspect-Oriented Programming (AOP) 24

viii

3.4 SOA Motivations . 25
3.5 Service-Oriented Principles . 26
3.6 SOA Roles . 27
3.7 Enterprise Service Bus (ESB) . 28
3.8 Chapter Summary . 29

4 A Systematic Review on SOA Design Methodologies 30
4.1 Introduction . 30
4.2 The Systematic Review Process . 31
4.3 Planning the Review . 31
4.4 Conducting the review . 34
4.5 Data Synthesis . 37
4.6 Results of the Systematic Review . 40

4.6.1 Activities, Artifacts and Roles 40
4.6.2 Quality Attributes . 46
4.6.3 Delivery Strategy . 47
4.6.4 Adaptation of Existing Processes 48

4.7 Chapter Summary . 49

5 An Approach to Design Service-Oriented Product Line Architectures 51
5.1 Introduction . 51
5.2 Principles . 52

5.2.1 Component-Based Development (CBD) 52
5.2.2 Feature-Oriented Development (FOD) 52
5.2.3 Process-Oriented and Service-Oriented Development 53
5.2.4 Separation of Concerns and Information Hiding 53
5.2.5 Commonality and Variability 53
5.2.6 Quality Attributes . 54
5.2.7 Cohesion and Granularity . 54
5.2.8 Top-Down and Proactive Development 55
5.2.9 Systematic Sequence of Activities 55

5.3 SOPLE-DE Overview . 55
5.3.1 Inputs and Outputs . 56
5.3.2 Roles . 57
5.3.3 Architectural Style . 58
5.3.4 Development Cycles . 60

ix

5.3.5 Activities . 60
5.4 The SOPLE-DE Approach . 61

5.4.1 Architectural Elements Identification Activity 63
5.4.2 Variability Analysis Activity 74
5.4.3 Architecture Specification Activity 79
5.4.4 Architectural Elements Specification Activity 83
5.4.5 Design Decisions Documentation Activity 85

5.5 Chapter Summary . 87

6 A Preliminary Experiment 88
6.1 Introduction . 88
6.2 Background Information . 89
6.3 The Experimental Study . 90

6.3.1 Definition . 91
6.3.2 Planning . 94
6.3.3 Operation . 101
6.3.4 Analysis and Interpretation . 102

6.4 Conclusions and Lessons Learned . 107
6.5 Chapter Summary . 109

7 Conclusions 110
7.1 Related Work . 111
7.2 Future Work . 112
7.3 Concluding Remarks . 114

Bibliography 115

Appendices 124

A Architecture Document Template 126

B Instruments of the Experimental Study 131

x

List of Figures

1.1 RiSE Labs Influencing Areas . 5
1.2 RiSE Labs Projects . 7

2.1 The Essential Activities of Software Product Line Engineering 14
2.2 Software Product Line Engineering Framework 15

3.1 SOA Origins and Influences . 22
3.2 Distributed Object-Oriented Systems and SOA 23
3.3 SOA Roles . 28

5.1 Architectural Style . 59
5.2 SOPLE-DE Activities . 61
5.3 The Project used as Example . 62
5.4 Architectural Elements Identification Activity 63
5.5 Service Granularity . 66
5.6 Identification of Architectural Elements from Features 68
5.7 Travel Reservation Feature Model . 69
5.8 Conceptual Service Model . 70
5.9 SOA Design Patterns . 71
5.10 Variability Analysis Activity . 75
5.11 Analyzing Cohesion . 76
5.12 Component Variability . 77
5.13 Variability Granularity . 78
5.14 Architecture Specification Activity . 80
5.15 Layer and Integration Views . 81
5.16 Interaction and Component Views . 82
5.17 Architectural Elements Specification Activity 83
5.18 Service Interface . 84
5.19 Design Decisions Documentation Activity 86

6.1 Experiment Variables . 89
6.2 Activities of the Experiment Process 90
6.3 Service Coupling . 103
6.4 Service Coupling Mean . 104
6.5 Service Instability . 104

xi

6.6 Service Instability Mean . 105
6.7 Cohesion of the Service Operations 105

xii

List of Tables

4.1 Search Strings . 34
4.2 Electronic Databases . 34
4.3 Conferences and Journals . 35
4.4 Service Identification Techniques . 42
4.5 Service Specification Artifacts . 43
4.6 Roles Involved in the Process . 46
4.7 Service Delivery Strategies . 48
4.8 Summary of the Review . 49

5.1 Checklist of the Architectural Elements Identification Activity 74
5.2 Checklist of the Variability Analysis Activity 80
5.3 Checklist of the Architecture Specification Activity 82
5.4 Checklist of the Architectural Elements Specification Activity 86
5.5 Checklist of the Design Decisions Documentation Activity 87

6.1 One Factor with Two Treatments Design 98
6.2 The Profile of the Subjects . 102

A.1 Component Specification Template . 128
A.2 Service Specification Template . 128
A.3 Service Orchestration Specification Template 129
A.4 Flow Specification Template . 130

B.1 Questionnaire for Subjects Background (Part 1) 131
B.2 Questionnaire for Subjects Background (Part 2) 132
B.3 Questionnaire for Subjects Feedback 133

xiii

Acronyms

AOP Aspect-Oriented Programming

BPM Business Process Modeling

BPMN Business Process Modeling Notation

CBD Component-Based Development

EAI Enterprise Application Integration

ESB Enterprise Service Bus

FOD Feature-Oriented Development

GQM Goal Question Metric

MDD Model Driven Development

PLA Product Line Architecture

POD Process-Oriented Development

RUP Rational Unified Process

SLA Service Level Agreement

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SOD Service-Oriented Development

SO-PLA Service-Oriented Product Line Architecture

SPL Software Product Line

UDDI Universal Description, Discovery, and Integration

URI Uniform Resource Identifier

WSDL Web Service Description Language

1

1
Introduction

Software reuse is a key factor for enterprises interested in productivity gains, reduced
development costs, improved time-to-market, and increased software quality (Krueger,
1992). In the context of software reuse, Software Product Line (SPL) and Service-
Oriented Architecture (SOA) are two strategies that are getting a lot of attention in
research and practice lately.

These strategies share common goals, i.e., they both encourage organizations to
develop flexible and cost-effective software systems, and support the reuse of existing
software and capabilities during the development of new systems (Istoan, 2009). However,
at the same time, the main characteristics of SPL and SOA are quite different, and they
also focus on distinct goals.

SOA enables assembly, orchestration and maintenance of enterprise solutions con-
structed based on a set of reusable, self-contained and business-aligned services with
the main purpose of reacting to changes in the business requirements quickly (Josuttis,
2007). Conversely, SPL systematically captures and exploits the commonality among a
set of related products, while manages variability to customize these products to specific
customers and market segment needs (Cohen and Krut, 2007).

In addition, SOA usually proposes the development of large, heterogeneous and
distributed systems that may be under control of different ownership domains (MacKenzie
et al., 2006). In contrast, SPL focuses on the development of a set of similar products
using a common platform, and often controlled by a single organization (Pohl et al.,
2005). However, the differences between these reuse strategies, in some cases, may
complement each other (Helferich et al., 2007).

This dissertation explores the combination of the concepts and characteristics of SPL
and SOA in a single software engineering methodology. In particular, an approach to
design service-oriented product line architectures is depicted in this work. In the proposed

2

1.1. MOTIVATION

solution, SPL concepts, such as managed variability and systematic planned reuse, are
used to support the non-systematic reuse of SOA environments. On the other hand, SOA
concepts, e.g., contract-based communication, dynamic service discoverability and the
ability to compose services dynamically, are used to aid the development of flexible and
dynamic software product lines (Lee et al., 2008).

In this dissertation, a service-oriented product line is considered as a set of similar
service-oriented systems that supports the business processes of a specific domain and
can be developed from a common platform or core assets, such as requirements, diagrams,
components and services (Clements and Northrop, 2001). In this way, service-oriented
systems are developed as a software product line and can be customized to specific
customers or market segment needs (Boffoli et al., 2008).

The remainder of this chapter describes the focus and structure of this dissertation.
Section 1.1 starts presenting its motivations, and a clear definition of the problem scope is
depicted in Section 1.2. An overview of the proposed solution is presented in Section 1.3.
Some related aspects that are not directly addressed by this work are shown in Section
1.4. In the Section 1.5, the main contributions of this work are discussed, and finally,
Section 1.6 describes how this dissertation is organized.

1.1 Motivation

In the software development industry, organizations are always trying to reduce the costs,
effort and time-to-market of software products (Linden et al., 2007). Moreover, the
development of flexible systems that can react to market changes quickly (Carter, 2007)
and can be customized to specific customers (Pohl et al., 2005) is essential in the current
business environment. However, the complexity and size of the systems are increasing,
which motivate the reuse of existing assets during the development of new systems,
especially when assets developed in different languages can be integrated and reused in
several contexts (Arsanjani et al., 2008).

In this context, SOA is an approach that aids to solve integration and interoperability
problems (Papazoglou and Heuvel, 2006) and align Information Technology (IT) and
business goals, giving more flexibility and agility to the enterprises (Josuttis, 2007). On
the other hand, SPL explores the commonality among a set of similar products and
manages variability supporting the development of products that fit specific customers
requirements or market segment needs (Clements and Northrop, 2001). In addition, SPL
and SOA focus on reusing existing software and capabilities.

3

1.1. MOTIVATION

SOA lacks on support for high customization and systematic planned reuse, which is
domain focused, based on repeatable processes, and concerned primarily with the reuse
of high level artifacts such as specifications, designs and components (Frakes, 1994). In
other words, despite of the natural way of achieving customization in service-oriented
applications, i.e., changing service order or even the participants of service compositions,
services are not designed with variability to be highly customizable and reusable in
specific predefined contexts. In addition, service artifacts, e.g., specifications and models,
are not produced with variability as well. Hence, a family of service-oriented applications
cannot reuse these artifacts in a systematic manner (Helferich et al., 2007).

Thus, SPL engineering, which has the principles of variability, customization and
systematic planned reuse in its foundation, can be used to aid SOA to achieve these
benefits. In this path, service-oriented applications that support a particular set of business
processes can be developed as a SPL (Ye et al., 2007; Boffoli et al., 2008). Moreover, SOA
can also sustain the development of flexible and dynamic SPLs due to its characteristics,
e.g., loose coupling, contract-based communication, dynamic service discoverability, and
the ability to compose services dynamically (Lee et al., 2009).

The motivation to combine SPL and SOA is to achieve desired benefits, such as
productivity gains, decreased development costs and effort, improved time-to-market,
applications customized to specific customers or market segment needs, competitive
advantage, flexibility and dynamic composition of software modules (Cohen and Krut,
2007). However, in order to gain these advantages, a well-defined process considering
SPL and SOA concepts is essential. Without this process, the development team will
develop in an ad-hoc manner, with success relying on the efforts of a few dedicated
individual participants (Booch, 1995).

In this sense, this dissertation proposes an approach to design service-oriented product
lines (SOPLE-DE) that combines SPL and SOA concepts with the intention of achieving
the desired benefits mentioned before. The combination of SPL and SOA used in this
work is explained and characterized in Chapter 5, which presents the SOPLE-DE in
detail. Furthermore, Chapter 4 presents the state-of-the-art about existing processes
and methodologies for SOA development, which were analyzed to create the proposed
solution.

4

1.2. PROBLEM STATEMENT

1.2 Problem Statement

Encouraged by the motivations depicted in the previous section and the lack of service-
oriented product line processes, the goal of this dissertation can be stated as follows:

“This work investigates the problem of developing software product lines using

service-oriented architectures, characterizing it empirically to understand the impact

of using such an architecture and software product line concepts together. It provides a

systematic design approach with clearly defined activities, sub-activities, steps, inputs,

outputs and roles to aid software architects to design service-oriented product line

architectures. Moreover, the proposed approach is based on a set of software product line,

service-oriented architecture, component-based development, and design principles”.

1.3 Overview of the Proposed Solution

This section presents the context of this work and an overview of the proposed solution.

1.3.1 Context

This dissertation is part of the Reuse in Software Engineering (RiSE)1 Labs, whose goal
is to develop a robust framework for software reuse with the purpose of making the
adoption of a reuse program easier (de Almeida et al., 2004). However, the RiSE Labs is
influenced by several areas as depicted in Figure 1.1.

Figure 1.1 RiSE Labs Influencing Areas

1http://www.rise.com.br/research

5

1.3. OVERVIEW OF THE PROPOSED SOLUTION

Based on these areas, the RiSE Labs is divided in several sub-projects, as shown in
Figure 1.2. As it can be seen, this framework embraces several different projects related
to software reuse and software engineering:

• RiSE Framework: Involves reuse processes, e.g., (de Almeida et al., 2004; Nasci-
mento, 2008), component certification (Alvaro et al., 2006), and reuse adoption
processes, e.g., (Garcia et al., 2008);

• RiSE Tools: Research focused on software reuse tools, such as the Legacy Infor-
mation retrieval Tool (LIFT) (Brito, 2007), the Admire Environment (Mascena,
2006), and the Basic Asset Retrieval Tool (B.A.R.T) (Santos et al., 2006), which
was enhanced, for example, with facets (Mendes, 2008) and data mining (Martins
et al., 2008);

• RiPLE: Development of a methodology for software product line engineering,
which is divided in several smaller disciplines, such as requirements (Neiva, 2009),
and design (Souza Filho et al., 2009);

• SOPLE: Development of a methodology for software product lines based on
services, which is also divided into smaller disciplines. This dissertation is part of
this project, and it is concerned with the design of service-oriented product line
architectures;

• MATRIX: Investigates the area of measurement in reuse and its impact on quality
and productivity;

• BTT: Research focused on methods and tools for detection of duplicate bug reports,
such as in Cavalcanti (2009);

• Exploratory Research: Investigates new research directions in software engineer-
ing and its impact on reuse;

• CX-Ray: Focused on understanding the Recife Center for Advanced Studies and
Systems (C.E.S.A.R.)2, and its processes and practices in software development.

As mentioned previously, this work is part of the Service-Oriented Product Line
Engineering (SOPLE) project, whose goal is to provide a well-defined process for the
whole development of service-oriented product lines. However, in this dissertation, the
design discipline of the SOPLE project is considered.

2http://www.cesar.org.br/

6

1.3. OVERVIEW OF THE PROPOSED SOLUTION

Figure 1.2 RiSE Labs Projects

1.3.2 Outline of the Proposal

The proposed solution consists of an approach to design service-oriented product line
architectures that aids software architects during the identification, design and documen-
tation of architectural elements, i.e., components, services and service orchestrations, and
their communication flows. It also provides guidelines for the high-level and low-level
design of these architectural elements.

This approach provides a set of sequential activities with clearly defined inputs and
outputs, which are performed by a predefined set of roles with specific responsibilities.
During the approach, essential software product line, component-based development,
design and service-oriented concepts, such as cohesion, loose-coupling, granularity,
commonality and variability are considered to provide a better design discipline.

The main goal of the approach is to aid software architects to produce a Service-
Oriented Product Line Architecture (SO-PLA), which represents the common and variable
architectural elements of a specific domain. The approach is called SOPLE-DE, and it
combines feature-oriented (Kang et al., 2002), process-oriented (Boffoli et al., 2009),
component-based (Szyperski, 2003) and service-oriented development (Erl, 2005). SO-
PLE is related to service-oriented product line engineering and DE means design.

The SOPLE-DE receives the domain feature model, the business process models
and the quality attribute scenarios of the domain as mandatory inputs. The domain
use cases are also considered as inputs when available, i.e., the use cases are optional
inputs. In the context of the SOPLE as a whole, the SOPLE-RE (requirements) process
provides these inputs. However, the SOPLE-DE is flexible, and can be used with other
service-oriented product line requirement process that fits the inputs required by it. The
detailed description of the approach is presented in Chapter 5.

7

1.4. OUT OF SCOPE

1.4 Out of Scope

Some aspects that are related to this research will be left out of its scope due to the time
constraints imposed on a master degree. This work can be seen as an initial climbing
towards a full development process for service-oriented product lines. Thus, the following
issues are not directly addressed by this work:

• Other development disciplines: Our solution only includes an approach to design
service-oriented product line architectures, and other development disciplines will
not be described in this work. Nevertheless, the other disciplines, e.g., scoping, re-
quirement, implementation and testing, were envisioned since the initial definitions
of the proposed approach. Hence, these disciplines can be added in the future with
a few adjustments;

• Re-engineering activities: The proposed approach does not consider re-engineering
aspects, such as the identification of services from existing legacy applications,
nor redesign of existing services and components. However, it does not exclude
the possibility to integrate existing components and services into the new archi-
tecture. Integration is one of the major benefits of SOA due to its interoperability
characteristics, which allow legacy systems developed using different platforms
and languages to be leveraged in the new service-oriented solution (Arsanjani et al.,
2008);

• Extractive and reactive adoptions: SPLs can be adopted using different strate-
gies, e.g., the proactive, extractive or reactive adoption models (Krueger, 2002).
This work uses a proactive adoption model, which concentrates on the development
of a SPL from scratch. Thus, the adoption of SPL considering existing products
(extractive) or the incremental development of products (reactive) are not being
considered in this work. Chapter 2 discusses the adoption models in more detail;

• Exposing services from components: There are several ways to develop services,
e.g., wrapping legacy applications, enterprise components or using integration
tools that can expose services from database queries, files and so on (Hewitt, 2009).
However, this work considers services that are exposed using enterprise components
such as Enterprise Java Beans (EJB) (Panda et al., 2007). In this way, other ways
to design and implement services are not being covered by this dissertation;

8

1.5. STATEMENT OF THE CONTRIBUTIONS

• Architecture evaluation: This work is not considering guidelines or methods
for architecture evaluation. However, because the risk and impact of a SOA are
distributed across applications and services, it is critical to perform an architecture
evaluation early in the software life-cycle to avoid failures of quality attributes, e.g.,
security, performance, availability, and modifiability (Bianco et al., 2007).

1.5 Statement of the Contributions

As a result of this dissertation, the following contributions can be highlighted:

• A combination of SPL and SOA concepts: It was conducted an extensive study
about the development of software product lines using service-oriented architec-
tures. In this study, it was considered different ways to combine SPL and SOA
concepts with the purpose of finding out the combination that could get the benefits
of both strategies without affecting the main characteristics of each other;

• An analysis of the state-of-the-art of SOA design methodologies: This work
presents an overview of the works that have presented guidelines and activities for
designing service-oriented systems;

• An approach to design service-oriented product line architectures: It provides
a set of sequential activities, sub-activities and steps that aid software architects
during the design of service-oriented product line architectures considering software
product line, service-oriented architecture, component-based development, and
design principles for a better design discipline;

• An empirical study to validate the proposed solution: This dissertation also
presents a preliminary experimental study performed with the purpose of validating
and refining the proposed approach.

In addition to the contributions mentioned, a paper presenting the findings of this
dissertation was published and other two are under development.

• Medeiros, F. M., Almeida, E. S., and de Meira, S. R. L. (2009). Towards an
Approach for Service-Oriented Product Line Architectures. In the 3rd Work-
shop on Service-Oriented Architectures and Software Product Lines (SOAPL), San
Francisco, USA.

9

1.6. ORGANIZATION OF THE DISSERTATION

1.6 Organization of the Dissertation

The remainder of this dissertation is structured as follows:

• Chapter 2 presents an overview on software product line engineering, its principles,
foundations, architecture and adoption models;

• Chapter 3 discusses the service-oriented architecture field, including its definitions,
motivations, concepts, characteristics and roles;

• Chapter 4 depicts a systematic review on service-oriented architecture design
methodologies representing the current state-of-the-art in the area;

• Chapter 5 presents the proposed approach to design service-oriented product line
architectures (SOPLE-DE) with its foundations, roles, phases, activities, steps,
inputs, outputs and guidelines;

• Chapter 6 describes the definition, planning, operation, analysis and interpretation
of a preliminary experimental study for the proposed approach performed with the
intention of evaluating and refining it;

• Chapter 7 presents some concluding remarks about this work, its related work, and
directions for future work.

10

2
Software Product Line (SPL): An

Overview

2.1 Introduction

Software product line engineering has its principles based on automobile manufactures,
which enable mass production cheaper than individual product creation. These manu-
factures use a common platform to derive products that can be customized to specific
customers or market segments needs (Clements and Northrop, 2001). In the context of
software engineering, the combination of mass customization, large-scale production,
and the use of a common platform to derive products results in the software product line
engineering paradigm (Pohl et al., 2005).

A product line can be defined as a set of similar software intensive systems that
share a collection of common features satisfying the needs of specific customers or
market segments. This set of systems are developed from a set of core assets, which
are documents, specifications, components, and other software artifacts that naturally
become highly reusable during the development of each specific system in the product
line (Clements and Northrop, 2001).

The goal of the software product line engineering is to exploit the commonality
of a set of similar systems, while managing variability among these systems with the
purpose of developing a family of customized products faster and cheaper than creating
each individual product separately (Gomaa, 2004). In this sense, the software product
line development paradigm uses a systematic and planned reuse strategy, i.e., first, the
common characteristics among products are explored, reusable parts (core assets) are
developed with variability, and then, the products are created and customized to specific
customers reusing what has been built to be reused (Pohl et al., 2005).

11

2.2. MOTIVATIONS OF SOFTWARE PRODUCT LINE ENGINEERING

The remainder of this chapter is organized as follows: Section 2.2 presents the
motivations to start a software product line approach, and the essential activities during
the SPL engineering are described in Section 2.3; Section 2.4 depicts the adoption models
that can be employed when starting a software product line; Section 2.5 presents the
characteristics and peculiarities of software product line architectures, and Section 2.6
concludes this chapter with its summary.

2.2 Motivations of Software Product Line Engineering

There are several reasons to develop a family of related products using the software
product line paradigm. According to Pohl et al. (2005), the main motivations are:

• Reduction of development costs and time-to-market: Since several products
are developed from a set of common core assets (platform), the development costs
and time-to-market of individual products are reduced significantly. However, it
requires an upfront investment and takes a long time to develop the core assets that
will be reused during the development of each individual product;

• Enhancement of quality: The core assets of the platform are reused in several
products. In this way, they are reviewed, reused and tested several times and in
different contexts, what makes it easier to find and correct problems;

• Reduction of maintenance and evolution costs: When artifacts of the platform
are modified, or new artifacts are added into it, these changes propagate for all
products derived from the platform. It makes maintenance and evolution simpler
and cheaper than treating it separately for each product;

• Customer satisfaction: In a software product line, the products are customized to
specific customers. Thus, they receive products that fit their individual needs and
wishes, with lower prices and higher quality;

• Improved cost estimation: When the reusable core assets are developed, the cost
estimations for products from the product line are straight forward and do not
include many risks.

However, in order to gain these advantages, the management of variability among
products is essential for the success of the product line (Pohl et al., 2005). The variability
management activity plays a key role in software product lines because different products

12

2.3. SOFTWARE PRODUCT LINE ENGINEERING

for specific customers or market segment needs are developed in terms of commonality
and choices of variability. The software product line engineering paradigm requires
specific development processes and activities for dealing with its peculiarities as described
in the next section.

2.3 Software Product Line Engineering

Basically, the software product line engineering is performed using two main phases.
According to Pohl et al. (2005) and Linden et al. (2007), the product line engineering is
divided into domain engineering and application engineering:

1. Domain engineering: It is responsible for establishing a reusable and customizable
platform, and defining what is common among the products from the product line
and what is variable;

2. Application engineering: In this phase, the products from the product line are
built by reusing the artifacts (core assets) of the platform, and the product line
variability is exploited to implement customizations.

In this sense, SPL engineering needs a special type of process that considers the
development for reuse, i.e., domain engineering, and the development with reuse during
the application engineering. Other researchers use different taxonomies for these phases,
e.g., Clements and Northrop (2001) define three essential activities for the software
product line engineering (see Figure 2.1):

• Core asset development: In this activity, a set of core assets, a product line scope
and a production plan are produced. The core assets form the basis of the product
line and its production capability. The core asset development receives as input the
commonality and variability among the products from the product line, standards
and requirements for the products, approaches to realize core assets, and sometimes
an inventory of existing assets. This activity is equivalent to domain engineering;

• The product development activity receives as input the outputs of the core asset
development, and a product-specific requirement. The product required is devel-
oped utilizing the core assets developed previously. Creating a product provides a
strong feedback effect on the product line scope, production plan, and core assets.
This activity is similar to application engineering;

13

2.3. SOFTWARE PRODUCT LINE ENGINEERING

• Management is extremely necessary during the software product line engineering
due to the fact that the core asset development and the product development activi-
ties are highly iterative, and this iteration must be carefully managed (Clements
and Northrop, 2001). Management at the technical and organizational levels must
be strongly committed for the success of the product line. Pohl et al. (2005) also
emphasizes the importance of management, however, it is not considered as a
separated activity or phase, and it is highlighted during the whole product line
engineering.

Figure 2.1 The Essential Activities of Software Product Line Engineering

The core asset and product development activities, or the domain and application
engineering are composed by the traditional software development disciplines, e.g.,
requirements, design and testing. The difference is that during domain engineering
or core asset development, the requirements, design and testing artifacts, for example,
are developed with variability considering several products, while during application
engineering or product development, these artifacts are customized for the specific product
being constructed. Figure 2.2 presents a product line engineering framework representing
the domain and application engineering phases and their development disciplines (Pohl
et al., 2005).

However, a software product line can be developed in different ways such as the
traditional software development, e.g., using the waterfall approach or the spiral model
(Boehm, 1988). The next section presents some of the adoption models that can be used
to start a product line development effort.

14

2.4. SOFTWARE PRODUCT LINE ADOPTION MODELS

Product
Management

Domain
Requirements
Engineering

Domain
Design

Domain
Realization

Domain
Testing

Requirements Architecture Components Tests

Artifacts Produced
Including Variability

Model

Application
Requirements
Engineering

Application
Design

Application
Realization

Application
Testing

Requirements Architecture Components Tests
Artifacts Produced

D
o

m
a
in

 E
n

g
in

e
e
ri

n
g

A
p

p
li
c
a
ti

o
n

 E
n

g
in

e
e
ri

n
g

Figure 2.2 Software Product Line Engineering Framework

2.4 Software Product Line Adoption Models

Several reasons motivate organizations to introduce a software product line engineering
approach. The adoption is usually strongly based on economic considerations, since
software product lines support large-scale reuse during the software development, and
the reuse rates can be around 90% of the overall software, what dramatically reduces the
development costs and time-to-market of products (Linden et al., 2007).

A software product line initiative requires a conscious and explicit effort from the
organization interested in adopting a product line strategy. An organization can adopt
product line engineering using some adoption models depending on its objectives, budget,
time and requirements as described next (Krueger, 2002):

1. Proactive: This adoption model is like the waterfall approach to conventional
software development. In this case, all product variations on the foreseeable horizon
up front are analyzed, designed, and implemented. This model fits organizations
that can predict their product line requirements well into the future, and have the
time and resources for a long development cycle;

2. Reactive: This model is like the spiral or extreme programming approach to con-
ventional software development. In this approach, product variations are analyzed,
designed and implemented in an incremental way, i.e., incremented in each spiral or
interaction. This adoption model fits organizations that cannot predict their product

15

2.5. PRODUCT LINE ARCHITECTURE (PLA)

line requirements well, and cannot stop their production and extend their deadlines
during the product line adoption;

3. Extractive: This adoption model reuses existing products as the initial baseline for
the product line. This approach fits organizations that intend to make the transition
from conventional software development to product line development quickly.

Each adoption model has its associated risks and benefits. In general, the proactive
approach involves more risks, since the development cycle is longer and requires a higher
upfront investment. However, its returns on investment are higher compared with the
reactive and extractive adoption models (Clements, 2002). On the other hand, the reactive
and extractive adoption models can eliminate the adoption barrier, reduce risks and make
the adoption faster, since several organizations cannot slow down or stop production
during the transition (Krueger, 2002).

The adoption of software product line engineering needs an upfront investment,
brings implications for the development process, and may require modifications on
the organizational structure (Linden et al., 2007). In addition, there are some essential
prerequisites for the adoption of a product line approach, for instance, it needs an enabling
technology to implement its concepts, well-defined processes, people who know their
market customers in order to identify the commonality and variability among products,
and a stable domain that does not change frequently to pay off the upfront investments
(Pohl et al., 2005). In this sense, each organization has to analyze its own timetables,
budget and objectives before selecting a specific adoption model.

The next section presents an overview on product line architectures, which inherit the
characteristics of common software architectures, but they have special peculiarities as
described next.

2.5 Product Line Architecture (PLA)

A crucial point during the design of any large software system is the definition of the
high-level organization of its computational elements and their interactions, i.e., the
architecture definition (Garlan and Shaw, 1994). The architecture is an abstract view of
the system, which concentrates on the behavior and interaction of elements in the system,
and distills away details of implementation, algorithm, and data representation (Bass
et al., 2003).

16

2.5. PRODUCT LINE ARCHITECTURE (PLA)

The software architecture of a program or computer system is the structure or struc-
tures of the system, which comprises software elements, the external visible properties of
those elements, and the relationships among these elements (Bass et al., 2003).

Software product line architectures share this definition and characteristics with com-
mon software architectures. However, product line architectures play a more important
role than architectures for conventional or single systems. It provides a high-level struc-
ture for all products from the product line, and it must reflect the scope of the line and
supports its commonality and variability (Pohl et al., 2005; Linden et al., 2007). The
software architecture is a factor of success or failure of a product line, and it also takes an
important position in determining quality attributes (Bass et al., 2003).

The product line architecture is developed during the domain engineering phase,
specifically at the domain design activity (Pohl et al., 2005). During the application
engineering phase, the product line architecture is used as reference, and it is adapted and
extended to generate the architecture for each specific product in the software product
line (Linden et al., 2007). The next section describes the benefits of a product line or
common software architecture.

2.5.1 The Benefits of the Software Architecture

There is a diversity of aspects that makes the software architecture important and essential
for any system as listed next (Bass et al., 2003):

• The software architecture expresses a general abstraction of the system, and it
can be used by different stakeholders as a common language for understanding,
negotiation, consensus, and communication;

• It reveals the earliest design decisions, which are the most complicated to get right
and the most difficult to change, since subsequent decisions are made based on
these initial decisions and the stakeholders do not have a well understanding of the
system in the beginning;

• The architecture permits more precise costs and schedules estimation, since stake-
holders can understand modules of the system better and estimate than separately;

• It can serve as introduction to the system for new members;

• The architecture dictates the organization structure, especially when the organiza-
tion divides groups of labor according to the architecture;

17

2.5. PRODUCT LINE ARCHITECTURE (PLA)

• It determines constraints on the implementation;

• The architecture restricts or supports specific quality attributes such as usability,
modifiability and performance;

• And in the context of product line architectures, they contain variability and are
used as reference to generate a specific architecture for each system in the product
line.

However, software architectures are influenced by the context where it is being
developed, the experience of the stakeholders involved in the project, and several other
aspects as presented in the next section.

2.5.2 Factors that Influence the Architecture

As stated by Bass et al. (2003), there are several factors that influence the software
architecture of a system:

• The goals and concerns of the stakeholders involved: The architect has to deal
with conflicts among wishes of the stakeholders involved in the project, since each
stakeholder may have its own opinion about the architecture of the system;

• Skills, schedules and budgets: The knowledge and skills of the stakeholders
in specific technologies, the deadlines and the budgets of the project will also
influence the way that the software architecture will be produced;

• Background and experience of the architect: He/she may have worked in other
projects previously. Thus, the architect may want to reuse successful approaches,
experiences and technologies;

• The current environment: Software engineering techniques and industry standard
practices that are been extensively used by many organizations will also influence
how the software architecture will be designed, and the selection of technologies
that will be used.

It is important to note that software product line architectures inherit the characteristics
of architectures for conventional systems. In this sense, the general aspects of software
architectures discussed in this section are valid for product line architectures, which also
have specific characteristics as commented.

18

2.6. CHAPTER SUMMARY

2.6 Chapter Summary

This chapter depicted a brief overview on software product line concepts. It discussed
the motivations to adopt the software product line engineering paradigm, highlighting
its economical benefits that are achieved mainly due to the large scale, planned and
systematic reuse that can be accomplished with the use of strategies for software product
line engineering.

The essential activities during the software product line engineering were presented
considering the different taxonomies that are currently being used in the literature. Next,
some adoption models that can be used to start developing systems as software product
lines were described, where it was discussed the risks, strengths and drawbacks of the
adoption models.

Finally, the general characteristics of software architectures, and the specific charac-
teristics of software product line architectures were detailed. The next chapter presents
an overview on Service-Oriented Architecture (SOA) concepts.

19

3
Service-Oriented Architecture (SOA): An

Overview

3.1 Introduction

Service-Oriented Architecture (SOA) is a paradigm for developing distributed systems
that deliver application functionality as a set of services, which are reused by end-user
applications and other coarse-grained services (Endrei et al., 2004). The adoption of SOA
is efficient to solve integration and interoperability problems (Papazoglou and Heuvel,
2006), and provides a better Information Technology (IT) and business alignment, giving
more flexibility to the enterprises (Josuttis, 2007).

In this dissertation, SOA is considered an architectural concept, which is based on
a set of service-oriented principles that goes beyond the adoption of web services and
its style of communication (Engels et al., 2008). The Web Services1 technology is only
one of the existing environments that provides support for the development of flexible,
loosely coupled and interoperable SOA systems. The Common Object Request Broker
Architecture (CORBA)2, for example, is another platform that can be used to implement
SOA, which is not dependent of any specific technology (McGovern et al., 2003).

The key benefits of SOA are flexibility, interoperability, support for vendor diversity,
extensibility, reusability and loose coupling (Erl, 2005). SOA generally leads to the
development of large distributed systems that may be under control of different ownership
domains (MacKenzie et al., 2006). The main factors for the adoption of SOA are the use
of standards, creation of a transition plan, understanding of performance and security
requirements, planned governance and proximity with your SOA marketplace (Erl, 2006).

1For more information, go to see http://www.w3.org/2002/ws/
2For additional information, visit http://www.corba.org/

20

3.2. SOA CHARACTERISTICS

In addition, SOA requires activities, such as service identification, artifacts, e.g.,
service specifications, and roles, e.g., service designer, that are not presented in the tradi-
tional software engineering, e.g., object-oriented development. For instance, traditional
methods do not address the three key elements of SOA: services, flows, and components
realizing services. In other words, they do not provide techniques and processes required
for the identification, specification and realization of services, their flows and composition,
as well as the enterprise-scale components needed to realize and ensure the quality of the
services (Arsanjani, 2004). Hence, SOA needs formal processes in order to ensure that
services are modeled and designed consistently, incorporating accepted design principles,
conventions, and standards (Erl, 2007).

The remainder of this chapter is organized as follows: Section 3.2 depicts the main
characteristics of SOA systems, and Section 3.3 shows the SOA origins and influences;
Section 3.4 presents the motivations to adopt SOA, and Section 3.5 describes the service-
oriented principles, which SOA is based on; Section 3.6 shows the roles involved in SOA,
and the Enterprise Service Bus (ESB), which is the key element of the SOA infrastructure,
is discussed in Section 3.7; finally, Section 3.8 summarizes this chapter with its summary.

3.2 SOA Characteristics

SOA is not appropriated for all types of systems (Josuttis, 2007). However, SOA copes
well with many difficult-to-handle characteristics of large systems as described next.

3.2.1 Distributed Systems

SOA systems are normally large and distributed. When business grows, it becomes
more and more complex, and more organizations get involved in it. In this context, SOA
solutions support integration of systems from different companies that may be developed
in different platforms and programming languages.

In this sense, SOA is well suited for dealing with the complexity of large distributed
systems. Thus, it facilitates interactions between service providers and service consumers
due to its interoperability capacity, enabling the realization of business functionalities.
In other words, SOA is paradigm for organizing and utilizing distributed capabilities
(MacKenzie et al., 2006).

21

3.3. SOA ORIGINS AND INFLUENCES

3.2.2 Different Owners

Another characteristic of SOA systems is that beside large and distributed, different parts
of the SOA solution may be under control of different ownership domains (MacKenzie
et al., 2006). The presence of systems controlled by different owners is the key for
certain properties of SOA, and the major reason why SOA is not only a technical concept
(Josuttis, 2007).

SOA includes practices and processes that are based on the fact that parts of the
distributed systems are not controlled by single owners (Josuttis, 2007). Thus, different
teams, departments, or even different companies may manage different systems. For
this reason, people who manage SOA solutions have to deal with different platforms,
languages, schedules, priorities, and budgets.

3.2.3 Heterogeneity

Large systems differ from small systems due to their lack of harmony. Large systems
use different platforms and programming languages as already mentioned. They may be
composed by mainframes, databases, Java applications, and so on. In other words, they
are heterogeneous.

In the past, some approaches proposed to solve the problem of integrating distributed
systems by eliminating heterogeneity. However, it did not work for some businesses
(Josuttis, 2007). That is why SOA accepts heterogeneity, and it deals with large distributed
systems by acknowledging and supporting this attribute.

3.3 SOA Origins and Influences

SOA is a relatively new paradigm that can represents the evolution of IT and has its
roots in past paradigms and technologies. Figure 3.1 depicts the main paradigms and
technologies that have influenced SOA (Erl, 2007). The ways they influence SOA are
explained next.

Service-Oriented Architecture

Object
Orientation

Web
Services

Business Process
Modeling

Enterprise Application
Integration

Aspect
Orientation

Others

Figure 3.1 SOA Origins and Influences

22

3.3. SOA ORIGINS AND INFLUENCES

3.3.1 Object-Oriented Programming

Object Orientation (OO) became popular in the 1990s. This paradigm appeared with its
own principles, which helped to ensure consistency among numerous environments (Erl,
2007). In the context of SOA, it is also based on a set of service-oriented principles as
already discussed in Section 3.5.

In fact, SOA is more similar with the idea of distributed object-oriented systems than
object orientation. However, in distributed object-oriented systems, fine-grained objects
are distributed, which increases the number of remote calls among objects and causes
performance and maintainability problems. Figure 3.2 compares the SOA and distributed
object-oriented paradigms. In the context of SOA, services are more coarse-grained,
which decreases the number of remote calls among service consumers and providers.
Moreover, the interaction among objects inside each service is local, only the interactions
among objects in a service and calls to other services are remote (McGovern et al., 2003).

Distributed
Object

Distributed
Object

Distributed
Object

Distributed
Object

Distributed
Object

Distributed
Object

Distributed
Object

Fine-Grained Distributed Objects Coarse-Grained Services

Object

Object

Object

Service

Object Object

Object

Object

Object

Service

Object Object

Service
Interface

Figure 3.2 Distributed Object-Oriented Systems and SOA

3.3.2 Web Services

The Web Services Platform is the most appropriated environment to implement SOA cur-
rently. The web service platform uses several concepts from the conceptual architecture
(SOA) and vice-versa. Both SOA and Web Services are influencing the evolvement of
each other (McGovern et al., 2003). For instance, the web service platform has influenced
and promoted several service-orientation principles, including service abstraction, service
loose coupling, and service composability (Erl, 2007).

23

3.3. SOA ORIGINS AND INFLUENCES

3.3.3 Business Process Modeling (BPM)

Business Process Modeling (BPM) in the context of software engineering is the activity
of representing the processes of an enterprise. It focuses on business processes in order
to improve the efficiency of the enterprises. Its main goals are to establish adaptable and
extensible business processes that can respond to market changes quickly (Havey, 2005).

The primary goal of service-orientation is also to establish a highly agile automation
environment fully capable of adapting to change. In the context of SOA, this goal is
achieved by leaving the business processes in their own layer and using services to
implement steps of the processes (Erl, 2007). Services provide a flexible way to expose
discrete business functions, and therefore, an excellent way to develop applications that
support business processes (Brown et al., 2003).

3.3.4 Enterprise Application Integration (EAI)

Enterprise Application Integration (EAI) became a primary focal point in the late 90’s, and
several enterprises started to use point-to-point integration channels to share data across
systems, which results in well-known problems such as lack of stability, extensibility, and
inadequate interoperability frameworks (Erl, 2007). In this context, SOA concepts and
characteristics appear with their standardized environments that were based on several
techniques used in EAI, and several interoperability problems are currently being solved
with SOA (Erl, 2007).

3.3.5 Aspect-Oriented Programming (AOP)

Aspect-Oriented Programming (AOP) is a paradigm that encourages the separation of
concerns considering functionality that are common in several applications, modules,
components, etc. These concerns are classified as “Cross-Cutting”, and they naturally
become reusable by several modules, components, or applications, e.g., logging and
auditing functionality (Laddad, 2003).

SOA is related to AOP by the fact that it encourages the development of self-contained
services that later will be reused to create several service-oriented systems (Erl, 2007).
In the same way as aspects, services can become reusable in several systems that share
some business processes.

24

3.4. SOA MOTIVATIONS

3.4 SOA Motivations

Many organizations are going through the trouble of adopting a service-oriented comput-
ing platform, which is not an easy task, but the ideas behind it are very ambitions and
attractive for organizations interested in improving the effectiveness of their IT enterprise
(Erl, 2007). There are several reasons to adopt SOA, and develop software under the
service-oriented development paradigm. The main motivations and goals of SOA are:

• Reusability: It has been the major objective of software engineering for years.
In the context of SOA, the ability to compose new services reusing the existing
ones provides several advantages to an organization, e.g., increased Return on
Investments (ROI) and software quality, and decreased development costs and
time-to-market (Elfatatry and Layzell, 2004). There is an extensive list of modeling
guidelines for promoting reuse in SOA (Erl, 2005), however, if reusability concerns
are not taken into account deeply during the development, only opportunistic reuse
will appear;

• Flexibility and Business Agility: The current business scenario requires orga-
nizations to continuously modify their systems according to market changes in
order to accomplish new requirements, changes in the requirements and several
other reasons (Carter, 2007). Hence, the enterprise architecture must be easily
reconfigurable. The SOA characteristics enable a better IT and business alignment,
integration of new business services and the reuse of existing services in order to
respond to market changes quickly (Endrei et al., 2004);

• Integration and Interoperability: Systems are no longer required to be developed
and deployed in a systematic way. Services can be developed independently and
then composed to create applications that can be adapted to market changes quickly
(Arsanjani, 2004). In this context, SOA eases the integration among heterogeneous
services due to its interoperability capacity. The more interoperable services are,
the easier it is for them to exchange information (Erl, 2007);

• Vendor Diversity: SOA allows organizations to select among several vendor
specific products, since it permits a heterogeneous environment when required
and necessary. Thus, the organizations are always free to change, replace and add
technologies (Erl, 2007). Vendor diversity is supported by the SOA standards and
interoperability issues.

25

3.5. SERVICE-ORIENTED PRINCIPLES

As already mentioned, SOA is normally defined using a set of service-oriented
principles (Erl, 2005). In this sense, the next section depicts the principles that SOA is
based on.

3.5 Service-Oriented Principles

SOA is based on a set of service-oriented principles that support its theories and charac-
teristics. The set of principles that are directly related to SOA are described next:

• Coupling: It refers to the number of dependencies among services. In SOA,
services maintain a relationship that minimizes dependencies and only requires that
services retain an awareness of each other (Erl, 2005). Loose coupling is achieved
through the use of standards and service contracts among consumers and providers
that allow services to interact through well-defined interfaces. Coupling also affects
other quality attributes, e.g., modifiability and reusability (McGovern et al., 2003);

• Service contract: Services adhere to communication agreements, as defined col-
lectively by one or more service descriptions and related documents. They define
data formats, rules and characteristics of the services and their operations. These
documents are defined using standards in order to be readable by the software
elements of the architecture, e.g., XML, WSDL and XSD policy documents (Erl,
2007);

• Autonomy and Abstraction: Services have control over the logic they encapsulate,
i.e., they must be autonomous and self-contained. Moreover, beyond what is
described in the service contract, services hide internal logic from the outside
world. Services are like black boxes, and service consumers only depend on the
provided interface (Erl, 2005);

• Stateless and Idempotent: Services minimize retaining information specific to
a customer’s request. They should be as more stateless as possible in order to
increase reusability and scalability (Erl, 2005). Moreover, services should also be
idempotent, which is the ability to redo an operation without cause problems, e.g.,
duplicated data (Josuttis, 2007);

• Discoverability and Dynamic Binding: Services are designed to be apparently
descriptive so that they can be found and assessed via available discovery mecha-

26

3.6. SOA ROLES

nisms, e.g., Universal Description, Discovery, and Integration (UDDI)3 (Erl, 2005).
The use of a directory is not obligatory but a service should be discoverable. Service
discoverability is usually achieved through a third-party entity that implements a
discovery mechanism, e.g., a service registry (McGovern et al., 2003);

• Coarse-Grained Interfaces: Services are abstractions that support the separation
of concerns and information hiding. However, they slower down performance
due to the remote calls (Josuttis, 2007). For this reason, services should provide
coarse-grained operations that transfer all the necessary data all together instead
of having several fine-grained calls. The requirements of the service consumers
should be taken into account when deciding the right granularity for the whole
services as well as their operations in order to avoid unnecessary data transfers and
performance problems (McGovern et al., 2003).

The next section presents the main roles involved in a SOA solution. Service con-
sumers and providers are the two essential entities. However, other specific roles may
also be used as described next.

3.6 SOA Roles

In the context of SOA, service consumers may use a third-party entity with the purpose
of finding service providers and avoiding tight coupling (McGovern et al., 2003). Figure
3.1 depicts the roles of SOA and their relationships as explained next:

• Service Consumer: It is an application, service or other software entity that needs
a service. It can either use the Uniform Resource Identifier (URI) for the service
description directly or it can find the service description of the provider in the
service registry (Arsanjani, 2004);

• Service Provider: It is the entity that receives and executes requests from service
consumers. It can be a legacy application, a component or other software entity
that exposed its interface as a network-addressable and interoperable service, e.g.,
using the Web Service Description Language (WSDL)4 (Josuttis, 2007). Providers
publish their description in the service registry (McGovern et al., 2003);

3For more information, visit http://uddi.xml.org/
4 For more information, go to see www.w3.org/TR/wsdl

27

3.7. ENTERPRISE SERVICE BUS (ESB)

• Service Registry: It is a third-party entity responsible to maintain the service
descriptions (contracts) documents. It can be used to implement some quality
attributes, e.g., availability and modifiability, since in some SOA implementations
the service consumers have no information about the existing service providers
before accessing the registry (Arsanjani, 2004);

• Service Contract: It specifies the way the service consumers will interact with the
service providers. This contract specifies the message formats, pre-conditions and
post-conditions to use service providers, and it may also describe the non-functional
requirements (quality attributes) of the providers in order to define Service Level
Agreements (SLA) (McGovern et al., 2003; Erl, 2005).

Service ContractService Consumer Service Provider

Service Registry

<< use >> << realize >>

<< contains >> << described in >>

Invokes

Finds Publishes

Figure 3.3 SOA Roles

The next section describes an essential part of the SOA infrastructure, i.e., the Enter-
prise Service Bus (ESB), which is responsible for several tasks as described next.

3.7 Enterprise Service Bus (ESB)

The ESB can be considered the backbone of a SOA infrastructure. It is responsible to
enable service consumers to call providers. This communication seems simple, but it
may involve several tasks, such as providing connectivity, data transformation, routing,
dealing with security and reliability, monitoring and logging (Josuttis, 2007).

However, the main role of an ESB is to provide interoperability. Because it integrates
different platforms and programming languages, a fundamental part of this role is data
transformation. The usual approach to solve interoperability problems is to introduce a
specific format to which all the individual platforms and API map. In the web service
platform, for example, this format is usually the Simple Object Access Protocol (SOAP)5

(Chappell, 2004).
5For more information, go to visit www.w3.org/TR/soap/

28

3.8. CHAPTER SUMMARY

Another fundamental task of an ESB is routing. There must be some way of sending
a service call from a consumer to a provider, and then sending an answer back from the
provider to the consumer (Josuttis, 2007). Other responsibilities of an ESB are usually
extensions of the core task of providing interoperability.

However, technically and conceptually, several enterprise service buses can differ
widely. For example, a SOA solution might not involve any specific tool or piece of
software as its ESB, i.e., just the use of a communication protocol might be enough. In
this case, the ESB would delegate a lot of tasks to the service providers and consumers.
On the other hand, an ESB might consist of several tools and programs that are used by
service designers, implementers, and operators (Josuttis, 2007). Hence, the responsibility
of an ESB will depend on the requirements of each specific SOA solution.

3.8 Chapter Summary

SOA is a type of software architecture that has special characteristics. This chapter started
discussing about the SOA field describing its definitions, characteristics and motivations.
The web services technology, which is the most appropriated environment to develop
SOA currently, was also mentioned. However, it was emphasized that the web services
technology is not the only possible way to develop SOA concepts, which are technology
independent.

The origins of SOA and its influencing technologies and paradigms, e.g., enterprise
application integration and distributed objects, were detailed. Next, the service-oriented
principles that SOA is based on were depicted, e.g., coupling, discoverability and coarse-
grained interfaces. Finally, the main roles of SOA, i.e., service consumer, provider,
service registry and contract, were described.

The next chapter presents a systematic review on SOA methods for designing service-
oriented applications representing the state-of-the-art in the area.

29

4
A Systematic Review on SOA Design

Methodologies

4.1 Introduction

Service-Oriented Architecture (SOA) needs a well-defined process to be implanted
efficiently and reduce its associated risks (Erl, 2007). Moreover, without a well-defined
process, the development team will develop in an ad-hoc manner, with success relying on
the efforts of a few dedicated individual participants (Booch, 1995). Although existing
processes and practices can be reused for service-oriented development, novel techniques
are required to address unique SOA requirements (Ramollari et al., 2007).

Hence, enterprises and researchers that desire to adopt a service-oriented solution or
start with service-oriented development have to identify the most appropriated method
to use or adapt, and the main activities to be considered. Without relying on proven
processes and practices, a service-oriented adoption initiative can turn into a high-risk
venture and bring unexpected results (Erl, 2007). Thus, the analysis and comparison of
existing methodologies are crucial before launching a service-oriented computing effort.

In this sense, a systematic review is a way to analyze the state-of-the-art of existing
methods. It can be used with the purpose of identifying, evaluating and interpreting
the available research relevant to a particular research area (Kitchenham and Charters,
2007). Thus, this chapter presents a deep analysis and summary of the current state-
of-the-art of methodologies and processes that provide guidelines and directions for
the service-oriented design discipline. The results of this review can be used as back-
ground information for architects, companies and researchers that use service-oriented
development, are planning to adopt it, or are investigating service-oriented methodologies.

30

4.2. THE SYSTEMATIC REVIEW PROCESS

This review aims to identify the essentials activities of the service-oriented design
discipline, the techniques used for service identification and realization, the notations and
diagrams used for architecture documentation, the concerns with reusability and other
quality attributes, the strategies used to deliver services and the adaptation of existing
processes.

The remainder of this chapter is organized as follows: Section 4.2 presents the process
used to perform the systematic review; the planning of the review is depicted in Section
4.3; Section 4.4 shows how the review was conducted; Section 4.5 presents the SOA
methods included in the systematic review, and Section 4.6 details the results obtained
with the systematic review; Section 4.7 depicts a summary of the review and concludes
this chapter.

4.2 The Systematic Review Process

The systematic review depicted in this work was performed following the guidelines of
(Kitchenham and Charters, 2007), in which a well-defined set of steps for undertaking
systematic literature reviews in the context of software engineering is presented. The
guidelines are divided in three main phases: planning, conducting and reporting.

The goal of the planning phase is to develop a review protocol that specifies the plan
that the systematic review will follow to identify, assess, and gather evidences. The
conducting phase is responsible for executing the protocol planned in the previous phase,
and the purpose of the reporting phase is to relate the review steps and results to the
community.

Each of the phases listed above contains a sequence of stages, as described in the next
sections, that may appear to be executed sequentially, but the execution of the overall
process involves iteration, feedback, and refinement of the defined process (Kitchenham,
2004). The next sections present the main stages during the planning and conducting
phases. The reporting phase is fulfilled with this report.

4.3 Planning the Review

The main activity during the planning phase is the definition of the research questions that
will be answered with the systematic review. The next sub-sections detail the research
questions that guide this systematic review.

31

4.3. PLANNING THE REVIEW

Research Questions

Q1. Which roles, activities and artifacts are defined in the methods? The first
objective of this review is to analyze which activities, roles and artifacts are used in the
service-oriented design methods. In a well-defined process, each phase of the design is
composed by activities that may use and produce different types of intermediate artifacts,
such as diagrams and checklists. Moreover, each activity or task is normally performed
by a predefined set of roles with clear responsibilities (Kruchten, 2003).

This question is important because service-oriented development requires activities,
roles and artifacts, such as the service identification activity and the service description
documents, that are not presented in the traditional software engineering, e.g., object-
oriented development (Zimmermann et al., 2004; Endrei et al., 2004). Thus, the main
motivation of this analysis is to identify the essential activities, roles and artifacts that
should be used during the service-oriented design.

As this question is related to many aspects of the service-oriented development, in
order to improve the clarity of the review, it was divided into sub-questions as described
next:

• SQ1. How the methods identify services? The identification of services is a
challenging task during the service-oriented analysis and design (Azevedo et al.,
2009). Potential services can be identified and derived from different sources,
e.g., business processes and legacy systems (Arsanjani et al., 2008). Thus, this
sub-question aims to identify the techniques used to identify services;

• SQ2. How the methods specify services? The idea of this sub-question is to
analyze the specification of services, i.e., which models and notations are used
during this activity;

• SQ3. How the service-oriented architecture is documented? Considering that
at the end of the design process a structured document should be produced, the
purpose of this analysis is to identify how the architecture documentation is struc-
tured and which models and notations are used. The intention here is to analyze
structured artifacts produced to represent the architecture (Bass et al., 2003);

• SQ4. Which are the strategies for service realization used in the methods?
Services can be designed and implemented in different ways, e.g., using existing
legacy systems and components (Erradi et al., 2006). Thus, this sub-question aims
to analyze the realization strategies used by the service-oriented methodologies.

32

4.3. PLANNING THE REVIEW

Q2. How do the methods deal with reusability and other quality attributes? The
purpose of this analysis is to assess how the methodologies handle quality attributes and
whether they consider the impact of design decisions at architecture level. This question
also aims to identify the reuse strategies used and how the methods take into account
reusability among elements, such as services logic, processes, operations and other units
of work.

The reason to analyze this aspect is that service orientation is considered an efficient
way to increase reuse, flexibility and productivity (Erl, 2005; Carter, 2007). However, rely
on service-oriented principles, e.g., coupling, cohesion and granularity, without providing
guidelines during the process may be not sufficient to satisfy some quality attributes.
Thus, this question aims to identify additional guidelines provided by the methodologies
to achieve quality attributes in the SOA development (Papazoglou and Heuvel, 2006;
Erradi et al., 2006).

Q3. How do the methods deal with the delivery of services? There are several
delivery strategies that can be employed to build services (Erl, 2005). The bottom-up
strategy, for example, focuses on the fulfillment of immediate business requirements. On
the other side, the top-down strategy advocates the completion of an inventory analysis
prior to the physical design and delivery of services.

This analysis aims to identify the adopted delivery strategy, that according to Erl
(2005), depending on the maturity, goals and budget of the organization, one delivery
strategy can be more adequate than other. For instance, while the bottom-up strategy
avoids the initial extra cost, effort and time to produce the service inventory, it causes
increased governance as bottom-up delivered services tend to have shorter life-spans and
require more frequent maintenance, refactoring, and versioning.

The rationale to include this question is to analyze the delivery strategies used by the
service-oriented methodologies in order to aid researchers and companies, interested in
starting a SOA development, to select the most appropriated method to use based on their
goals, maturity, deadlines and budget.

Q4. Do the methods use or are based on an existing process or methodology?
The idea of this question is to analyze which methodologies adapt existing processes, e.g.,
the Rational Unified Process (RUP), and which ones build an entirely original one. The
reason to add this question is that it can ease the adoption process of a service-oriented
methodology, since the organization can adapt its existing processes, instead of bringing
something totally new.

33

4.4. CONDUCTING THE REVIEW

Table 4.1 Search Strings

Term ID Key Words

Service OR SOA

Approach OR method OR process OR framework

Analysis OR design OR development OR identification OR discovery
OR specification OR realization OR modeling OR identify OR specify

OR implement OR engineering OR architect

T1

T2

T3

String ID

S1

S2

S3

Key Words

(T1) AND (T2) AND (T3)

(T1) AND (T2)

(T1) AND (T3)

Table 4.2 Electronic Databases
Electronic Databases

ACM Library - http://portal.acm.org/

IEEE Computer Society - http://www.computer.org/

Citeseer library - http://citeseerx.ist.psu.edu/

Google Scholar - http://scholar.google.com

Science Direct (Elsevier) - http://www.sciencedirect.com/

Scirus - http://www.scirus.com/

Springer Link - http://www.springerlink.com/

Wiley Inter Science - http://www.interscience.wiley.com/

IEEE Computer Society - http://www.computer.org/

4.4 Conducting the review

The steps referred to how the review was conducted are detailed in this section. It involves
the search strategy, the studies selection and the data analysis, extraction and synthesis.

Search Strategy

From the research questions, it was extracted some keywords used to search the primary
study sources. The initial set of keywords extracted was: service, service-oriented,
service orientation, SOA, approach, methodology, process, architecture, analysis, design,
identification, specification, realization and development. Based on the refinement of
these keywords, the Table 4.1 presents the search terms and the sophisticated search
strings that could then be constructed using the Boolean operators (AND) and (OR).

The data sources of the review were conference proceedings, journals, thesis and
books. The search process included web search engines and manual searches of confer-
ence proceedings and journals. The search for primary studies on web search engines was
performed in the digital libraries of the most famous publishers in software engineering
as presented in Table 4.2.

34

4.4. CONDUCTING THE REVIEW

Table 4.3 Conferences and Journals
Conferences and Journals

Asia-Pacific Software Engineering Conference (APSEC)

Congress on Services (SERVICES)

European Conference on Software Architecture (ECSA)

Fundamental Approaches to Software Engineering (FASE)

IEEE International Conference and Workshop on the Engineering
of Computer Based Systems (ECBS)

IEEE International Symposium on Service-Oriented System Engineering (SOSE)

International Conference on Services Computing (SCC)

International Conference on Software Engineering (ICSE)

International Conference on Web Engineering (ICWE)

International/European Conference on Web Services (ICWS)

Working IEEE/IFIP Conference on Software Architecture (WICSA)

Workshop on Service-Oriented Architectures and Software Product Lines (SOAPL)

Communications of the ACM (CACM)

International Journal of Web Engineering and Technology (IJWET)

IEEE ACM Sigsoft Software Engineering Notes

IEEE Transactions on Services Computing

IEEE Software

IEEE Transactions on Software Engineering (TSE)

ACM Transactions on Software Engineering and Methodology (TOSEM)

In addition, we also searched 12 conference proceedings and 7 journals considering the
topic areas about service orientation, service-oriented architecture, software engineering
and software architecture. The conferences and journals depicted in Table 4.3 were
searched.

Primary Studies Selection

Once the potentially relevant primary studies have been obtained, they need to be assessed
for their actual relevance. To achieve that, the criteria for inclusion and exclusion of
the objects in this review were defined. The year of publication was not taken into
consideration as inclusion or exclusion criteria.

Inclusion Criteria

The definition of inclusion and exclusion criteria is important to establish the reasons for
each study to be included or excluded of the review. The inclusion criterion used was:
Analysis and/or design approaches, methodologies and processes for service-oriented
development, also including the ones which deal with other aspects besides design.

35

4.4. CONDUCTING THE REVIEW

Exclusion Criteria

The following exclusion criteria were used to discard studies of the systematic review on
service-oriented design methods:

• Study is not an approach, methodology or process. It treats only concepts or issues
related to service-oriented analysis and design, but does not deeply describes a set
of sequential activities with clearly defined inputs and outputs;

• Methods with insufficient information about service-oriented analysis and design,
or duplicated studies published with different names.

Data Analysis

During the analysis of the methods included in our review, they were categorized to
facilitate the tabulation and further comparative analysis. The studies containing any
exclusion criteria were listed, where it was described the exclusion reason. According to
the comparisons and analysis of the studies, some aspects were raised as described next:

• The method strengths and weaknesses;

• Challenges and gaps in the area to be addressed;

• Best practices of service-oriented analysis and design.

One problem faced during the analysis was that, sometimes, even methods considering
the same scope of functionality treated different aspects of the design discipline. For this
reason, the comparative analysis was difficulty and the categorization of the studies was
essential to obtain the results of the review.

Data Extraction

In this step, data extraction forms were designed to collect all the information needed to
address the review questions and some relevant information to characterize the method,
such as a general description, authors and the references used to analyze the methodolo-
gies. The data extracted from each approach were:

• The study title, year of publication, authors and source, such as conference or
journal;

36

4.5. DATA SYNTHESIS

• Scope, e.g., full life-cycle process, architecture and design approach, service
identification method, etc;

• Research questions answers;

• Summary, a brief critical analysis of the method and overview of its characteristics,
key points and drawbacks.

The data were extracted by one researcher of the three main researchers performing
the review, one Ph.D. and two M.Sc. students, and checked by the research group. Each
methodology included in the review was documented in a form template. In this form, all
extracted data were documented with the reviewer’s name and date of the review.

4.5 Data Synthesis

Based on the search results and on the inclusion and exclusion criteria, a set of primary
studies were selected as detailed next.

Service-Oriented Modeling and Architecture (SOMA)

It was developed by IBM. It is a methodology for the full service-oriented life-cycle
based on RUP. Its analysis was based on Endrei et al. (2004), Arsanjani (2004), Arsanjani
and Allam (2006) and Arsanjani et al. (2008).

Service-Oriented Analysis and Design (Erl’s Methodology)

It defines concepts and fundamentals about service-oriented analysis and design. It also
defines a method based on a set of principles, such as loose coupling and reusability. Its
analysis was based on the books: Erl (2005) and Erl (2007).

A Methodology for Service Architectures (OASIS)

This method was developed by advancing open standards for the information society1. It
focuses mainly on the exercise of service discovery. Its analysis was based on Jones and
Morris (2005).

1www.oasis-open.org/

37

4.5. DATA SYNTHESIS

Service-Oriented Software Engineering (SOSE) Framework

This framework proposes a combination of service-oriented and component-based de-
velopment with the purpose of developing service-oriented applications with increased
quality and profitability. Its analysis was based on Karhunen et al. (2005).

Service-Oriented Development Methodology (Papazoglou’s Work)

It is a full life-cycle development methodology for service-oriented systems that range
from planning to deploying and monitoring service-oriented applications. Its analysis
was based on Papazoglou and Heuvel (2006).

Service-Oriented Architecture Framework (SOAF)

It is a systematic and architecture centric framework to ease definition, design, evaluation
and realization of SOA. It incorporates several techniques and guidelines to identify
services systematically, to decide service granularity and model services while integrating
existing legacy systems. Its analysis was based on Erradi et al. (2006).

Service-Oriented Development with Midas (SOD-M)

It is an extension of the model-driven development framework for web information
systems, called MIDAS2. It proposes the development of a service-oriented solution in
an architecture centric way. The proposal presents an UML profile that maps the key
principles and concepts of service-oriented development making it possible to develop
service-oriented solutions model-driven. Its analysis was based on the papers: de Castro
et al. (2006), Acuña and Marcos (2006) and López-Sanz et al. (2007).

An Approach to Develop Adaptable Services (Chang’s Work)

The method is based on SOMA and extends it to deal with service variability and
mismatch. Three types of variability in service design (workflow, service composition,
and logic) and three types of service mismatch (interface, functional, and non-functional)
are used by the approach. Its analysis was based on Chang (2007) and Chang and Kim
(2007).

2http://www.lia.deis.unibo.it/research/MIDAS/

38

4.5. DATA SYNTHESIS

Service Identification Using Goal and Scenario in SOA (Kim’s Work)

It presents a service identification method based on business goals, and uses scenarios
to describe them. It also proposes a conceptual framework to elicit possible business
changes in order to identify services that accomplish these changes as well. Its analysis
was based on Kim et al. (2008).

A Method for Engineering a True SOA (Engels’ Method)

This method defines the term (true SOA) and aims in providing concrete engineering
methods to construct such an architecture. A true SOA is considered more than web
services technology and its style of communication, and it means that changes in the busi-
ness can be supported by the enterprise without major restructuring of its IT architecture.
Its analysis was based on Engels et al. (2008).

A SOA-based Software Architecture Process (RiSE Process)

This process was developed at the RiSE Labs. The process provides a quality attribute
driven and view oriented process for SOA-based architectures. The process uses a design
by contract strategy to design services based on service-orientation principles, e.g., service
cohesion and loose coupling. Its analysis was based on Dias Jr. (2008).

Building Service-oriented Systems on the Web (Lamparter’s Method)

The methodology provides a comprehensive method that integrates service, market and
ontology engineering processes to one service-oriented engineering methodology. Its
analysis was based on Lamparter and Sure (2008).

A Method for Service Identification (Azevedo’s Method)

It provides a method for the identification of service candidates from business process
models. It presents a set of well-defined heuristics for service identification that were
collected in a real industrial case study. Its analysis was based on Azevedo et al. (2009).

39

4.6. RESULTS OF THE SYSTEMATIC REVIEW

4.6 Results of the Systematic Review

In this section, we present the results of this review that was conducted with the objective
of analyzing the current state-of-the-art of existing SOA design methodologies. The next
sub-sections present the analysis of the questions investigated by the systematic review
as well as a critical discussion of the methods, their activities, roles, inputs, outputs,
concerns with quality attributes, delivery strategies and adaptation of existing processes.

4.6.1 Activities, Artifacts and Roles

Analyzing the methodologies, we could identify four activities that are commonly used
by most of the service-oriented methods analyzed: service identification, service specifi-
cation, architecture documentation and service realization. We also observed that very
few methods define artifacts and roles during the process. The next sections present
the activities, artifacts and roles identified during the analysis of the service-oriented
methodologies included in the review.

Service Identification Activity

The identification of services is a challenging and critical task of the service-oriented
development (Azevedo et al., 2009). Identify services having the right level of granularity
can have a broad influence on the whole system and quality attributes, e.g., reusability
and performance (Erradi et al., 2006; Kim et al., 2008). In addition, well-defined and
right-grained services are critical for achieving business agility and flexibility (Carter,
2007).

In this way, it is important to use complementary techniques to identify service
candidates from different sources in order to avoid the identification of an incomplete set
of services (Arsanjani et al., 2008). Analyzing the methods of the review, four different
techniques for service identification were detected:

• Business process modeling: In this activity, the service candidates are identified
from the business process models;

• Existing assets analysis: It focuses on the identification of services from existing
legacy applications;

• Goal-service modeling: It consists of an analysis of the goals of a SOA project in
order to identify service candidates that accomplish these goals;

40

4.6. RESULTS OF THE SYSTEMATIC REVIEW

• Use Cases: In this activity, the service candidates are identified from the use case
descriptions.

We could observe that business process modeling is the most common activity for
service identification, and it is presented in all the methods included in the review. The
Azevedo’s approach presents the most complete set of guidelines and heuristics for the
identification of service candidates from business process models. These guidelines and
heuristics were collected in a real industrial case study.

Only SOMA, OASIS, Chang’s and Kim’s work define activities for goal-service
modeling. Kim’s work is interesting because it uses scenarios to describe the business
goals and considers the impact of business changes during the service identification
activity. In other words, it identifies services to accomplish goals that may appear due to
changes in the business environment.

All the methodologies included in the review, except Engel’s and SOD-M, describe
activities for analyzing existing assets in order to leverage legacy systems in the new
service-oriented solution. This is an important issue since this is one of the major benefits
of service orientation due to its interoperability capabilities (Arsanjani et al., 2008).

Only SOSE and Kim’s work mention the identification of service candidates from
use cases. However, none of them provide guidelines and steps to perform the service
identification activity using the use cases. A systematic identification of services from
use cases is missing in the methods selected for this review. A summary of the service
identification techniques used in the methods as well as their usage percentage are
presented in Table 4.4.

An important point to be considered during the service identification is the traceability
among the services identified and the artifact that was used for their identification. The
traceability link is essential to measure the impact of modifying an artifact, e.g., a business
process or business goal, and its impact on the services identified. In the Kim’s work, the
traceability link among the business goals, business changes and the services identified
are maintained explicitly.

Service Specification Activity

During the service specification, three sub-activities were identified: service specification,
component specification and decision modeling. All the methods analyzed outline
activities for service specification. Only the Engel’s work and SOMA describe activities
for specifying the components that will implement the services. Chang’s method is the
only one concerned with decision modeling and variability.

41

4.6. RESULTS OF THE SYSTEMATIC REVIEW

Table 4.4 Service Identification Techniques
Source Methodologies Usage

Business Process Models 100%All the methods analyzed in the survey.

Existing Systems 85%All the methodologies analyzed, except Engel’s and SOD-M.

Business Goals 31%SOMA, OASIS, Chang’s and Kim’s work.

In the methodology of Papazoglou, WSDL and policies are used to specify and
document services using three different specifications:

1. Structural: The service types, messages and operations are documented;

2. Behavioral: Effects and side effects of service communication is defined;

3. Policy: Policy assertions and constraints are described.

SOSE uses Unified Modeling Language (UML) use case diagrams to specify services.
Every business process is described as a use case. The behavior of each service is also
modeled more specifically using scenarios. In SOAF, service description documents are
used for service specification, where the service contract, service data model, service
usage interface, service usage policy, service inputs and outputs, pre-conditions, effects
and non-functional requirements are specified.

As a model-driven approach, SOD-M introduces some models to the MIDAS frame-
work, and documents services using UML use case models and activity diagrams. The
service discovery process in OASIS is documented using its specific notation. A template
for service definition is provided consisting of the following documentation:

• Business owner, its roles and responsibilities over the business process;

• Actors, their roles and responsibilities;

• Tasks with their description, pre-condition, post-condition and invariants.

In SOMA, the detailed design of the services is elaborated during the service model-
ing activity. A service model is elaborated in terms of service dependencies, flows and
compositions, events, rules and policies, operations, messages, non-functional require-
ments, and state management decisions. Exposed services and service operations are
mapped into IT implementation as WSDL. It also uses UML-based diagrams to specify

42

4.6. RESULTS OF THE SYSTEMATIC REVIEW

Table 4.5 Service Specification Artifacts
Document Methodologies Usage

WSDL 31%Papazoglou’s, Erl’s, SOMA and Chang’s method.

BPEL 8%Chang’s work.

UML 23%SOMA, SOSE and the Engel’s framework.

subsystems and functional components in order to model the static and dynamic behavior
of the services that expose such subsystems and components.

The Erl’s methodology specifies services using web services standards, such as
WSDL and policies. In Chang’s work, services are specified firstly in a technology
independent form, later it suggests the use of WSDL. In addition, Business Process
Execution Language (BPEL) and Business Process Language Notation (BPMN) are also
used to specify service orchestrations and business processes.

Engel’s method specifies services using UML use case diagrams and tabular prose
description, which can be structured with the fields: service name, external view, ser-
vice provider and consumer, pre/post conditions, course of action, trigger, result, non-
functional requirements and internal view.

The methodologies use different techniques to specify and design services. However,
many of them use WSDL to describe services, which emerges as the standard as it can be
seen in Table 4.5.

Architecture Documentation Activity

Analyzing the methodologies, we could notice that several methods do not suggest any
model to document the service-oriented architecture. This is a strong drawback identified
in the majority of the works analyzed. However, SOMA and the RiSE process provide a
template to document the architecture as discussed next.

SOMA suggests a general template for the service-oriented architecture documenta-
tion. The template has seven sections, basically one section for each layer of the reference
architecture defined in the methodology. SOMA uses the following layers:

1. Operational system: This section consists of descriptions of existing custom built
applications, also called legacy systems;

2. Enterprise components: In this section, the enterprise components that are re-
sponsible for realizing the functionalities of the services are described;

43

4.6. RESULTS OF THE SYSTEMATIC REVIEW

3. Services: The services identified are described in this section;

4. Business process choreography: Compositions and choreographies of the ser-
vices exposed are described in this section;

5. Access or presentation layer: Describes the way services will be accessed;

6. Quality of Service: This section describes the capabilities required to monitor,
manage, and maintain the quality of service, such as security, performance, and
availability of the SOA;

7. Integration: This section describes the integration capabilities, such as intelligent
routing, protocol mediation, and other transformation mechanisms, often described
as the Enterprise Service Bus (ESB).

The RiSE process also suggests a specific template to document the service-oriented
architecture consisting of the following sections:

• Documentation overview: Shows how the architecture document is organized,
i.e., describes each section of the document briefly;

• SOA overview: Depicts the description of the SOA, the purpose of the SOA
solution and the quality attributes of the service-oriented architecture;

• Services: Describes the services identified, their service contract, i.e., WSDL and
Service Level Agreement (SLA), and architectural views in the service level;

• SOA views: Contains the architectural views in the enterprise level produced to
address the quality attributes of the SOA;

• Glossary and acronym list: Describes the main words and acronyms with their
meaning in the document.

Both the RiSE process and SOMA present a well-structured and focused template
for the architecture documentation. This characteristic seems appropriated, since service-
oriented architectures should be well documented using different views in order to address
the concerns of the different stakeholders involved in the project and the quality attributes
of the SOA (Ibrahim and Misie, 2006).

44

4.6. RESULTS OF THE SYSTEMATIC REVIEW

Service Realization Activity

In the realization activity, another three sub-activities were recognized: realization strategy
selection, non-functional analysis and the design of an adaptation layer. SOMA, SOAF,
RiSE, Lamparter’s and the Papazoglou’s methodology define a step in their processes
where the realization strategy should be chosen. The same methods define also steps to
analyze the impact of non-functional requirements in the service-oriented architecture.
The method of Chang is the only one to delineate a step to design an adaptation layer to
deal with variability in the service-oriented architecture.

Analyzing the methodologies, we could observe that very few methods explore and
describe the realization strategies supported. Only SOMA and SOAF describe their
strategies briefly. The realization strategies found in the service-oriented methodologies
analyzed are:

• Reuse of existing assets: It involves selecting integration and transformation strate-
gies such as creating adapters and wrappers of legacy functionalities to realize the
desired services. It can be made also exploiting design patterns such as mediators,
facade and factories (Erradi et al., 2006);

• Building from scratch: In this strategy, services are developed from scratch
using a bottom-up or top-down manner. In the top-down strategy, the contract
documents (e.g., WSDL) are created, and then, the service implementation is
developed to realize the contract. Conversely, in the bottom-up strategy, the service
implementation is developed followed by the creation of the contract documents.

Artifacts Produced During the Process

As mentioned before, few methodologies define specific artifacts during the process.
OASIS defines a central model for service definition where the SOA is based on. SOMA
and the RiSE process define a specific architecture document, and the Chang’s work
defines an acquisition plan in one of its steps.

Papazoglou’s, Erl’s, SOMA and Chang’s work define WSDL documents for service
specification, while SOMA, SOSE and the Engel’s framework use UML diagrams.
Chang’s work also uses BPEL and BPMN for business process modeling.

SOD-M uses an extended use case model, represented with a use case model at a
lower granularity; and the service process model, which is a kind of activity diagram
used to represent the service processes. SOAF, Engel’s and OASIS produce a service
description document to describe the services identified.

45

4.6. RESULTS OF THE SYSTEMATIC REVIEW

Table 4.6 Roles Involved in the Process
Role Description

Enterprise Manager
Person who knows the enterprise business as a whole and manages

the integration of business area teams.

SOA Architect Specialist that knows about SOA concepts and technologies.

Application Architect
System architect of some internal or external area of enterprise that

will provide or consume services.

Business Analyst
Person responsible for business processes of the some internal or external

area of enterprise that will provide or consume services.

Business Manager Person who manages an enterprise business area.

The other methods do not define any specific artifact to use during analysis and
design of services. The use of intermediary models and diagrams for business and service
modeling are implicit.

Roles Involved in the Methodologies

Hardly any of the methods define the roles involved in the activities. OASIS discusses
about the project manager, lead architect, lead business analyst, administrative assistance,
technical support and an event coordinator interacting during the business process model-
ing activity. The RiSE process defines the enterprise manager, SOA architect, application
architect, business analyst and business manager.

Lamparter’s work discusses the importance of stakeholders representing service
consumers and producers during certain steps in the process. However, most of the
methods do not detail the responsibilities of the roles during the process. Table 4.6
presents the characteristics and responsabilities of the roles that were described in the
methodologies.

4.6.2 Quality Attributes

Only a few of the methodologies analyzed pay attention to architecture quality attributes.
Some, for the nature of its purpose mention that arbitrarily will not consider other
problems than service-oriented related. That is the case of the OASIS, that focuses
exclusively on service-orientation, leaving gaps intentionally to be covered by another
design discipline that must be used together to obtain a full blueprint.

SOMA, Erl, Lamparter and the RiSE process provide guidelines to deal with the
accomplishment of quality attributes during architecture design. In SOMA, a separate

46

4.6. RESULTS OF THE SYSTEMATIC REVIEW

layer in the architecture is designated to monitor, manage and maintain QoS requirements
such as security, performance and availability. In the Erl’s methodology, some advice
about maintainability and reusability can be found under the names of service-oriented
principles. The RiSE process has a phase in architecture development to identify quality
attributes and another phase to address those attributes.

Most of the methods do not provide proper guidelines to promote reuse among
services. The RiSE, OASIS and the Erl methodology provide some advice and instruct
the designer to look for reuse among services as a way of optimizing the design. The
Erl’s methodology also illustrates different situations where there can be reuse in a
service-oriented architecture: cross-process, intra-process and cross-application reuse.

Reusability is taken into account in Kim’s work during the service identification
activity. It identifies services from business goals and advocates that services providing
implementation for specific business goals can be reused by other services that implement
more coarse-grained business goals. Likewise in Erl’s, in which reusability is considered
by analyzing business activities or group of activities that are common for several business
process. In the Azevedo’s work, it is suggested an integrated view of the business
processes, in which dependencies and commonalities among processes are represented
explicitly and can be useful to identify reusable building blocks of business activities.

Chang’s work appears a step further and apply the implementation of variability
mechanisms among services with the purpose of increasing reuse. The lack of guidelines
for reusability and other quality attributes can be seen as a gap to be fulfilled.

The ideas of SOMA, Erl’s and the Chang’s work seem a nice path to follow with the
purpose of obtaining a more complete service-oriented design discipline.

4.6.3 Delivery Strategy

Analyzing the methods selected for the review, we could detect some delivery strategies
that are currently being used to build (deliver) services. The following delivery strategies
were identified (Erl, 2005; Papazoglou and Heuvel, 2006):

• Top-down: It advocates the completion of an inventory analysis prior to the
physical design, development, and delivery of services;

• Bottom-up: It is tactically focused on the fulfillment of immediate business re-
quirements as priority and the prime objective of the project;

• Meet-in-the-middle: It combines the top-down and bottom-up strategies in order
to get the benefits and minimize the risks of both.

47

4.6. RESULTS OF THE SYSTEMATIC REVIEW

Table 4.7 Service Delivery Strategies
Strategy Methodologies Usage

Bottom-Up 8%The SOSE framework.

Top-Down 31%OASIS, SOD-M, Engel’s and the Lamparter’s work.

Meet in the Middle 38%SOMA, Erl’s, Papazoglou’s, Chang’s and the RiSE process.

The top-down strategy increases the initial cost, effort and time because of an inventory
blueprint that is established prior to the delivery of services. Conversely, the bottom-up
strategy requires subsequence governance with increased costs, effort and time, as the
services are delivered based on immediate project requirements (Erl, 2005, 2007).

The meet-in-the-middle strategy is present in most of the methods selected as shown
in Table 4.7, which presents the delivery strategies used in each method as well as their
usage percentage. We see this as a natural tendency, once this delivery strategy fits well
in many different contexts.

4.6.4 Adaptation of Existing Processes

Some methodologies try to minimize the business changes in the beginning of the adoption
producing service-oriented architectures and adapting existing processes. This is a good
point since it minimizes the companies cost and effort during the process adaptation. Other
methods specify a totally new methodology for developing service-oriented architectures
requiring a bigger effort to adopt it.

SOMA and the methodology of Papazoglou are based on the Rational Unified Process
(RUP). The methodology of Papazoglou and the SOSE framework combine Service-
Oriented Development (SOD) and Component-Based Development (CBD). In this com-
bination, enterprise components, such as Enterprise Java Beans, are used to implement
the functionalities that will be exposed by the services.

The work of Chang is based on SOMA, and it uses concepts of Software Product
Lines (SPL), such as variability, in order to develop service-oriented applications that can
be adapted to different contexts. The work of Lamparter proposes an integrated method
that merges three engineering methodologies: web service/software engineering, market
engineering and ontology engineering. And finally, SOD-M is based on the MIDAS,
a framework for Model-Driven Development (MDD), making it possible to develop
service-oriented applications in a model-driven way.

48

4.7. CHAPTER SUMMARY

Table 4.8 Summary of the Review

SOMA

Delivery Strategy

Adaptation of Existing
Processes

Architecture
Documentation

Experimentation
in Industry

Experimentation
in Academy

Guidelines for
Quality Attributes

Meet in the middle

RUP

Specific Template

Different projects
and domains

Specific layer to deal
with quality attributes

Erl’s Methodology

Top-Down, Bottom-Up
and Meet in the middle

Yes

Method based on
service-oriented principles

Yes

OASIS

Top-Down

Yes

Concerns with
reusability

SOSE

Top-Down

Yes

Papazoglou

Top-Down, Bottom-Up
and Meet in the middle

Concerns with
reusability

RUP

SOAF

Meet in the
middle

Yes

SOD-M

Top-Down

Yes

MIDAS

Chang

Delivery Strategy

Adaptation of Existing
Processes

Architecture
Documentation

Experimentation
in Industry

Experimentation
in Academy

Guidelines for
Quality Attributes

Meet in the middle

SOMA

Yes

Concerns with
quality attributes

Kim Engels

Top-Down

Yes

RiSE

Yes

Lamparter

Marketing and Ontology
Engineering

Azevedo

Yes

Concerns with
quality attributes

Meet in the middle

Specific activity to deal
with quality attributes

Specific Template

Yes Yes

Concerns with quality
attributes and directions

for commonality and
variability analysis

Relating to ease of adoption, the SOMA seems worth looking as it fits well with
the RUP philosophy, which is worldwide spread. Moreover, both SOMA and RUP are
currently being controlled by IBM.

4.7 Chapter Summary

This chapter presented a systematic review on SOA design methods. A deep analysis of
the methodologies considering the analysis of their weaknesses and strengths, and gaps
in the area was performed. Table 4.8 summarizes the review. A survey on SPL processes
can be found in (de Almeida, 2007) and a systematic review is presented in (Souza Filho
et al., 2008).

By analyzing the activities, artifacts, architecture documentation, concerns with
reusability and other quality attributes, delivery of services and adaptations of existing
processes or methodologies, we could observe that a set of good practices, such as
goal-driven and business process modeling, are being used in the existing methods.

49

4.7. CHAPTER SUMMARY

We could notice, though, a certain lack of concerns with reusability and other quality
attributes because the guidelines provided are not well detailed. Several approaches just
comment it briefly and no guidelines are given to achieve quality attributes. We believe
that the absence of these guidelines is a gap that needs to be addressed and an interesting
research topic.

The same thing occurs during architecture documentation, several methodologies do
not suggest any model or notation, or even comment about the documentation of the ar-
chitecture. However, few approaches suggested their specific template for documentation.

As we could observe, some of the methods are adapted from an existing process or
methodology. We consider it as a strong point because it can ease the adoption of the
process for companies that already use the adapted process, such as RUP. However, it is
strongly recommended that the method does not change the main characteristics of the
adapted process.

In our point of view, the maturity of the methods can be determined by its experimen-
tation in academy or industry. Thus, we trust that methods that have not been validated
largely in industrial environments and different domains are not mature, and must be
deeply and carefully analyzed to ensure their quality and consistency for real industrial
projects usage.

In this path, we consider the SOMA to be a very mature and comprehensive method-
ology. Other methods that are undoubtedly worth seeing are: Erl’s, for its primary, yet
somewhat vague guidelines; and Chang’s work for its concern about variability and
commonality.

The next chapter presents an approach to design service-oriented product line archi-
tectures (SOPLE-DE), as well as its activities, sub-activities, roles, inputs, outputs and
guidelines.

50

5
An Approach to Design Service-Oriented

Product Line Architectures

5.1 Introduction

The SOPLE-DE (Medeiros et al., 2009) is part of a bigger process, called Service-
Oriented Product Line Engineering (SOPLE), which is concerned with the full life-cycle
of service-oriented product line engineering, including, scope, requirement, design,
implementation and testing. In this dissertation, the SOPLE-DE, which deals with the
architectural aspects of the service-oriented product line development, will be described.

The main goal of the SOPLE-DE is to produce a Service-Oriented Product Line
Architecture (SO-PLA), which represents the common and variable architectural elements
of a specific domain. In order to define a SO-PLA, a process is essential to provide
guidance to the team, specify the artifacts to be produced, and associate activities with
specific roles and the team as a whole (Booch, 1995).

The SOPLE-DE receives the feature model, business process models and the quality
attribute1 scenarios as mandatory inputs. The domain use cases are received as inputs
when available, i.e., they are optional inputs. In the context of the SOPLE process, the
SOPLE-Requirement process provides these inputs. However, the SOPLE-DE is flexible,
and can be used with other service-oriented product line requirement process that fits the
inputs required by it.

1In this work, the term quality attribute will be adopted instead of non-functional requirement. It was
decided because this term is better to represent the essential characteristics of an architecture, e.g., this
architecture is flexible, or it is modifiable.

51

5.2. PRINCIPLES

The remainder of this chapter is organized as follows: Section 5.2 presents the
principles used as basis to define the SOPLE-DE; In Section 5.3, an overview of the
SOPLE-DE is described; Section 5.4 discusses the activities, tasks, inputs, outputs
and roles of SOPLE-DE in details; finally, Section 5.5 concludes this chapter with its
summary.

5.2 Principles

In order to provide a systematic way to perform the service-oriented domain design,
SOPLE-DE is based on a set of design and product line principles, and it combines
feature-oriented, component-based, process-oriented and service-oriented development.
The principles used by the SOPLE-DE are discussed next.

5.2.1 Component-Based Development (CBD)

A component can be defined as an encapsulated part of a system, nearly independent,
replaceable, reusable, and subject to third-party compositions (Szyperski, 2003). Compo-
nents have well-defined (provided and required) interfaces, and fulfill a clear function of
the system (Kruchten, 2003). An example of component can be an Enterprise Java Bean
(EJB) (Panda et al., 2007).

In this way, components are used as the basic architectural elements of the service-
oriented product line architecture. In other words, the architectural components provide
the functionalities that will be exposed by the services (Arsanjani et al., 2008). More-
over, CBD can be used as a variability mechanism. Thus, service-oriented product line
variability can be implemented changing architectural components (van Gurp et al.,
2000).

5.2.2 Feature-Oriented Development (FOD)

SOPLE-DE considers a feature as a logical unit of behavior that is specified by a set of
related functional or non-functional requirements and represents a valuable aspect to the
customer (Bosch, 2000). FOD is used in this approach motivated by the fact that features
are a natural and intuitive way to express commonality and variability among products.
Moreover, features are abstractions that both customers and developers can understand
easily (Kang et al., 2002).

52

5.2. PRINCIPLES

In this sense, the SOPLE-DE approach uses feature models to represent the common
and variable functionalities of the service-oriented product line in an exploitable way (Lee
et al., 2008). Thus, different customers, architects and developers can visualize what is
common and what varies in the product line using a single model, i.e., the feature model.
In this way, customers can select the desired features for their products, and architects
and developers can understand, design and implement the variation points of the product
line easier than without this general view.

5.2.3 Process-Oriented and Service-Oriented Development

Service orientation is an emergent paradigm in which application functionality is exposed
using a set of reusable services. In the context of service-oriented development, services
provide a flexible way to expose discrete business functions, and therefore, a viable way
to develop applications that support business processes (Brown et al., 2003).

Thus, the SOPLE-DE uses Process-Oriented Development (POD), and analyzes the
domain business processes to identify architectural services (Boffoli et al., 2009). The
functionality exposed by these services will be provided by the architectural components
as already mentioned (Arsanjani et al., 2008). In addition, service-oriented product line
variability can also be implemented changing architectural services.

5.2.4 Separation of Concerns and Information Hiding

The use of components and services allows the separation of concerns in specific self-
contained and replaceable building blocks. However, the use of CBD and SOD is not
enough to separate concerns efficiently. In this way, SOPLE-DE considers the separation
of concerns during the design and provides guidelines for it. Thus, features and business
process activities can be encapsulated into components and services.

The use of these architectural elements, i.e., components and services, also encourages
information hiding due to the fact that they expose functionality through well-defined
interfaces and maintain their internal logic hidden (Szyperski, 2003; Erl, 2005).

5.2.5 Commonality and Variability

SPL explores the commonality and variability among a set of related products (Pohl et al.,
2005). In this context, SOPLE-DE allows the commonality and variability, presented in
the feature model, business process models, use cases and quality attribute scenarios, to
be represented and mapped in the SO-PLA.

53

5.2. PRINCIPLES

SOPLE-DE considers variability at the component and service levels. It extends
the notion of variability into the service-oriented development activities, which is not
considered by several existing service-oriented methodologies, e.g., Erl (2005) and
Papazoglou and Heuvel (2006). Thus, the services produced in the SOPLE-DE can be
developed with variability, i.e., a service can be customized to specific contexts based on
customer requirements through variation points. Moreover, the artifacts produced, e.g.,
architectural views and other diagrams, can also contain variability.

5.2.6 Quality Attributes

The accomplishment of architectural quality attributes is crucial for certain types of
systems. In these cases, merely satisfy the functional requirements are not enough
(Barbacci et al., 1995). For instance, critical systems in general, must satisfy security,
safety, dependability, performance, and other similar quality attributes as well.

In the context of software product line architectures, some quality attributes, e.g.,
flexibility and evolvability are essential (Pohl et al., 2005). Moreover, SPL as a systematic
and planned reuse strategy explicitly considers reusability due to the use of two develop-
ment cycles (Clements and Northrop, 2001). In the core asset development, the artifacts
are produced generically with variability, and later, they are reused and customized to
specific contexts during product development.

In this sense, SOPLE-DE uses the separation of concerns, information hiding, man-
aged variability, CBD and SOD in a systematic way with the purpose of improving
flexibility and evolvability. Thus, features and business process activities, when encapsu-
lated in specific components or services, can be improved or modified locally without
affecting other elements of the architecture. In addition, SOPLE-DE provides guidelines
to satisfy other quality attributes, e.g., reusability and performance, during the process.
The use of SOA concepts also encourages interoperability due to the characteristics of
services, flexibility and business agility (Erl, 2007; Carter, 2007).

5.2.7 Cohesion and Granularity

Cohesion and granularity are concepts that directly impact some architectural quality
attributes, e.g., performance and reusability (Erradi et al., 2006). Cohesion is the degree
of functional relatedness of the operations contained in the interface of a service or
component, while granularity refers to the scope of functionality exposed by a service or
component (Papazoglou and Heuvel, 2006).

54

5.3. SOPLE-DE OVERVIEW

For instance, if services are too coarse-grained, the size of the exchanged messages
grows and sometimes might carry more data than needed. On the other hand, if services
are too fine-grained, multiple message exchanges may be required to perform specific
functionalities causing performance problems (Erradi et al., 2006). In this sense, SOPLE-
DE provides guidelines to consider cohesion and granularity during the architecture
design in order to avoid performance problems and increase reusability.

5.2.8 Top-Down and Proactive Development

The SOPLE-DE uses a top-down way to identify and design services. This strategy
advocates the completion of an inventory analysis prior to the physical design, develop-
ment, and delivery of services (Erl, 2005). In this way, SOPLE-DE does not consider
the bottom-up strategy, which is concerned with the fulfillment of immediate business
requirements and integration of legacy applications (Arsanjani et al., 2008).

In the context of SPL engineering, the SOPLE-DE uses a proactive adoption model, in
which all product variations on the foreseeable horizon up front are analyzed, architected
and designed. This adoption model suits organizations that can predict their product
line requirements well into the future and that have the time and resources for a long
development cycle (Krueger, 2002). The extractive and reactive adoption models, which
are concerned with existing products and incremental development respectively, are not
considered in SOPLE-DE.

5.2.9 Systematic Sequence of Activities

The last principle, and not less important, is to provide a systematic sequence of activities,
which are divided into a set of tasks with well-defined inputs and outputs, and performed
by a predefined set of roles with clear responsibilities. The purpose of this systematization
is to ease the use and adoption of the SOPLE-DE in practice.

5.3 SOPLE-DE Overview

The SOPLE-DE is a top-down approach for the systematic identification, design and
documentation of service-oriented core assets supporting the non-systematic reuse of
service-oriented environments. It also uses SOA concepts, e.g., dynamic service discover-
ability, to aid the development of flexible and dynamic software product lines.

55

5.3. SOPLE-DE OVERVIEW

Next sub-sections present an overview of the inputs, outputs, roles, architectural style,
development cycles, and activities of the SOPLE-DE.

5.3.1 Inputs and Outputs

The SOPLE-DE receives the feature model, business process models and quality attribute
scenarios as mandatory inputs. The domain use cases are also considered as inputs when
available. The feature model explicitly represents the commonality and variability of the
service-oriented product line, i.e., common and variable parts of the domain. Thus, it
provides the basis for designing, developing and configuring reusable core assets (Kang
et al., 2002).

In the context of service-oriented product lines, the business process models can
contain variability, i.e., business process activities can be marked as mandatory, optional
or alternative (Ye et al., 2007; Boffoli et al., 2008). The models represent the business
processes for a specific domain that should be automated by the service-oriented product
line. These models are usually modeled using Business Process Modeling Notation
(BPMN) or UML activity diagrams (Razavian and Khosravi, 2008).

The quality attribute scenarios represent the non-functional requirements that should
be satisfied at the architecture level, and SOPLE-DE requires them to be prioritized
previously according to their importance to the product line architecture. In this way,
architectural quality attribute trade-offs can be solved accordingly. In addition, SOPLE-
DE considers that specific products in the line may require different quality attributes.
Thus, quality attributes can be considered as a variation point of the service-oriented
product line (Etxeberria et al., 2007).

However, it is important to note that a quality attribute, e.g., flexibility or evolvability,
does not say exactly what it means. Thus, SOPLE-DE requires quality attributes to be
specified using scenarios. Quality attribute scenarios can be described using the following
parts (Bass et al., 2003):

• Source of stimulus: It is an entity that generates a stimulus, e.g., a human or a
computer system;

• Stimulus: It is an action, generated by the source of stimulus, that arrives at a
system and has to be considered;

• Environment: It is the condition of the system when the stimulus occurs. For
instance, the system may be in an overload condition or may be running normally
when the stimulus occurs;

56

5.3. SOPLE-DE OVERVIEW

• Artifact: Some artifact is stimulated, it may be the whole system or pieces of it;

• Response: The response is the activity undertaken after the arrival of the stimulus;

• Response measure: When the response occurs, it should be measurable in some
way to test the quality attribute.

A use case represents the behavior of a system when responding to an action originated
by an actor, i.e., source of stimulus (Kruchten, 2003). In the context of service-oriented
product lines, use cases can also contain variability. The SOPLE-DE encourages use
cases to be described using the following parts: actor, pre/post conditions, main flow,
alternative flow and invariants.

The use cases are not used in the service-oriented development normally, in which
the business processes represent the requirements and the focus is on business processes
rather than use cases (Abu-Matar, 2007). However, SOPLE-DE considers the use cases
as optional inputs because they provide detailed (additional) information that may not be
presented in the business processes.

The SOPLE-DE encourages the quality attribute scenarios and use cases to be de-
scribed as presented previously. However, as commented before, the approach is flexible
and can be used together with others requirement processes that provide these inputs, even
using different formats. It will not impact the SOPLE-DE, but the use cases and quality
attribute scenarios should be detailed carefully in order to ensure a good understanding
of the requirements and quality attributes by the stakeholders.

The output of the SOPLE-DE is an architecture document describing the SO-PLA,
with traceability links among the architectural models, e.g., architectural views, and the
requirement models such as the feature model and business process models. Appendix A
provides an architecture document template to document the SO-PLA.

5.3.2 Roles

A role defines the behavior and responsibilities of an individual or group of people
working together as a team. The behavior is expressed in terms of tasks the role performs,
and each role is associated with a set of cohesive tasks (Kruchten, 2003). The SOPLE-DE
uses the following roles:

• Business Analyst: Business specialist responsible for the business processes of the
domain. The business analyst makes sure that all the business logic is represented
in the design;

57

5.3. SOPLE-DE OVERVIEW

• Domain Architect: Specialist in variability modeling, responsible for the design of
variation points in the architecture and definition of the variability implementation
mechanisms that are going to be used;

• SOA Architect: Specialist in SOA modeling, and responsible for the design of the
service-oriented architecture as whole, i.e., identification, design and documenta-
tion of the architectural elements considering the quality attributes that should be
satisfied;

• Domain Designer: Person responsible for defining the responsibilities, operations,
attributes, and relationships of classes and determining how they should be adjusted
to the implementation environment;

• Service Designer: Specialist in service modeling, and responsible for defining
the responsibilities, quality attributes and general documentation of services and
service compositions.

All the roles of SOPLE-DE are mandatory. However, the same person can play more
than one role in a specific project, e.g., the same person can be the SOA architect and ser-
vice designer, since the activities performed by these roles share common characteristics
and they are performed in different times.

5.3.3 Architectural Style

The SOPLE-DE considers the architectural style shown in Figure 5.1. This architectural
style presents the layers that are commonly used in SOA (Arsanjani, 2004). However,
other authors use different taxonomies and some define additional layers as described
next.

For instance, Erl (2005) divides the service layer into task, entity and utility service
layers, while Papazoglou and Heuvel (2006) uses the term business processes layer
instead of orchestration service layer, and divides the service layer into business and
infrastructure service layers. The work of Arsanjani et al. (2007) uses additional layers,
e.g., operational system layer, since it considers the integration of legacy applications that
is not taken into account in SOPLE-DE.

The interface layer is composed of Graphical User Interfaces (GUI) components.
Only service-oriented product lines that require visual interfaces to interact with the
services and service orchestrations may use this layer. In addition, the visual interface

58

5.3. SOPLE-DE OVERVIEW

Components

Services

Service
Orchestrations

Graphical User
Interfaces (GUI)

Legend: Use OptionalVariability Alternative

Q
u

a
li
ty

A
tt

ri
b

u
te

s

M
o

n
it

o
ri

n
g

Figure 5.1 Architectural Style

components may be specific for each system, in this way, they will not be considered as
core assets in some product lines.

The orchestration service layer consists of composite services, which implement
coarse-grained business activities, or even an entire business process, that need the partic-
ipation and interaction of several fine-grained services. The service layer is composed
of self-contained and business-aligned services, which implement fine-grained business
activities. The component layer consists of a set of components that provide functionality
for the services and maintain their Quality of Service (QoS).

The quality attribute layer consists of additional architectural elements responsible
for satisfying specific quality attributes, e.g., performance and security. Finally, the
monitoring layer, which is responsible for monitoring the health of the SOA solution,
e.g., monitoring the number of service calls, the response time of services and number of
service errors.

It is important to note that the architectural elements of these layers are developed
taking variability into account, and they can be mandatory, optional or alternative. In
addition, specific metrics can be monitored in different systems and each system may be
customized to satisfy specific quality attributes.

The SOPLE-DE considers that service-oriented product line architectures support
two variability levels as described next (Ye et al., 2007; Boffoli et al., 2008):

1. Configuration variability: Architectural elements are selected from the core
assets in order to obtain the target system, i.e., optional and alternative architectural
elements are selected or excluded from the architecture;

2. Customization variability: Architectural elements already selected for a system
are customized according to the requirements of the specific system, i.e., architec-
tural elements with variability are customized internally.

59

5.3. SOPLE-DE OVERVIEW

5.3.4 Development Cycles

The SOPLE-DE is divided in two life cycles as software product line engineering: core
asset development and product development. The core asset development aims to provide
guidelines and steps to identify, design, document and implement generic architectural
elements, i.e., components, services and service orchestrations, with variability. During
the product development cycle, these architectural elements are specialized to a particular
context according to specific customer requirements or market segments needs (Clements
and Northrop, 2001; Pohl et al., 2005).

However, the focus of this dissertation is on the core asset development cycle, in par-
ticular, on the design of service-oriented product line architectures. Thus, the SOPLE-DE
provides guidelines and steps for the identification, design and documentation of compo-
nents, services, service orchestrations and their flows. In addition, SOPLE-DE considers
variability in these architectural elements and in their communication, e.g., different
protocols of communication, and synchronous or asynchronous message exchange.

5.3.5 Activities

The SOPLE-DE starts with the architectural elements identification activity. It receives
the domain feature model, the business process models and the quality attribute scenarios
as mandatory inputs. The domain use cases are optional inputs for this activity. It
produces a list of components, services and service orchestration candidates for the
product line architecture. Moreover, the communication flows among these elements are
also identified.

Subsequently, there is a variability analysis activity. It receives the list of components,
services, service orchestrations and their communication flows identified previously, and
defines and documents key architectural decisions regarding variability. In this activity, it
is defined how the variability, presented in the feature model, business process models,
use cases and quality attribute scenarios, will be implemented. The variability analysis
activity refines the architectural elements identified previously.

Architecture specification is the next activity of the SOPLE-DE. In this activity, the
architecture is documented using different views in order to represent the concerns of
the different stakeholders involved in the project (Bass et al., 2003). An architecture is a
complex entity that should be represented and documented upon several views.

The architectural elements specification activity is performed after the specification
of the architectural views. During the architectural elements specification activity, the

60

5.4. THE SOPLE-DE APPROACH

low-level design of components and services is realized. SOPLE-DE suggests some UML
diagrams to document the internal behavior of the architectural elements.

In parallel with these four activities described, the design decisions documentation
activity is performed concurrently. In this activity, important design decisions, e.g.,
selection of technologies and variability mechanisms, are documented. Figure 5.2 shows
the activities of the SOPLE-DE. As it can be seen, its activities are executed interactively,
i.e., the activities do not have to be performed in a sequential order until their conclusion,
and the execution flow can go back to previous activities when necessary (Kruchten,
2003).

Architectural Elements
Identification

Variability Analysis

Architecture Specification

Architectural Elements
Specification

Design Decisions
Documentation

Activity EndLegend: FlowBegin

Figure 5.2 SOPLE-DE Activities

5.4 The SOPLE-DE Approach

In this section, the activities, tasks, inputs, outputs and roles of the SOPLE-DE are
presented in more details. In order to clarify its activities and tasks, an example on the
Travel Reservation domain will be used.

61

5.4. THE SOPLE-DE APPROACH

The travel reservation service-oriented product line should offer its customers the
benefit of planning and reserving travel arrangements on the Internet. This product line
should fit the requirements of similar travel agencies. Thus, the Travel Agency term will
be used to describe this product line throughout this document.

The travel agency product line should achieve the key goals through the development
and deployment of its services (Snell, 2002):

1. The product line should allow customers to submit travel itineraries and payment
information to the product line services using a Web interface;

2. The travel agency services should automatically obtain and reserve the appropriate
services for the airline, hotel or vehicle according to the customer itineraries;

3. Its services should perform compensation operations for canceling itinerary failures;

4. It should automatically return confirmation or failure of all reservations back to the
customer once the processing of the itinerary is complete.

In this sense, different products in the line will be customized to fit the requirements
of specific travel agencies, e.g., from small travel agencies that deal with airline ticket
reservations to bigger travel agencies that provide services to reserve airline tickets, ac-
commodation and vehicle. These functionalities were selected because they are essential
for the travel agency domain. The general business process that should be supported by
the systems in the product line is shown in Figure 5.3.

Receive Itinerary

Compensation

Pay
Reservations

Notify
Customer

Reserve
Vehicle

Reserve
Hotel

Reserve
Airline

Cancel Cancel Cancel

Vehicle? Hotel? Airline?

Check
Reservations

Business ActivityLegend: XOR [1..3]

Figure 5.3 The Project used as Example

62

5.4. THE SOPLE-DE APPROACH

5.4.1 Architectural Elements Identification Activity

In this activity, the architectural elements of the service-oriented product line (components,
services and service orchestrations) and their flows will be identified. The architectural
elements identification activity receives the feature model, business process models and
quality attributes scenarios as inputs. The domain use cases are also received as inputs
when available. It produces a list of components, services, orchestrations and their
associated flows as output, and this list is documented in the architecture document.

The architectural elements identification activity is divided in three tasks: define
service candidates, define component candidates and define flows. Figure 5.4 shows the
inputs, outputs, tasks and roles of this activity, and the next sub-sections present its tasks
in detail. All the activities of the SOPLE-DE are described using this notation, which
was created based on (Kruchten, 2003).

Task Begin EndLegend: FlowArtifact Role

Define Service
Candidates

Domain
Architect

SOA
Architect

Roles Involved

Business
Analyst

Inputs Outputs

Feature
Model

Process
Models

Service
Candidates

Service
Orchestrations

Quality
Scenarios

Tasks

Feature
Model

Quality
Scenarios

Component
Candidates

Service
Candidates

Define Component
Candidates

Use
Cases

SOA
Architect

Service
FlowsDefine Flows

Service
Candidates

Service
Orchestrations

Quality
Scenarios

Figure 5.4 Architectural Elements Identification Activity

5.4.1.1 Define Service Candidates

The identification of service candidates is a challenging and crucial task of service-
oriented computing (Lee et al., 2008). In the context of service-oriented product lines,
the service identification task is even harder due to concerns with commonality and
variability.

In the service identification task, a set of services and service orchestrations that
support the business processes is defined. Thus, it is reasonable to identify these services

63

5.4. THE SOPLE-DE APPROACH

considering the business process models (Erl, 2005; Erradi et al., 2006). However,
according to Arsanjani et al. (2008), the identification of service candidates should be
performed using complimentary techniques to avoid the identification of an incomplete
set of services.

In particular, SOPLE-DE combines complimentary service identification techniques
that use different sources to identify services, e.g., business process models, use cases,
feature models and quality attribute scenarios. This task starts with an analysis of the
business process models, feature model and quality attribute scenarios received as inputs.
The service identification from the use cases is optional.

The service identification task produces as output a list of service and service orches-
tration candidates for the architecture. A service candidate is defined as an abstract, not
implemented service, which during the design phase of a service life-cycle model, can be
designed, and then implemented as a service or discarded (Erl, 2005).

The role responsible to perform the service identification task is the SOA archi-
tect. However, the business analyst should review the service and service orchestration
candidates in order to ensure an accurate representation of the business logic (Erl, 2007).

The identification of services using each technique can be executed concurrently.
However, at the end of the service identification task, the service candidates identified
should be consolidated, e.g., duplicated services are discarded. Next sub-sections present
the service identification techniques of SOPLE-DE.

Define Services from Business Processes

The steps that should be performed in order to define the architectural services and service
orchestrations from the business processes are: identify automatic business activities and
analyze business activities interactions.

In the first step, automatic and partially automatic business process activities will be
identified from the business process models. Automatic business process activities are
performed entirely by a system with no manual interference, while partially automatic
activities are executed manually, but supported by a system (Azevedo et al., 2009).
Manual activities are ignored because they usually cannot be implemented by the services
(Havey, 2005). Initially, each automatic and partially automatic business process activity
is considered as a service candidate.

However, in the context of service-oriented product lines, the business processes can
be modeled with variability. Thus, some business activities may be marked as mandatory,
optional or alternative. Hence, the services identified from the business activities will

64

5.4. THE SOPLE-DE APPROACH

be classified according to the type of the activity they implement, i.e., a service that
implements an optional business process activity will be considered as optional and will
not be presented in all systems of the product line.

The first step towards the identification of service orchestrations is the analysis of
interactions among business process activities. In this step, the list of automatic and
partially automatic business activities produced previously will be analyzed to identify
related activities that need to be executed in special conditions, such as the interaction
patterns described next (Lee and Kang, 2003; Havey, 2005):

• Sequential: Business process activities that must be executed in a pre-specified
sequential order;

• Concurrent: Activities that must be executed concurrently in order to perform a
functionality correctly;

• Exclusive: Business process activities that cannot be activated during the execution
of other business activities;

• Subordinate: Activities that can be activated only if another business activity is
being executed;

• Loop: Business process activities that must be executed until a condition becomes
false, or executed a predefined number of times;

• Optional: A business process activity that will be executed according to conditions;

• Alternative: A set of business process activities in which only one will be executed
depending on conditions.

These interaction patterns mentioned usually require service orchestrations in order to
control and execute the related business process activities correctly. A business process
as a whole, for instance, usually requires service orchestrations in order to execute the
business activities as they are described in the business process model. A business process,
commonly, may contain several combinations of sequential, concurrent, exclusive and
other interaction patterns.

In Figure 5.5, Erl (2005) demonstrates that services can be defined with different
levels of granularity, and they can be orchestrated in several ways. Thus, the SOA
architect has to analyze each situation and decide a solution for its own project in order
to satisfy the quality attributes required.

65

5.4. THE SOPLE-DE APPROACH

Process
Step

Sub-process

Process

Service A

Service B

Service C

Service CandidateProcess Step Execution ConditionLegend:

Figure 5.5 Service Granularity

For instance, two examples are given with the purpose of providing guidance to
satisfy quality attributes. In the first example, each service is used to implement a specific
business process activity (process step), as Service A in Figure 5.5. In this way, each
business activity can be modified without impact other activities, which is appropriated to
achieve flexibility and evolvability. However, if the granularity of the business activities
is low, the number of services and the message exchanged among them may increase
dramatically impacting performance.

In the second example, it is assumed that the interaction pattern implemented by
Service B (see Figure 5.5) appears in several processes. In this way, it can be explored
in order to increase reusability. Thus, this interaction pattern can be isolated in a unique
service to be reused in different contexts. Moreover, this service can be designed with
variability to be adapted to specific contexts.

However, the activities of this interaction pattern can also be implemented by two
or three services (one for each process step) and a service orchestration to control their
execution. It is a design decision that should be made by the architect considering
different factors, such as the cohesion and granularity of the business activities contained
in the pattern.

The SOA architect has to decide the best way to encapsulate business process activities
and interaction patterns into services and service orchestrations considering the quality
attribute scenarios received as input. It is important to note that quality attribute trade-
offs may occur, since satisfy one quality attribute might impact others. Thus, the SOA
architect has to consider the priority of the quality attributes to solve these trade-offs.

66

5.4. THE SOPLE-DE APPROACH

Considering the business process depicted in Figure 5.3 as an example, different
service candidates can be identify. For instance, a service for each type of reservation, i.e.,
airline, accommodation and vehicle, a service for payment issues, and a service to notify
customers. In addition, the reservation activities need a service orchestration to execute
these activities in parallel and control failures. In other words, if an airline reservation is
performed successfully, but an accommodation is not found, it is necessary to cancel the
airline reservation. Thus, this service orchestration is essential to control the reservation
services and implement these functionalities correctly.

Define Services from Features

The identification of services and service orchestrations from the feature model should
be performed using the concept of service feature, which is a major functionality of a
specific domain that can be added or removed of systems, and configured independently
of other features (Lee and Kang, 2003). Each service feature identified is considered as a
service candidate or service orchestration depending on its characteristics, purposes and
granularity.

The service features will dictate the granularity of the services identified. These
services will be marked as mandatory, optional or alternative depending on the type of
the service feature that originates them. They also may contain optional and alternative
sub-features, which may impose variation on the service design. These sub-features may
become the components that provide functionality for the services as described in the
component identification task. However, service features considered as service candidates
should share the following characteristics:

• Stateless: Service features should encapsulate functionalities that contain only
stateless requirements. It is motivated because services should be as more stateless
as possible in order to increase service reusability and scalability (Erl, 2005);

• Autonomous: Service features should encapsulate features that have control over
their internal logic, since services should be autonomous and self-contained (Erl,
2005);

• Coarse-grained: Services slower down performance due to the remote calls (Jo-
suttis, 2007). For this reason, service features considered as service candidates
should encapsulate coarse-grained functionalities to reduce the message exchanged
among services;

67

5.4. THE SOPLE-DE APPROACH

• Interoperable: Service features encapsulating functionalities that will be reused
by other services developed using different programming languages should be
considered as service candidates.

For instance, Figure 5.6 presents two possible ways to use the feature model to identify
services, orchestrations and components. As it can be seen, service orchestrations control
the execution of services, while services use the functionalities that are provided by the
architectural components. In this sense, orchestrations should be more coarse-grained
than services, which should be more coarse-grained than components.

Root

Feature 2Feature 1

Feature 3 Feature 4 Feature 6

Feature 7 Feature 8 Feature 9

Feature 5

Legend: Use Orchestration Service Component

Figure 5.6 Identification of Architectural Elements from Features

It is important to note that service features can be implemented by a service orches-
tration, service or component. However, the service features with the characteristics
described before (e.g., interoperable and stateless), should be implemented by a service
orchestration or service depending the their granularity and characteristics as already
commented. For instance, service features that control the execution of other fine-grained
service features should be considered as a service orchestration. Conversely, service
features without those characteristics should be considered as architectural components
as explained in the component identification task.

Figure 5.7 gives an example of a feature model for the travel reservation product
line. In this sense, the following service features can be identified: airline, vehicle and
accommodation features, notification and payment. Thus, these features can be considered
as service candidates, while their sub-features can be considered as component candidates.

Define Services from Use Cases

In this step, the key business entities of the domain should be identified using the use
cases, when received as inputs. These entities are directly manipulated by several services
and need specific services to implement their life-cycle operations, e.g., create, delete,
update and retrieve (Erl, 2007). As the use cases are optional inputs, if they were not

68

5.4. THE SOPLE-DE APPROACH

Travel Reservation

Payment

Debit Card Credit CardBank Billet

Reservation

Vehicle AirlineAccommodation

Notification

Email SMS

Legend: Alternative OR Mandatory Feature

Figure 5.7 Travel Reservation Feature Model

provided, this identification will be realized from the business process and feature model,
which may turn this step more difficult.

According to Erl (2005), entity services, which are the ones created to implement the
life-cycle operations of the key business entities, are highly reusable because they are
common to most parent business processes. The key business entities are described in
the use cases usually using nouns, e.g., customer and account. However, other service
candidates or their operations can be obtained from the verbs presented in the use cases,
e.g., the users should authenticate themselves and the system should restrict access to
specific pages, can be used to identify services to authenticate users and control user
access respectively (McGovern et al., 2003; Larman, 2004).

A conceptual service model can be defined from the use cases with the purpose of
facilitating the identification of services. It consists of a model of the problem domain
and it is created without regard for any application or technology. Figure 5.8 depicted a
conceptual service model presented in McGovern et al. (2003). Each entity in the logical
model is either a stateful entity or a stateless entity. In this sense, stateful entities, such
as account, customer and address can be considered as components, while the managers
are considered entity service candidates that manipulate these entities. The conceptual
service model will also be useful during the definition of the service interfaces.

Define Services from Quality Attrbutes

The SOPLE-DE considers a specific layer in its architectural style to deal with quality
attributes. In this sense, service candidates can be identified using the quality attribute
scenarios. The SOA architect is the role responsible to identify services in this task.

The SOA architect has to analyze the quality attribute scenarios in order to identify
services that aid the accomplishment of architectural quality attributes. For instance,

69

5.4. THE SOPLE-DE APPROACH

Account

+ debit (in amount)
+ credit (in amount)

Customer Manager

+ addCustomer (in customer)
+ deleteCustomer (in id)
+ editCustomer (in customer)
+ getCustomer (in id)

- id
- amount

Customer

- name
- amount
- phone

Address

- street
- number
- city
- state
- code

1 *

1

*

1*

Account Manager

+ addAccount (in a)
+ delete (in id)
+ edit (in)
+ (in id)

ccount
Account

Account account
getAccount

1

*
Account Holders

Addresses

Accounts

Accounts

Figure 5.8 Conceptual Service Model

considering availability, well-known techniques can be used, such as ping/echo and
heartbeat (Bass et al., 2003). Thus, additional services can be identified to send messages
to check the availability of other services. For security, services can be identified to
authenticate users, control access to specific functionalities or limit access to services.

Table 5.9 presents some SOA design patterns that can be used to satisfy some quality
attributes (Erl, 2009). In this sense, the quality attribute scenarios can be used as basis to
select specific SOA patterns to achieve quality attributes.

It is important to note that some services identified may had been already identified
in a previous service identification technique. In this way, at the end of the service
identification task, the service candidates identified using all the available techniques
should be consolidated, duplicated services should be removed and the complete list of
services should be analyzed and reviewed by the business analyst with the purpose of
producing an accurate list of services and service orchestrations.

After executes the complimentary service identification techniques, an initial set of
services and service orchestration candidates including drafts of their interface operations
should be listed in the architecture document.

5.4.1.2 Define Component Candidates

In this task, the components of the service-oriented product line architecture will be
defined. The component identification task starts with an analysis of the feature model and
service candidates identified previously with the purpose of identifying the architectural
component candidates.

Each component identified in this activity is an architectural component candidate,
which is an abstract, not implemented component that later in the approach will be
considered for low-level design or discarded. The component identification task produces

70

5.4. THE SOPLE-DE APPROACH

Figure 5.9 SOA Design Patterns

SOA Pattern Problem Solution

Agnostic
Capability

Agnostic service logic is partitioned into a set of
well-defined capabilities that address common concerns not

specific to any one problem.

Service capabilities derived from specific concerns may not be useful
to multiple service consumers, thereby reducing the reusability potential

of the agnostic service.

Agnostic
Context

Isolate logic that is not specific to one purpose into separate
services with distinct agnostic contexts.

Multi-purpose logic grouped together with single purpose logic
results in programs with little or no reuse potential that introduce

waste and redundancy into an enterprise.

Capability
Recomposition

Agnostic service capabilities can be designed to be repeatedly invoked
in support of multiple compositions that solve multiple problems.

Using agnostic service logic to only solve a single problem is
wasteful and does not leverage the logic's reuse potential.

Asynchronous
Queuing

A service can exchange messages with its consumers via an
intermediary buffer, allowing service and consumers to process
messages independently by remaining temporally decoupled.

When a service capability requires that consumers interact with it
synchronously, it can inhibit performance and compromise reliability.

Intermediate
Routing

Message paths can be dynamically determined through the
use of intermediary routing logic.

The larger and more complex a service composition is, the more difficult
it is to anticipate and design for all possible runtime scenarios in advance,

especially with asynchronous, messaging based communication.

Redundan
Implementation

Reusable services can be deployed via redundant implementations
or with failover support.

A service that is being actively reused introduces a potential single point
of failure that may jeopardize the reliability of all compositions in which it

participates if an unexpected error condition occurs.

Brokered
Authentication

An authentication broker with a centralized identity store assumes the
responsibility for authenticating the consumer and issuing a token that

the consumer can use to access the service.

Requiring the use of Direct Authentication can be impractical or even
impossible when consumers and services do not trust each other or when
consumers are required to access multiple services as part of the same

runtime activity.

Data
Confidentiality

The message contents are encrypted independently from the transport,
ensuring that only intended recipients can access the protected data.

Within service compositions, data is often required to pass through one or
more intermediaries. Point-to-point security protocols, such as those

frequently used at the transport-layer, may allow messages containing
sensitive information to be intercepted and viewed by such intermediaries.

Concurrent
Contracts

Multiple contracts can be created for a single service,
each targeted at a specific type of consumer.

A service's contract may not be suitable for or applicable to
all potential service consumers.

Data Format
Transformation

Intermediary data format transformation logic needs to be introduced
in order to dynamically translate one data format into another.

A service may be incompatible with resources it needs to access due to
data format disparity. Furthermore, a service consumer that communicates

using a data format different from a target service will be incompatible
and therefore unable to invoke the service.

Data Model
Transformation

A data transformation technology can be incorporated to convert
data between disparate schema structures.

Services may use incompatible schemas to represent the same
data, hindering service interaction and composition.

Protocol
Bridging

Bridging logic is introduced to enable communication between different
communication protocols by dynamically converting one protocol to

another at runtime.

Services using different communication protocols or different
versions of the same protocol cannot exchange data.

R
e
u

s
a
b

il
it

y

Service
Agent

Event-driven logic can be deferred to event-driven programs that do not
require explicit invocation, thereby reducing the size and performance

strain of service compositions.

Service compositions can become large and inefficient, especially
when required to invoke granular capabilities across multiple services.

Service
Callback

A service can require that consumers communicate with it
asynchronously and provide a callback address to which the service

can send response messages.

When a service needs to respond to a consumer request through the
issuance of multiple messages or when service message processing

requires a large amount of time, it is often not possible to
communicate synchronously.

P
e
rf

o
rm

a
n

c
e

S
e
c
u

ri
ty

F
le

x
ib

il
it

y

Compatible
Change

Some changes to the service contract can be backwards compatible,
thereby avoiding negative consumer impacts.

Changing an already-published service contract can impact and
invalidate existing consumer programs.

M
o

d
if

ia
b

il
it

y

The service contract is preserved to maintain existing consumer
dependencies, but the underlying service logic and/or

implementation are refactored.

The logic or implementation technology of a service may become
outdated or inadequate over time, but the service has become too

entrenched to be replaced.

Service
Refactoring

Event
Driven

Messaging

The consumer establishes itself as a subscriber of the
service. The service, in turn, automatically issues notifications of

relevant events to this and any of its subscribers.

Events that occur within the functional boundary encapsulated by a
service may be of relevance to service consumers, but without

resorting to inefficient polling-based interaction, the consumer has no
way of learning about these events.

71

5.4. THE SOPLE-DE APPROACH

a list of architectural component candidates as output, which will be documented in the
architecture document (SO-PLA). These components will provide the implementation for
the operations exposed by the services.

The role responsible to perform the component identification task is the domain
architect, who is responsible to analyze the feature model and define the features that will
make part of each architectural component candidate considering the quality attributes
that must be satisfied. The domain architect should solve the quality attribute trade-offs
considering the priority of the attributes.

The components identified here will maintain the quality of the services in the
architecture (Arsanjani, 2004). Thus, identify these components considering quality
attributes, e.g., flexibility and evolvability, is necessary. However, some quality attributes
of the SOA, e.g., security and performance, will be responsibility of the service platform
selected as well (Günther and Berger, 2008).

For instance, suppose that each sub-feature of a service feature is implemented in a
unique component. In this case, each sub-feature can evolve independently of each other,
and they can also be modified without affect other features. However, the interfaces of
the components implementing each sub-feature cannot change. Thus, this choice fits
flexibility and evolvability, since features can be easily modified and the components
encapsulating each feature can be combined in different ways to construct systems
customized to specific customers.

Though, depending on the granularity of the feature model, implement one feature per
component may cause the definition of many fine-grained components, which may cause
performance problems and decrease reuse (Erradi et al., 2006). In this case, variability
techniques, e.g., aspect orientation or design patterns, can be used to group features into
a component with variability. However, it is important to keep each feature in a specific
class or aspect in order to still able to evolve and modify features independently. This
issue will be discussed in the variability analysis activity in Section 5.4.2.

The components can be identified from use cases and quality attributes as well.
However, it is important to note that components that will be used by several services,
which may require interoperability issues should be considered as a service candidate. In
this sense, components can implement use cases or quality attributes of a specific service.
In order to make a specific component available for several services in the architecture, it
needs to be exposed as a service. After concludes the component identification task, an
initial set of component candidates including drafts of their interface operations should
be listed in the architecture document.

72

5.4. THE SOPLE-DE APPROACH

5.4.1.3 Define Flows

In this task, the communication of services and service orchestrations will be defined.
The flow identification task starts with an analysis of the services identified previously
with the purpose of identifying the services communication flows.

The role responsible to perform the flow identification task is the SOA architect, who
is responsible to analyze the services and define their communication protocols, e.g.,
SOAP or REST, and their communication types, e.g., synchronous or asynchronous, that
will be used by the services to communicate with each other. The quality attributes should
be considered in this task, since the protocol and type of communication impact some
quality attributes, e.g., performance.

For instance, in the context of web services, SOAP-based design is more appropriated
the RESTful web services in the following cases:

• A formal contract must be established to describe the interface that the web service
offers, i.e., using WSDL documents, which describe the details such as messages,
operations, bindings, and location of the web service;

• The architecture must address complex non-functional requirements, such as trans-
actions, security, addressing, trust and coordination;

• The architecture needs to handle asynchronous processing and invocation.

On the other side, REST-based design can be used when services are completely
stateless, a caching infrastructure can be leveraged for performance and service producers
and service consumers have a mutual understanding of the context and content being
passed along (Tyagi, 2006).

In this task, the integration mechanism that will be used in the SOA should be defined
as well. For example, service consumers and providers can communicate directly without
any broker such as the peer-to-peer communication pattern, or they can be mediated by a
middleware, that in the context of SOA, it is known as the Enterprise Service Bus (ESB)
(Josuttis, 2007; Bianco et al., 2007).

It is important to note that in the context of service-oriented product lines, the
communication protocol and type, and the integration mechanism can be treated as
variation points. In other words, the same service can be accessed using several protocols
in a synchronous or asynchronous way depending on the system of the product line
(Segura et al., 2007).

73

5.4. THE SOPLE-DE APPROACH

At this point, the information about service communications should be added to
the list of architectural elements produced in the previous tasks. The next activity of
SOPLE-DE, called variability analysis, explains how to refine the architectural elements
identified in this activity considering the concepts of granularity and cohesion in order to
select the best design choice to implement variability. Table 5.1 presents a checklist of
the architectural elements identification activity.

Table 5.1 Checklist of the Architectural Elements Identification Activity
Checklist

Have you identified services from business processes, use cases (optional), feature model and quality attribute scenarios?

Have you identified the service and component communication flows?

Have you defined if a service registry is going to be used?

Have you defined the service communication protocols and types?

Have you defined the service and component interface operations?

Have you considered the quality attribute scenarios to solve quality attributes trade-offs?

5.4.2 Variability Analysis Activity

At this point, the components, services, service orchestrations and their communication
flows were defined. During the variability analysis activity, it will be defined how the
variability contained in the feature model, business processes, use cases and quality
attributes will be implemented. This task is a refinement of the architectural elements
identified previously.

The variability analysis activity receives as input the list of components, services,
service orchestrations and their flows. Its output is a set of architectural decisions
regarding variability, which defines where and how the variability will be modeled.
These decisions are documented in the architecture document, and they basically consist
of updating the list of architectural elements identified in the previous activity. After
the variability analysis activity, the components and services are no longer candidates
anymore.

The role responsible for this activity is the domain architect, and there are two tasks
that should be performed in order to execute the variability analysis activity: analyze

architectural elements and define variability implementation technique. Figure 5.10
shows the inputs, outputs, tasks and roles of the variability analysis activity, and its tasks
are presented next.

74

5.4. THE SOPLE-DE APPROACH

Analyze Architectural
Elements

Domain
Architect

Roles Involved Inputs Outputs

Tasks

Architectural Elements
Refined

Define
Variability

Variability
Decisions

Domain
Architect

Variability
Decisions

Task Begin EndLegend: FlowArtifact Role

Service
Candidates

Component
Candidates

Service
Orchestrations

Communication
Flows

Figure 5.10 Variability Analysis Activity

5.4.2.1 Analyze Architectural Elements

The analyze architectural elements task starts with an analysis of the component and
service candidates identified previously. In this task, the cohesion and granularity of
services and components should be analyzed with the purpose of reducing the number
of candidates. The variability that cannot be isolated in specific components or services,
i.e., crosscutting variability concerns, is also identified and analyzed here. This task is
divided in three steps: analyze cohesion, analyze granularity and analyze crosscutting

concerns as described next.

Analyze Cohesion

The objective of this step is to group together in a service or component the operations
that are strongly related, e.g., operations related to a specific business entity. These
operations may had been organized in different architectural elements during the the
previous activity.

In this sense, the operations contained in the component interfaces should be analyzed
in order to identify related operations that can be joined in a unique component with the
purpose of increasing cohesion and reducing the number of component candidates.

Thus, according to the analysis performed, related operations that were separated in
different components, but have a high-level of cohesion, should be grouped in a unique
component. Moreover, similar operations can also be merged into a single operation with
variability. The same analysis and merging should be realized among the operations of
the service candidates defined previously.

75

5.4. THE SOPLE-DE APPROACH

For instance, Figure 5.11 presents an example on the travel reservation product line. In
this example, the operations of the services (Airline Reservation and Airline Cancelation)
can be put in the same service, since these operations are related to each other and
cohesion can be increased in this way. In addition, the operations to reserve airline of the
Airline Reservation service can be grouped in a single operation with variability, i.e., the
own service operation checks if go and return flights should be reserved, or only one way
based on the itinerary information as depicted in the Airline Service.

Void reserveAirline (Date, Time)
Void reserveAirline (GoDate, GoTime, ReturnDate, ReturnTime)

Airline Reservation Service

Void cancelAirline (Id)

Airline Cancelation Service

Void reserveAirline (Itinerary)
Void cancelAirline (Id)

Airline Service

Figure 5.11 Analyzing Cohesion

Analyze Granularity

The granularity analysis task consists of analyzing the granularity of the variation points
and variants of the service-oriented product line with the purpose of identifying fine-
grained variability, which are variation points that can be implemented by changing a
class attribute or method.

In this sense, after the granularity analysis, components that were identified to im-
plement each variant of a variation point can be grouped into a single component with
variability. Components implementing variants that require different classes, i.e., coarse-
grained variability, should be left isolated. The same strategy should be performed with
the services that were identified to implement fine-grained variability.

In order to implement variability with fine-grained granularity, well-known variability
implementation techniques can be used, such as aspect-oriented programming, conditional
compilation, configuration files and design patterns (Gacek and Anastasopoules, 2001).

In the cases where the variability is more coarse-grained, Component-Based Develop-
ment (CBD) can be used to implement the variability, i.e., each variant is implemented
in a specific component. In this way, the components are not grouped together, they are
maintained separated (Kästner et al., 2008).

Figure 5.12 depicts how component variability can be implemented. In the first
three cases, CBD is used as the variability implementation mechanism. As it can be
seen, components A and D implement variation points, components B and C implement
alternative variants, and component E implements an optional sub-feature. However, in

76

5.4. THE SOPLE-DE APPROACH

the last case, CBD may be not appropriated because the variability granularity is low.
Hence, other variability mechanisms, e.g., aspects, design patterns or configuration files,
can be used to implement variability internally.

A A

B C

D

E

Legend: Optional Alternative

Figure 5.12 Component Variability

In the context of service variability, service orientation can be used as a technique to
implement variability, i.e., each variant can be implemented in a specific service. It is the
way the current service-oriented applications are customized, in other words, changing
the service order or even the participants of service compositions.

However, depending on the variability granularity, it may be insufficient. A variation
point can be implemented changing a class attribute, or a class, a method or even an entire
component or service. Thus, in some cases where the variability granularity is low, it is
also necessary to introduce variability into services internally.

In order to implement service variability, i.e., a unique service that can be customized
to different purposes, aspect-oriented programming, configuration files, parameterization
and design patterns can be used with the purpose of changing service interfaces or
modifying the service behavior according to the requirements of a specific system of the
product line.

For instance, Figure 5.13 presents part of the feature model from the travel reservation
product line. The language feature contains three alternatives variants: English, French
and Portuguese. However, the difference among these variants is a file with the strings in
the appropriated language. Thus, it does not make sense to use CBD as the implementation
technique because the variability is low. It is implemented changing just a class attribute
that stores the file name and location. The architect sometimes will not visualize the
real differences among variants during design, for this reason, not only the activities of
SOPLE-Design, but the activities of the SOPLE as whole must be executed interactively.

77

5.4. THE SOPLE-DE APPROACH

Legend: Alternative Mandatory Feature

PT

Travel Reservation

EN

Language

FR

Figure 5.13 Variability Granularity

Analyze Crosscutting Concerns

In this step, crosscutting variability concerns should be analyzed. In some cases, a logging
component for instance, has its code spread in several components. Thus, the domain
architect should analyze these cases in order to decide how this variability is going to be
implemented.

It is important to note that during product derivation, components and services will
be selected or removed from the architecture. Hence, crosscutting variability concerns
cannot affect the inclusion and exclusion of architectural elements of the architecture.
The strategy selected to implement this type of variability should support this flexibility.

This step is essential because some features and business process activities cannot be
isolated in a specific component or service. Thus, part of these features and activities (few
lines of code) must be spread in several places (more than one component or service).
The domain architect should identify these cases early in order to decide how it is going
to be addressed.

5.4.2.2 Define Variability Implementation Technique

In this step, the variability implementation technique will be defined for all types of
variability presented in the product line. In the context of service-oriented product lines,
there are some variation points that are specific to services. SOPLE-DE considers the
following service-specific variation points:

• Type of Communication: Services can communicate in a synchronous or asyn-
chronous way. In this sense, services can behave differently in specific systems;

78

5.4. THE SOPLE-DE APPROACH

• Communication Protocol: Services can use different protocols to communicate,
such as SOAP and REST;

• Integration Mechanism: The way service interacts can be variable, e.g., the
services can communicate directly with each other (peer-to-peer), or they can use
an integration channel, such as an Enterprise Service Bus (ESB);

• Service Discoverability: Service consumers can use a service registry to find
the service providers they need. This strategy supports dynamic compositions of
services, i.e., during execution. On the other hand, consumers may call service
providers that they already know at compile-time;

• Monitoring: The metrics used to monitor services can be specific for each service-
oriented system of the product line, e.g., some systems may monitor the number of
service calls, while others may monitor only the response time of services.

Besides variation points specific for service orientation, SOPLE-DE also considers
variability that are not directly related to service orientation, such as the ones described
next:

• Functional variability: The functionalities of services and components may vary
depending on the system being considered;

• Quality Attributes: The architecture of different systems of the product line can
be customized to satisfy different quality attributes, or different levels of quality
attributes.

It is important to note that the binding time and the variability type of a variation point
should be considered during this step because different variability mechanisms support
specific types of variability and binding times (Gacek and Anastasopoules, 2001). For
instance, conditional compilation cannot be used to implement dynamic (runtime) binding
times, since using this technique the selection of variants is realized at compile-time.
Table 5.2 presents a checklist of the variability analysis activity.

5.4.3 Architecture Specification Activity

In the architecture specification activity, the high-level design of components, services,
service orchestrations and their flows will be specified. In this activity, architectural
views are produced, and they may contain variability as the artifacts of the core assets

79

5.4. THE SOPLE-DE APPROACH

Table 5.2 Checklist of the Variability Analysis Activity

Checklist

Have you grouped services and componets with low granularity?

Have you defined the variability implementation mechanisms for the variation points based on their granularity?

Have you identified cross-cutting vatiability concerns?

Have you analyzed the granularity of the variation points?

Have you analyzed the cohesion of the component and service operations?

development cycle. Thus, architecture specification requires notations with support for
variability representation, such as (Gomaa, 2004) and (Razavian and Khosravi, 2008).

The architecture specification activity receives the list of architectural elements (com-
ponents, services and service orchestrations) and their flows identified in the previous
activities as inputs, and produces the architectural views that will be documented in the
architecture document. The domain and SOA architects should perform this activity.

Service-oriented product line architectures, as any other software architecture, are
complex entities that cannot be represented in a simple one-dimensional fashion. Since
there are different stakeholders involved in a product line project with particular concerns
about the systems, it is important to use multiple views to represent the service-oriented
product line architecture (Bass et al., 2003). Moreover, the use of multiple architec-
tural views are essential in order to handle separately the functional and non-functional
requirements of the service-oriented product line (Kruchten, 1995).

Figure 5.14 shows the inputs, outputs, tasks and roles of the architecture specification
activity. The architectural views that can be produced to represent the concerns of
the stakeholders involved in the project, and the quality attributes of the SO-PLA are
presented next (Kruchten, 1995; Ibrahim and Misie, 2006).

Create Architectural
Views

Roles Involved Inputs Outputs

Tasks

Service
Candidates

Component
Candidates

Service
Orchestrations

Domain
Architect

Architectural
Views

SOA
Architect

Task Begin EndLegend: FlowArtifact Role

Figure 5.14 Architecture Specification Activity

Layer View. The objective of this viewpoint is to represent the layers of the SOA
solution. Thus, in this perspective, the architectural elements identified in the previous

80

5.4. THE SOPLE-DE APPROACH

activities are represented in their respective layer. Figure 5.15 depicts a layer view
example with some services categorized. In this figure, the service layer of the SOPLE-
DE are further divided into task, entity and utility layers as used in Erl (2005) and Erl
(2007). The lines indicate that the service of the upper layer uses the services of the layers
below, and dashed circles represent optional services.

Integration View. The purpose of this view is to depict the integration mechanism
that will be used in the SOA. Figure 5.15 shows two possible integration patterns that
can be selected for a service-oriented architecture (Bianco et al., 2007): (1) hub-and-
spoke and (2) peer-to-peer. In the hub-and-spoke pattern, the interaction among service
consumers and providers is mediated by a middleware. In the context of SOA, this
middleware is known as Enterprise Service Bus (ESB) (Josuttis, 2007). In the second
integration pattern, services communicate directly with other services without any broker.

Legend: Mandatory Service Optional Service

ESB

Layer View Integration View

(1) (2)

Entity
Service

Entity
Service

Task
Service

Orchestrated Task
Service

Utility
Service

Utility
Service

Task Service
Layer

Entity Service
Layer

Utility Service
Layer

Orchestration Service
Layer

Figure 5.15 Layer and Integration Views

In most cases, the performance of the peer-to-peer integration pattern is better. How-
ever, other quality attributes, e.g., modifiability and flexibility, cannot be satisfied since
the services are glued at compile-time, i.e., service calls are realized directly in the source
code. On the other hand, the use of a service bus allows security checks, dynamic binding,
message transformations and other benefits. In this way, the hub-and-spoke integration
pattern is better to achieve several quality attributes, e.g., security, availability, flexibility
and modifiability (Josuttis, 2007).

Interaction View. The main goal of this viewpoint is to show the communication
protocols and the messages exchanged among service consumers and providers. It is
also used to represent concurrency issues and depicts the dynamic behavior of service
orchestrations.

In SOA systems, each interaction between a service consumer and a service provider
can be implemented using different protocols, e.g., SOAP or REST. In the context of

81

5.4. THE SOPLE-DE APPROACH

service-oriented product lines, the protocol of communication can be a variation point.
The protocol used impacts quality attributes of the product line, such as interoperability,
performance and modifiability (Bianco et al., 2007). Thus, quality attribute variability
can be implemented changing the protocol of communication. Figure 5.16 shows an
example of interaction view.

Component View. The purpose of this perspective is to represent the logical structure
of the components that will be used by the services. From the perspective of service-
oriented design, it is a best practice to create high-level and coarse-grained service
interfaces that implement a complete business process or set of business activities. Thus,
services should expose the functionality of several components (McGovern et al., 2003).
Services with variability that will be implemented using CBD should be represented here,
i.e., components should be marked as optional and alternative. Figure 5.16 shows an
example of component view.

D E F G

A B C

Parallel

SOAP

SOAP

Message()

Message()

Message()

SOAP

REST

REST

SOAP

Interaction View Component View

A

Legend: Alternative Optional MandatoryService

Figure 5.16 Interaction and Component Views

The domain and SOA architects have to decide which architectural views will be used
to represent the service-oriented product line architecture depending on the stakeholders
involved in the project, and the size and domain of the product line being constructed.
The architects also decide the level of details of each view. Table 5.3 presents a checklist
of the architecture specification activity.

Table 5.3 Checklist of the Architecture Specification Activity

Checklist

Have you documented the architectural views?

Have you defined the level of details of the architectural views selected?

Have you selected the architectural views to represent the architectural elements identified?

82

5.4. THE SOPLE-DE APPROACH

5.4.4 Architectural Elements Specification Activity

In this activity, the low-level design and the detailed description of components and
services will be defined and documented. The purpose of this activity is to design and
document the internal behavior, pre-conditions, invariants, post-conditions and contracts
(interfaces) of the services and components of the architecture.

The architectural elements specification activity receives the list of architectural ele-
ments identified in the previous activities, their flows and the architectural views produced
as inputs. It produces some artifacts, e.g., UML diagrams and service descriptions, that
should be documented in the architecture document.

There are two tasks that should be performed in order to realize the architectural
elements specification activity: specify services and specify components. Figure 5.17
shows the inputs, outputs, tasks and roles of the architectural elements specification
activity, and its tasks are presented next.

Specify
Services

Domain
Designer

SOA
Designer

Roles Involved Inputs Outputs

Component
Candidates

Service
Diagrams

Tasks

Specify
Components

Service
Candidates

Service
Orchestrations

Architectural
Views

Architectural
Views

Component
Diagrams

Task Begin EndLegend: FlowArtifact Role

Figure 5.17 Architectural Elements Specification Activity

5.4.4.1 Specify Services

In this task, the low-level design, the functionality provided by the service, quality
attributes and the interfaces of the services will be defined and documented. The purpose
of this task is to define the internal classes and create diagrams to represent the services
internal behavior, and document detailed information about the services.

The service designer is the role responsible to perform this task. The following steps
should be executed: document service interfaces, create service descriptions and design

service internal diagrams. These steps are described next.

83

5.4. THE SOPLE-DE APPROACH

Document Service Interfaces

In this step, the interfaces of the services of the service-oriented product line architecture
are documented. SOPLE-DE advocates the interfaces to be described using Interface
Description Language (IDL) (Erl, 2007). In this way, the interfaces are documented using
a non-specific programming language notation. Stereotypes, e.g., optional and alternative,
should be used to represent service interface variability as presented in Figure 5.18.

Void ([in])reserveVehicle << optional >>Itinerary itinerary

Void reserveAirline ([in] Itinerary itinerary)

Reservation Service

Figure 5.18 Service Interface

Create Service Descriptions

In this step, the service description should be produced and documented in the architecture
document. It should contain the following fields:

• Description: Describes the general purpose of the service, i.e., functional require-
ments;

• Pre-conditions: Lists the conditions that must be satisfied before using the service
functionalities;

• Invariants: Describes the conditions that must be satisfied during the whole
execution of the service operations, otherwise, the functionality being executed
should stop as soon as the condition fails;

• Post-conditions: Lists the conditions that must be satisfied after the execution of
the service operations;

• Quality Attributes: Describes the non-functional requirements (e.g., service level
agreements) that are satisfied by the service, e.g., considering a performance
attribute, the response time can be defined between 0.75 and 1.5 seconds.

84

5.4. THE SOPLE-DE APPROACH

Design Service Internal Diagrams

In this step, the service designer should define the services internal diagrams. During this
definition, the variability implementation mechanism defined in the variability analysis
activity, and the components and services used by the service being designed must be
considered. In this way, UML diagrams, e.g., class, state, sequence and activity diagrams,
are created to represent the internal behavior of each service, when necessary.

5.4.4.2 Specify Components

In this task, the component interfaces will be documented, and the low-level design of
components will be performed. The purpose of this task is to define the internal classes
and create diagrams in order to represent the internal behavior of the components. The
domain designer is the role responsible to perform this task, and the following steps
should be executed: document component interfaces and create internal diagrams. These
steps are presented next.

Document Component Interfaces

In this step, the interfaces of the components in the service-oriented product line architec-
ture are documented. IDL should be used for this documentation. Components interface
variability should be documented using stereotypes. For the components with dependency
with other components, the required interfaces must be represented as well.

Create Internal Diagrams

In this step, the domain designer should define the components internal classes. In
this definition, the component variability and the variability mechanism defined in the
variability analysis activity must be considered. In this sense, UML class diagrams should
be created to represent the components internal classes. The class diagrams will represent
the internal static structure and variability of the components. Additional UML diagrams,
e.g., state and sequence diagrams, may be produced if necessary. Table 5.4 presents a
checklist of the architectural elements specification activity.

5.4.5 Design Decisions Documentation Activity

Design decisions are very important parts of the design discipline (Jarczyk et al., 1992).
As it can be seen in Figure 5.2, these decisions can be made during the whole SOPLE-DE,

85

5.4. THE SOPLE-DE APPROACH

Table 5.4 Checklist of the Architectural Elements Specification Activity

Checklist

Have you modeled the UML diagrams necessary to represent the internal behavior of the services and components?

Have you defined the service contracts with the service level agreements, pre-conditions, post-conditions, etc.?

Have you documented the service and component operations?

Have you put all this information in the architecture document?

since design decisions are made for problems2 that the domain and SOA architects face
during the project. Such decisions can be the selection of technologies that are going to
be used, the variability technique that will be used to implement variability, and so on.

Document Design
Decisions

Roles Involved Inputs Outputs

Tasks

Design
Problems

Domain
Architect

Solutions and
Rationales

SOA
Architect

Task Begin EndLegend: FlowArtifact Role

Figure 5.19 Design Decisions Documentation Activity

This activity receives as input the design problems that appear during the SOPLE-DE.
After identify these problems, the domain and SOA architects should find solutions for
them. This activity produces as output a set of solutions for specific problems with the
rationale used to perform each solution. Figure 5.19 shows the inputs, outputs, tasks and
roles of the design decisions documentation activity.

The only step in order to perform this task is the identification of issues to be addressed
during the design. This identification can happen during the whole design life-cycle.
When an issue is identified, the domain and SOA architects should identify the possible
solutions for the issue. Once the possible solutions are identified, the domain and SOA
architects should decide which solution is going to be performed. For each decision, a
rationale must be documented in order to allow other architects and developers to identify
the reasons for the decisions (Jarczyk et al., 1992). The solution and rationale should be

2In this context, problems mean specific situations that need a special attention during the design and
must be discussed and documented.

86

5.5. CHAPTER SUMMARY

documented in the architecture document. Table 5.5 presents a checklist of the design
decisions documentation activity.

Table 5.5 Checklist of the Design Decisions Documentation Activity

Checklist

Have you documented the solution taken and the rationale for each design problem?

Have you analyzed solutions for each key design problem?

Have you identified the key design problem?

5.5 Chapter Summary

This chapter presented an approach to design service-oriented product line architectures
(SOPLE-DE) as well as its principles, roles, phases, activities, tasks, inputs and outputs
(Medeiros et al., 2009). The approach is divided in five phases: architectural elements

identification, variability analysis, architecture specification, architectural elements

specification and design decisions documentation.
During the architectural elements identification activity, it was proposed methods

to identify services from feature models, business process models, quality attribute
scenarios and use cases. A method for component identification using feature models
was also proposed. The variability analysis activity presented guidelines on how to use
the concepts of granularity and cohesion in order to introduce variability into components
and services. Architecture specification activity described how the service-oriented
product line architecture should be documented using a set of architectural views. The
architectural elements specification activity presented how the low-level design of services
and components should be realized and documented. And finally, the design decisions
documentation discussed how important design decisions are documented.

In the next chapter, it will be presented a preliminary experimental study with the
SOPLE-DE performed with the purpose of validating and refining it.

87

6
A Preliminary Experiment

6.1 Introduction

Software has become part of several products nowadays, and it can be found in different
kinds of products, such as toasters, televisions, automobiles and space shuttles. This
means that much software has been developed and is being developed (Wohlin et al.,
2000). However, software development is a complicated and labor intensive task that
can run into several problems, e.g., missing functionalities, cost overruns, poor quality
and unacceptable performance (Kruchten, 2003). Hence, organizations focus on process
improvements in the software development area with the intention of reducing costs, time
and risks, and increasing software quality (Chidamber and Kemerer, 1994).

In the context of software engineering, empirical studies such as surveys, case studies
and experiments, play an important role since the progress in any discipline depends on
the ability of people to understand the basic units necessary to solve problems (Basili,
1996). In particular, experiments provide a systematic, disciplined, quantifiable, and
controlled way to evaluate and test new theories and hypotheses (Basili et al., 1986).

One of the main advantages of experiments is the control of, for example, subjects,
objects and instruments. It ensures that we are able to draw more general conclusions
than, for example, case studies (Kitchenham et al., 1995). Other advantages include the
ability to perform statistical analysis using hypothesis testing methods and opportunity for
replication (Wohlin et al., 2000). However, in order to impose full control, experiments
are often small, which may be a problem when it scales from the laboratory to a real
project (Kitchenham et al., 1995).

In this sense, this chapter presents a preliminary experimental study performed with
the purpose of evaluating the efficacy, understanding and applicability of the SOPLE-DE
in the context of service-oriented product line projects. In this experiment, the process

88

6.2. BACKGROUND INFORMATION

of Wohlin et al. (2000) was used to define, plan and execute the experimental study. In
order to consider real SOA problems, the Travel Reservation domain, which is commonly
used in SOA examples, contains enterprise integration requirements and other real SOA
difficulties, was the project used in the experimental study (Snell, 2002; Segura et al.,
2007).

The remainder of this chapter is organized as follows: Section 6.2 presents essential
information to understand experimental studies; Section 6.3 presents the definition,
planning, operation, analysis and interpretation of the experimental study with the SOPLE-
DE, and Section 6.4 presents the conclusions and the lessons learned with the experimental
study; Finally, Section 6.5 concludes this chapter with its summary.

6.2 Background Information

The goal of an experiment is to study the outcome when we vary some of the input vari-
ables to a process (Wohlin et al., 2000). There are two types of variables in experiments,
dependent and independent variables, as illustrated in Figure 6.1.

Process
Independent

Variables
Dependent
Variables

Figure 6.1 Experiment Variables

An experiment studies changing one or more independent variables, keeping other
independent variables controlled at a fixed level, and analyzing the impact on the de-
pendent variables (Wohlin et al., 2000). For instance, it is necessary to study the effect
of a new development method on the productivity of the personnel. The dependent
variable in the experiment is the productivity. Independent variables are, for example, the
development method, the experience of the personnel, tool support, and the environment.

As mentioned, an experiment studies the effect of changing independent variables,
which are also called factors, and one particular value of a factor is called treatment
(Wohlin et al., 2000). For instance, in the example of changing the development method,
two treatments are used for the factor: the old development method, and the new one.

The treatments are being applied to a combination of objects and subjects. An
object can, for example, be a document that will be reviewed with different inspection

89

6.3. THE EXPERIMENTAL STUDY

techniques. The people that apply the treatment are called subjects, but they can also be
called participants. In the example of changing the development methods, the objects can
be the programs to be developed and the subjects are the personnel.

At the end, an experiment consists of a set of tests where each test is a combination
of treatment, subject and object. For instance, a test can be that person N (subject) uses
the new development method (treatment) for developing program A (object).

6.3 The Experimental Study

The experimental study of the SOPLE-DE was performed following the process of Wohlin
et al. (2000), which divides the experiment process in the following main activities, as
depicted in Figure 6.2. An experiment process is necessary to make sure that the proper
actions are taken to ensure a successful experiment, and it will provide support in setting
up and conducting the experimental study.

The first step is the definition, in which the experiment is defined in terms of the
problem, objective and goals. The planning activity comes next, where the design of the
experiment is determined, the instrumentation is taken into account, and the threats of
the experiment are evaluated. The operation activity is next, and it follows the design of
the experiment determined previously. In this activity, the measurements are collected,
and then analyzed during the analysis and interpretation activity. Finally, the results are
published in the presentation and package activity.

Experiment Process

Experiment
Definition

Experiment
Planning

Experiment
Operation

Analysis &
Interpretation

Presentation
& Package

Experiment
Idea

Conclusions

Figure 6.2 Activities of the Experiment Process

The next sections present the definition, planning, operation, analysis and interpreta-
tion of the experiment with the SOPLE-DE. The experiment presentation and package is
represented with this chapter.

90

6.3. THE EXPERIMENTAL STUDY

6.3.1 Definition

In this section, the foundation of the experiment is determined. If it is not properly
defined, rework may be required, or even worse, the experiment will not be appropriated
to study what was intended (Wohlin et al., 2000). The purpose of this phase is to define
the goals of the experiment according to a defining framework. In this experimental study,
the Goal Question Metric (GQM) will be used for definition (Basili et al., 1994).

The GQM is based on the assumption that an organization interested in measurements
must first specify the goals for itself and its projects, trace those goals to the data that
are intended to define those goals operationally, and finally provide a framework to
interpreting the data with respect to the stated goals. The result of the application of
GQM is the specification of a measurement system focusing on a set of particular issues,
and a set of rules for interpreting the measured data. The resulting measurement model
has three levels (Basili et al., 1994):

• Goal: A goal is defined for an object, for a variety of reasons, with respect to
various models of quality, from various points of view, relative to a particular
environment;

• Question: A set of questions is used to characterize the way the assessment of a
specific goal is going to be performed based on some characterizing model;

• Metric: A set of data is associated with every question in order to answer it in a
quantitative way.

The next subsections present the goal, questions and metrics that were used in this
experimental study.

Goal

G1. The goal of this experiment is to analyze the SOPLE-DE for the purpose of evaluation

with respect to its efficacy, understanding and applicability from the point of view of
researcher in the context of service-oriented product line projects.

Questions

Q1. Does the SOPLE-DE aid architects to generate services with low coupling?

Q2. Does the SOPLE-DE aid architects to generate services with low instability?

91

6.3. THE EXPERIMENTAL STUDY

Q3. Does the SOPLE-DE aid architects to generate cohesive services?

Q4. Do the subjects have difficulties to understand the SOPLE-DE?

Q5. Do the subjects have difficulties to apply the SOPLE-DE in practice?

Metrics

M1. Service Coupling (SC): Coupling is a measure of the extent to which interde-
pendencies exist between software modules (Perepletchikov et al., 2007). In this sense,
two services are coupled if at least one of them acts upon the other.

According to Papazoglou and Heuvel (2006), one way of measuring the service
design quality is coupling. Hence, the objective is to minimize coupling, which means to
make self-contained services as independent as possible of other services. Low coupling
between services indicates a well-partitioned system and avoids problems of service
redundancy and duplication.

In addition, low coupling among service consumers and providers reduces service
calls, which increases the performance of systems since service remote calls have a
considerable time overhead (Erradi et al., 2006). Moreover, the development of systems
with unacceptable performance is also one of the most common causes for failures in
software projects (Jones, 1995). Hence, this quality attribute needs a special attention
during the design. In this sense, the following metric will be evaluated (Hofmeister and
Wirtz, 2008):

SC (s) = number of service providers used by a service consumer (s),
where (s) is a service of a given system.

This coupling metric has range [0, n], where n is the number of service providers
different from (s) of a given system. SC = 0 indicates a totally loosely coupled service,
and SC = n indicates a maximally coupled service (Hofmeister and Wirtz, 2008).

M2. Service Instability (SI): The reason for a design rigid, fragile and difficult to
reuse is the interdependency among its modules (Martin, 1994). A design is rigid if it
cannot be changed easily, and a single change in a specific service causes a cascade of
changes in several independent modules. In this sense, a change cannot be estimated
because its impact on different modules of the design is not predictable by the architects
and designers.

92

6.3. THE EXPERIMENTAL STUDY

Thus, this metric will measure the instability of the services in order to assess it. The
following metric will be evaluated (Quynh and Thang, 2009):

SI (s) = P/(P+C), where C is the number of service consumers that call service (s),
and P is the number of service providers that service (s) uses.

The service instability metric has range [0, 1], where SI = 0 indicates a maximally
stable service and SI = 1 indicates a totally unstable service (Quynh and Thang, 2009).

M3. Lack of Service Cohesion (LSC): Cohesion is the degree of the strength of
functional relatedness of operations within a service (Papazoglou and Heuvel, 2006).
Highly cohesive service operations indicate good functionalities subdivision, and imply
high reusability. Lack of cohesion or low cohesion increases complexity, thereby increas-
ing the likelihood of errors during the development process (Rosenberg and Hyatt, 1998).
Service operations with low cohesion could probably be subdivided into two or more
services with increased cohesion.

In addition, high cohesion increases the clarity and comprehension of the design,
simplifies maintenance and future enhancements, achieves service granularity at a fairly
reasonable level, and often supports low coupling. Moreover, highly related functionality
supports increased reuse potential, as highly cohesive service modules can be used for
very specific purposes (Papazoglou and Heuvel, 2006).

This metric is based on the Lack of Cohesion of Methods (LOCM) for object ori-
entation (Henderson-Sellers, 1995). The intuition underlying the LOCM metric is that
cohesive methods in a class should access the same class attributes. We adapt this metric
for service orientation, considering that cohesive service operations should access the
same data abstractions, i.e., the same business entities (Perepletchikov et al., 2007). In
this sense, the following metric will be evaluated:

LSC (s) = Number of business entities accessed by the operations of service (s).

This lack of service cohesion metric has range [1, n], where n is the number of
business entities of a specific domain, and LSC = 1 indicates totally cohesion among
service operations, and LSC = n indicates maximally low cohesion. This metric assumes
that the service operations of a specific service should access at least one business entity
of the domain.

93

6.3. THE EXPERIMENTAL STUDY

M4. Misunderstanding Problems (MP): This issue will be used to identify possible
misunderstanding problems during the reading of the SOPLE-DE documentation. It is
necessary to identify and analyze the difficulties found by the subjects learning the
approach. It is important to note that the misunderstanding problems found will be
mapped to the respective activity of the approach according to the information provided
by the subjects. This mapping will be used to detect specific problems of the SOPLE-DE
with the purpose of refining its documentation. This information will be provided by the
subjects using a questionnaire. In this sense, the following metric will be evaluated:

MP = % of subjects that had difficulties to understand the SOPLE-DE.

M5. Applicability Problems (AP): This issue will be used to identify possible
applicability problems during the execution of the SOPLE-DE. It is necessary to identify
and analyze the difficulties found by the subjects applying the approach in practice.
It is important to note that the applicability problems found will be mapped to the
respective activity of the approach according to the information provided by the subjects.
This mapping information will be used to detect specific problems with respect to the
applicability of the SOPLE-DE in practice with the purpose of refining its activities. This
information will be provided by the subjects using a questionnaire. In this sense, the
following metric will be evaluated:

AP = % of subjects that had difficulties to apply the SOPLE-DE in practice.

6.3.2 Planning

The experiment definition determines the foundations for the experiment, i.e., why the
experimental study will be conducted, while the experiment planning prepares for how
the study will be conducted (Wohlin et al., 2000). As any other type of engineering
activity, the experiment must be planned and the plans must be followed in order to
control the experiment. The results of the experiment can be disturbed, or even destroyed
if not planned properly.

Context

The objective of this experiment is to evaluate the efficacy, understanding and applicability
of the SOPLE-DE in the context of service-oriented product line projects. The experiment
will be conducted in a university laboratory with postgraduate students using a project on
the Travel Reservation domain.

94

6.3. THE EXPERIMENTAL STUDY

The experimental study will be conducted as a Replicated Project, which is character-
ized as being a study which examines object(s) across a set of teams, and a single project
(Basili et al., 1986).

The subjects of the study will be requested to act as the roles defined in the SOPLE-
DE, i.e., domain architect and SOA architect. However, a subject can play more than
one role during different activities and tasks of the SOPLE-DE. All the subjects will be
trained to use the approach as discussed next.

Training

The subjects will be trained to use the approach at the university. The training will
be divided in two steps: in the first one, concepts related to software reuse, variabil-
ity, component-based development, domain engineering, software product lines, asset
repository, software reuse metrics, and software reuse processes will be explained during
ten lectures with two hours each at a postgraduate course at the Federal University of
Pernambuco.

In the second step, independently of the course at the university, the experimenter
will present the concepts and principles of Service-Oriented Architecture (SOA), such
as service-oriented principles, Enterprise Service Bus (ESB), service registry, and SOA
roles, during one class (two hours), and next, the SOPLE-DE will be discussed during
two more lectures of one hour each. During the training, the subjects can interrupt to ask
issues related to the lectures.

Pilot Project

Before performing the study, a pilot project will be conducted with the same structure
defined in this planning. The pilot project will be performed by two subjects, who will be
trained and will not participate of the real experiment. In the pilot project, the subjects will
use the same material described in this planning, and will be observed by the responsible
researcher. In this way, the pilot project will be a study based on observation, aiming to
detect problems and improve the planned material before its use.

Hypotheses

In the context of experimental studies, there are two types of hypotheses: null and
alternative hypotheses. The null hypotheses are the ones that the experimenter wants to

95

6.3. THE EXPERIMENTAL STUDY

reject with as high as significance as possible, while the the alternative hypotheses are
the ones in favor of which the null hypotheses are rejected (Wohlin et al., 2000).

The following sub-sections present the null and alternative hypotheses of this experi-
ment. The data collected during the course of the experiment will be used to, if possible,
reject the null hypotheses.

The Null Hypotheses

In this experimental study, the null hypotheses determine that the use of the SOPLE-DE
in service-oriented product line projects does not produce benefits that justify its use and
that the subjects will have difficulties to understand and apply the approach in practice.
Thus, according to the selected criteria, the following null hypotheses were defined:

H1. µ SC of services without SOPLE-DE < µ SC of services with SOPLE-DE

H2. µ SI of services without SOPLE-DE < µ SI of services with SOPLE-DE

H3. µLSC of service operations without SOPLE-DE < µLSC of service operations with SOPLE-DE

H4. µMore than 50% of the subjects will have difficulties to understand the SOPLE-DE

H5. µMore than 50% of the subjects will have difficulties to apply the SOPLE-DE in practice

The Alternative Hypotheses

In this experimental study, the alternative hypotheses determine that the use of the SOPLE-
DE in service-oriented product line projects produces benefits that justify its use and that
most of the subjects will not have difficulties to understand and apply the approach in
practice. Thus, the following alternative hypotheses were defined:

H1. µ SC of services without SOPLE-DE >= µ SC of services with SOPLE-DE

H2. µ SI of services without SOPLE-DE >= µ SI of services with SOPLE-DE

H3. µLSC of service operations without SOPLE-DE >= µLSC of service operations with SOPLE-DE

H4. µMore than, or 50% of the subjects will not have difficulties to understand the SOPLE-DE

H5. µMore than, or 50% of the subjects will not have difficulties to apply the SOPLE-DE in practice

Variables Selection

In the variables selection, the independent and dependent variables of the experiment are
selected. All the variables that are manipulated and controlled are called independent

variables. These variables should have some effect on the dependent variables. In this
study, the experience of the subjects and the use of the SOPLE-DE are the independent

96

6.3. THE EXPERIMENTAL STUDY

variables considered. The experience of the subjects will be used to group subjects into
blocks with similar profiles during the analysis of the results.

According to (Wohlin et al., 2000), the choices of independent variables also include
choosing the measurement scales, the range for the variables and the specific levels at
which tests will be made. In this experiment, the experience of the subjects will be
considered in two levels:

1. Subjects with significant experience: Subjects that have participated in at least
three industrial and three academic software projects;

2. Subjects without significant experience: Subjects that have not participated in at
least three industrial and three academic software projects.

The dependent variables are the ones that we want to study to see the effect of the
changes in the independent variables. In this experimental study, the dependent variables
considered are the quality of the service-oriented product line architecture produced, the
understandability and the applicability of the SOPLE-DE.

In this context, the experience of the subjects and the use of SOPLE-DE will be
manipulated with the purpose of measuring the effects on the quality of the architecture
generated. In addition, the understandability of the SOPLE-DE documentation, and the
applicability of the SOPLE-DE in practice will be analyzed considering the experience of
the subjects.

Selection of Subjects

The selection of subjects is closely related to the generalization of the results from the
experiment. In order to generalize the results to the desired population, the selection must
be representative for that population (Wohlin et al., 2000). The selection of subjects is
also called a sample from the population. Ideally, this selection should be performed
randomly.

The subjects of the experimental study will act as domain architect and SOA architect
as defined in the SOPLE-DE. In this experiment, the subjects will be selected using a
Convenience Sampling, in which the nearest and most convenient people are selected, i.e.,
this selection is not totally randomized (Wohlin et al., 2000).

The larger the sample is, the lower the errors become when generalizing the results.
However, if there is a large variability in the population, a larger sample size is needed. In
this experiment, the variability of the population is not very large, since all of the subjects

97

6.3. THE EXPERIMENTAL STUDY

Treatment 1 Treatment 2

Factor

Design the SO-PLA without
a structured method.

Produce the SO-PLA following
the SOPLE-DE.

The quality, i.e., and , of the SO-PLA produced.Coupling Instability

Table 6.1 One Factor with Two Treatments Design

have degree in computer science; they are all postgraduate students; and all have attended
a similar set of disciplines in their postgraduate courses. However, the experience of the
subjects may be significantly different because some of them have worked for different
organizations.

Experiment Design

A design of an experiment describes how the tests are organized and run. In this experi-
ment, the One Factor with Two Treatments design will be used as illustrated in Table 6.1
(Wohlin et al., 2000). In the context of experimentation, there are three general design
principles that are frequently used in experimental studies:

1. Randomization: It is the most important design principle. It is used in the selection
of the subjects and in the assignment of subjects to treatments. Ideally, the subjects
must be selected randomly from a set of candidates, and they should be assigned
to treatments randomly. In this experiment, the assignments of subjects to the
treatments will be done randomly;

2. Blocking: It is used to systematically eliminate the undesired effect in the compar-
ison among the treatments. In this experiment, the experience of subjects provided
using a questionnaire may be used to group subjects with similar profiles;

3. Balancing: If we assign treatments so that each treatment has an equal number
of subjects, we have a balanced design. Balancing is desirable because it both
simplifies and strengthens the statistical analysis of the data. In this experiment,
we will try to balance the experiment, i.e., select the same number of subjects per
treatment. However, it will depend on the number of volunteers found to perform
the experiment.

98

6.3. THE EXPERIMENTAL STUDY

Instrumentation

All the subjects will receive a questionnaire (QT1) about his/her education and experience.
This questionnaire will be used to evaluate their educational background, participation
in software development projects, and experience in SOA, software product lines and
software reuse.

In order to guide the participants in the experiment, the complete description of
the SOPLE-DE, with all supporting material, such as templates and guidelines will be
provided by the experimenter. In addition, the requirements of the service-oriented
product line on the Travel Reservation domain, i.e., the project that will be used in this
experiment, will be given to the participants as well. The following documents will be
provided:

1. SOPLE-DE: Complete description of the activities and tasks of the SOPLE-DE;

2. Architecture Template: A document template to document the service-oriented
product line architecture;

3. Travel Reservation Requirements: The business processes, feature model, qual-
ity attribute scenarios and use cases explaining the requirements and the variability
of the service-oriented product line.

In addition, the material also includes a second questionnaire (QT2) for the evaluation
of the difficulties found by the participants when reading and using the approach in
practice. This questionnaire will be used to identify possible misunderstandings and
applicability problems during the execution of the SOPLE-DE. The architecture template
can be seen in Appendix A, and the questionnaires in Appendix B.

Validity Evaluation

A fundamental question concerning results from an experiment is how valid the results
are. Adequate validity refers to that the results should be valid for the population of
interest. In other words, the results are said to have adequate validity if they are valid for
the population to which we would like to generalize (Wohlin et al., 2000). In this study,
we consider four types of validity as described next.

Conclusion validity: Threats to the conclusion validity are concerned with issues
that affect the ability to draw the correct conclusion about relations between the treatment
and the outcome of an experiment. In this experiment, the following conclusion validities
were considered:

99

6.3. THE EXPERIMENTAL STUDY

• Reliability of measures: The validity of an experiment is highly dependent on the
reliability of the measures. In this experiment, we have not found baseline values
for the metrics used in the context of service-oriented development. Thus, this
issue can be a problem since we do not have baselines used in service orientation
with empirical evaluations in order to compare our finds;

• Random heterogeneity of subjects: There is always heterogeneity in a study group.
If the group is very heterogeneous, there is a risk that the variation due to individual
differences is larger than due to the treatment. In this sense, in the experiment we
will tried to reduce the group heterogeneity, and the experiment will be conducted
with postgraduate students that do research in the same area and attended to a
similar set of postgraduate disciplines;

• Experience of the subjects: Subjects without experience can also affect the experi-
ment, since it is harder for them to understand the process. To mitigate the lack of
experience, we will provide training.

Internal validity: Threats to internal validity are influences that can affect the
independent variable with respect to causality, without the knowledge of the researcher.
It is the capacity to replicate the experiment using the same subjects and objects. The
following internal validity was used:

• Maturation: Subjects react differently when performing the experiment. Some
participants can be affected negatively (tired or bored), while others positively
(learning with practice). In this sense, the subjects performing the experiment will
be volunteers, so they have at least some interest in the study.

Construct validity: It concerns the ability to generalize results of the experiment
outside the experiment setting. In this experiment, the following construct validity was
considered:

• Mono-operation bias: If the experiment includes a single independent variable,
case, subject or treatment, the experiment may under-represent the construct and
thus not gives the full picture of the theory. In this sense, it would be better if we
could analyze the SOPLE-DE comparing it with other service-oriented product line
design approach. However, we could not find any other systematic and structured
approach since the combination of SPL and SOA is still emerging. In this sense,
we will compare the SOPLE-DE with an ad-hoc development.

100

6.3. THE EXPERIMENTAL STUDY

External validity: Threats to external validity are conditions that limit our ability to
generalize the results of our experiment to an industrial practice. In this experiment, the
following external validity was considered:

• Interaction of setting and treatment: This is the effect of not having the experimental
settings or material representative of, for example, industrial practices. In this
experiment, we used the Travel Reservation domain that involves integration
problems and other real SOA difficulties. This domain is commonly used in SOA
works, e.g., (Snell, 2002), and represents a real and complex problem.

6.3.3 Operation

This section presents the details about the execution of the experimental study performed
with the purpose of evaluating and refining the SOPLE-DE.

The Environment

The experimental study was conducted during 8 hours at the Federal University of
Pernambuco (UFPE). The experimental study was composed of 8 subjects that performed
the experiment in parallel. In the experiment, three service-oriented systems were
designed as a service-oriented product line.

Training

The subjects were trained before the experimental study began. The training took 22
hours, divided into 10 lectures with two hours each, during the postgraduate course
at the university, and 2 hours independently of the university course presented by the
experimenter. In addition, the subjects who used the proposed approach were trained 2
hours more to use the SOPLE-DE.

As previously described, the study was performed in two steps: initially, the subjects
were trained in several aspects of software reuse, SPL, SOA, reuse processes and SOPLE-
DE, and after, they performed the service-oriented product line project in 8 hours.

Subjects

The subjects were four M.Sc. and four Ph.D. students from the Federal University of
Pernambuco. However, three subjects were not considered during the analysis of the

101

6.3. THE EXPERIMENTAL STUDY

ID Academic Projects Industrial Projects SPL Projects SOA Projects

1
(2) Low Complexity
(2) Medium Complexity
(1) High Complexity

(1) Academic

2
(4) Low Complexity
(6) Medium Complexity
(4) High Complexity

(3) Academic
(9) Low Complexity
(3) Medium Complexity
(1) High Complexity

(1) Academic

(2) Low Complexity
(3) Medium Complexity
(1) High Complexity

3
(4) Medium Complexity
(2) High Complexity

(2) Academic
(5) Low Complexity
(5) Medium Complexity

4
(1) Medium Complexity
(1) High Complexity

(1) Academic
(1) Low Complexity
(1) Medium Complexity

(1) Academic

5
(9) Low Complexity
(3) Medium Complexity

(1) Academic
(1) Low Complexity
(1) High Complexity

Table 6.2 The Profile of the Subjects

experiment because they did not have the necessary profile, i.e., participated as architect
of an industrial project. In this sense, two M.Sc. and one Ph.D. students were removed.

All the subjects considered had industrial experience in software development, more
than one year at least. Two subjects had participated in industrial projects involving some
kind of reuse activity, for instance, component-based development, framework, or web
services development. In addition, all the subjects had participated in SPL academic
projects, and two subjects have taken part of an academic SOA project. Table 6.2 shows
a summary of the profile of the subjects involved in this experiment.

Costs

Since the subjects of the experimental study were students from the Federal University of
Pernambuco and the environment for execution was the labs of the university, the cost
for the study was basically planning and operation. The planning for the experimental
study took about two months. During this period, it was developed three versions of the
planning presented in this dissertation.

6.3.4 Analysis and Interpretation

In this section, the results obtained with the experimental study are presented. This
section is divided into quantitative and qualitative analysis.

Quantitative Analysis

The quantitative analysis was divided in five analyses: coupling and instability of the
service-oriented product line architecture, service operations cohesion, difficulties found

102

6.3. THE EXPERIMENTAL STUDY

to understand the SOPLE-DE, and the difficulties found during the use of the SOPLE-DE
in practice.

Coupling: After collecting the information about the service coupling, the data
collected was analyzed. Figure 6.3 shows the service coupling of the services identified
by the subjects. In the graphics, the axis (X) shows the service identifiers1, and the axis
(Y) represents the service coupling values. In addition, the subject with Id = 1 and 2
used the SOPLE-DE, while subjects with Id = 3, 4 and 5 designed the project without
following a structured method (ad-hoc).

0

1

2

3

4

5

6

1 2 3 4 5 6

Coupling - Subject Id = 1

Coupling

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12

Coupling - Subject Id = 2

Coupling

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11

Coupling - Subject Id = 3

Coupling

0

1

2

3

4

5

1 2 3 4 5 6 7 8

Coupling - Subject Id = 4

Coupling

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12

Coupling - Subject Id = 5

Coupling

Figure 6.3 Service Coupling

As it can be seen in figure, the coupling of the services generated using the SOPLE-DE
is lower, when compared with the service coupling produced without using the structured
method. Figure 6.4 compares the mean of all service coupling following the SOPLE-DE
and without using any method. This aspect indicates that the null hypothesis (µ SC of

services without SOPLE-DE < µ SC of services with SOPLE-DE) can be rejected.
Through the analysis of empirical studies, Chidamber and Kemerer (1994) suggested

that at least 50% of the classes in an object-oriented system should be totally independent
of other classes, i.e., these classes should have Coupling = 0. However, we have not
found any baseline for this metric in the context of service orientation. Thus, maybe we
can consider that in a service-oriented system at least 50% of the services should be only
providers, in other words, they should not depend on any other service. As illustrated in

1Each subject identified several services during the experiment. In the graphics, each of these services
are represented with an identifier showed in the axis (X), i.e., the numbers (1, 2, ..,12) were used as the
identifiers.

103

6.3. THE EXPERIMENTAL STUDY

0.89

1.74

0

0.5

1

1.5

2

SOPLE-Design Ad-Hoc

Service Coupling Mean

0
10

20

30

40
50

60

70
80

90

1 2 3 4 5

Id of the Subjects

% of services with SC = 0

% of services with SC = 0

Figure 6.4 Service Coupling Mean

Figure 6.4, the architectures of the subjects with Id = 1 and 2 have 50% or more of their
services with SC = 0.

Instability: After collecting the information about the service instability, the data
collected was analyzed. Figure 6.5 shows the service instability data. In the graphics, the
axis (X) shows the service identifiers, and the axis (Y) represents the service instability
values. The average instability of the services generated using the SOPLE-DE is lower,
when compared with the mean of the service instability produced without using the
structured method (see Figure 6.6). This aspect indicates that the null hypothesis (µ SI of

services without SOPLE-DE < µ SI of services with SOPLE-DE) can be rejected.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6

Instability - Subject Id = 1

Instability

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12

Instability - Subject Id = 2

Instability

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11

Instability - Subject Id = 3

Instability

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8

Instability - Subject Id = 4

Instability

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12

Instability - Subject Id = 5

Instability

Figure 6.5 Service Instability

We have not found any baseline for the instability metric in the context of service-
oriented development as well. Thus, we cannot say how good are the values obtained
with the treatments. However, these values can be used in new experiments as baselines.

104

6.3. THE EXPERIMENTAL STUDY

0.26

0.55

0

0.1

0.2

0.3

0.4

0.5

0.6

SOPLE-Design Ad-Hoc

Service Instability Mean

Instability

0

20

40

60

80

100

1 2 3 4 5

% of services with SI = 0

% of services with SI = 0Id of the Subjects

Figure 6.6 Service Instability Mean

It is important to observe that several services that the subjects (Id: 1and 2) identified are
totally stable, i.e., they have SI = 0 (see Figure 6.6).

Lack of Service Cohesion: After collecting the information about the service cohe-
sion, we could observe that 16.7% of the services identified by the subjects using the
SOPLE-DE have LSC > 1, i.e., the operations of these services access more than one
business entity of the domain. On the other hand, 19.4% of the services identified by
the subjects without use the SOPLE-DE had LSC > 1. Figure 6.7 presents the cohesion
metric values. The hypothesis (µLSC of service operations without SOPLE-DE < µLSC of service operations

with SOPLE-DE) could be rejected.

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6

Cohesion - Subject Id = 1

Cohesion

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12

Cohesion - Subject Id = 2

Cohesion

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11

Cohesion - Subject Id = 3

Cohesion

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8

Cohesion - Subject Id = 4

Cohesion

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12

Cohesion - Subject Id = 5

Cohesion

Figure 6.7 Cohesion of the Service Operations

Difficulties to Understand the Activities of the SOPLE-DE: Analyzing the an-
swers of the subjects using the questionnaire (QT2) for the difficulties found to under-
stand the SOPLE-DE activities, it was identified that the subjects (Id = 1 and 2) that
used the SOPLE-DE did not have difficulties to understand the approach. Thus, this

105

6.3. THE EXPERIMENTAL STUDY

aspect confirms that the null hypothesis (understanding problems > 50%) can be rejected.
However, it is necessary to highlight that this value for the null hypothesis was defined
without any previous data. Nevertheless, the next time the experiment is performed this
value can be refined based on this experience, resulting in a more calibrated metric.

Difficulties to Apply the SOPLE-DE in Practice: Analyzing the answers of the
subjects using the questionnaire (QT2) for the difficulties found to apply the SOPLE-DE
in practice, it was identified that subjects (Id = 1 and 2) did not have difficulties to apply
the approach in practice. Thus, this aspect indicates that the null hypothesis (applicability
problems > 50%) can be rejected without much significance. However, it is necessary
to highlight that the value for the null hypothesis was defined without any previous data.
Thus, this value can be calibrated for new experiments.

Qualitative Analysis

After concluding the quantitative analysis of the experiment, the qualitative analysis
was performed. This analysis was based on the answers of the subjects defined in the
questionnaire (QT2).

Training Analysis: The training was applied to all the subjects who participated of
the experimental study and was composed of a set of slides involving topics related to
software reuse, software product lines and service-oriented architectures. The training
was performed in 24 hours. Two subjects considered the training very good (Id = 6 and
7) and three subjects classified it as good (Id = 1, 2 and 5). The scale defined was: very
good, good, regular, and unsatisfactory.

Finally, the subjects (Id = 1 and 2) were trained to use the SOPLE-DE. The subjects
(Id = 5, 6 and 7) were not trained to use the SOPLE-DE, since they designed the project
without using a structured method (ad-hoc).

Usefulness of the SOPLE-DE: The four subjects that used the SOPLE-DE reported
that the approach was useful to perform the service-oriented domain design. However,
one subject (Id = 3) indicated some improvements in the architectural elements identi-
fication activity with the purpose of facilitating the identification of modules and their
classification as components or services. All the issues raised during the experiment
were considered, and the SOPLE-DE was refined. These issues were detailed during the
discussion about the difficulties to understand and apply the SOPLE-DE in practice.

Quality of the Documentation and Instruments: One subject (Id = 2) complained
about the lack of examples in the documentation of the SOPLE-DE to clarify the dif-
ferent activities of the approach. In this sense, an example was put in the approach

106

6.4. CONCLUSIONS AND LESSONS LEARNED

documentation to ease understanding.
Regarding the instruments of the experiment, two subjects (Id = 2 and 6) complained

about the lack of details in the requirements of the service-oriented product line on the
Travel Reservation domain. It was proposed to include more information for new experi-
ments. The subjects (Id = 2 and 6) were the only two participants that had experience
with SOA projects in academy. Thus, this experience may had influenced these subjects
to complain about the lack of information in the requirements.

Quality of the Architecture Document Produced by the Subjects

We used the following scale to measure the quality of the architecture documents produced
by the subjects: very good, good, regular, and unsatisfactory. It was noticed that subjects
(Id =1 and 2) produced a well-structured document, since they followed the SOPLE-DE
template strictly. In this sense, we classified the architecture documents produced by
these subjects as good.

Considering the architecture documents produced by the subjects without use the
SOPLE-DE, we could detect that subject (Id = 5 and 6) produced good architecture
documents as well, however, with different sections, since they do not followed a template.
Regarding subject (Id = 7), the architecture document was classified as regular, since it
was not organized and well-structured as the documents of the other subjects.

6.4 Conclusions and Lessons Learned

Even with the analysis not being conclusive, the experimental study indicates that the
SOPLE-DE allows the architects to design service-oriented product line architectures
with a good coupling and stability, and services with cohesive operations. Additionally,
the aspects related to understanding and applicability of the SOPLE-DE in practice
returned satisfactory results. Moreover, with the results identified in this experiment, the
metric values can be calibrated in a more accurate way. It was also identified that the
training on SOA and SOPLE-DE should be reconsidered, it should be longer, and the
requirements of the experiment project should be more detailed to improve the results of
future experiments.

We have not found correlations among the experience of the subjects and the quality
of the architecture produced, i.e., the results of the experiment did not show that subjects
with a significance experience produced the service-oriented product line architecture with
better coupling, instability and cohesion. Considering the understanding and applicability

107

6.4. CONCLUSIONS AND LESSONS LEARNED

of the SOPLE-DE, this correlation could be analyzed as described previously. New
experiments can provide more evidence for these correlations. In addition, we have not
considered any value as outlier. In this sense, no value was removed when analyzing the
metrics results (Fenton, 1994).

After concluding the experimental study, some aspects should be considered in order
to repeat the experiment, since they were seen as limitations of the first execution. In
this sense, the next sub-sections present the lessons learned with the experimental study
performed.

Problem Description

It is important to specify the system that will be used in the experimental study as more
detailed as possible. One subject highlighted some problems related to the specifications
of the use cases during the pilot project. During the real experiment, two subjects (Id
= 2 and 6) asked about details that were not mentioned in the material provided by the
experimenter. It was noted that a full example during the training can avoid doubts during
the execution of the real experiment. A more detailed specification of the project used in
the experiment is extremely necessary.

Single Roles

During the experiment, the subjects were associated to two roles, i.e., domain architect
and SOA architect. This could have a negative impact on the project, mainly related
to overworking and lack of experience of the subjects in specific roles. This issue was
already identified in (de Almeida, 2007), but we could not avoid it due to the reduced
number of volunteers found to perform the experimental study. This issue could be solved
if we could separate several groups of people, five subjects each in the context of the
SOPLE-DE, to realize the experiment acting just as a single role.

Motivation

As the project was performed independently of a university course, it was difficult to
maintain the subjects motivated, and keep their attention and discipline during the whole
execution of the experimental study. Thus, this aspect should be analyzed in order to try
to control it. A possible solution can be to perform the experimental study in a university
course.

108

6.5. CHAPTER SUMMARY

Number of subjects

It is very hard to find volunteers to perform the experimental study. This experiment was
performed by a reduced number of subjects (8 participants), and the pilot project with 2
subjects. After this experimental study, the necessity to increase the number of subjects
could be identified. The execution of the experiment in a university course may solve this
issue as well.

6.5 Chapter Summary

This Chapter presented the definition, planning, operation, analysis and interpretation of
the experimental study that evaluated the efficacy, understanding and applicability of the
SOPLE-DE. The study analyzed the possibility of subjects using the approach to design
a service-oriented product line architecture with good stability and coupling, and services
with cohesive operations. It was also analyzed the understanding and applicability of the
SOPLE-DE in practice. The difficulties were categorized in the different activities of the
SOPLE-DE with the intention of evaluating and refining its activities.

Even with the reduced number of subjects, the analysis has shown that the SOPLE-DE
can be viable. It also identified some issues for improvements. However, two aspects
should be considered: the repetition of the study in different contexts and new studies
based on observation in order to identify more problems and new points for improvements.

Next chapter presents the conclusions of this work, its related work and directions for
future work.

109

7
Conclusions

The software industry is constantly searching for new ways to achieve productivity gains,
reduced development costs, improved time-to-market, and increased software quality
(Linden et al., 2007). Organizations aim to accomplish these goals with the purpose of
maintaining competitive in the current business environment.

In this scenario, software reuse is a key factor to achieve these goals (Krueger, 1992).
In the context of software reuse, SPL and SOA are strategies that are getting a lot of
attention in research and practice lately. These strategies share common goals and
characteristics as presented in Chapter 2 and 3, which depicted an overview on SPL and
SOA concepts respectively.

In this context, some works have considered the combination of SPL and SOA
concepts in a unique development process, e.g., Lee et al. (2007), Helferich et al. (2007)
and Naab (2009). However, there are few works that propose processes for service-
oriented product lines, and they do not provide sequential activities, sub-activities, roles,
inputs and outputs in a systematic manner.

Thus, in order to solve the problems and gaps identified in the service-oriented
product line area, this dissertation presented the SOPLE-DE. It is an approach to design
service-oriented product line architectures, which defines a systematic way to perform the
architecture design based on a set of principles. The SOPLE-DE as well as its principles,
guidelines, activities, sub-activities, inputs, outputs and roles are presented in Chapter 5.

The SOPLE-DE approach was based on an extensive review of existing service-
oriented processes, considering their weak and strong points, and gaps in the research
area. In the Chapter 4, the current state-of-the-art of SOA design methods is discussed.

An experimental study on the Travel Reservation domain is presented in Chapter 6. It
was performed with the purpose of evaluating the SOPLE-DE approach and refining it
considering the feedbacks received during the execution of the experiment and its results.

110

7.1. RELATED WORK

Finally, this chapter concludes this dissertation presenting its conclusions, and its
related and future work. Next section presents the related work that have considered the
combination of SPL and SOA, compared their concepts or presented information about
their similarities and differences.

7.1 Related Work

In the literature, few works have considered the combination of SPL and SOA concepts
and processes for service-oriented product lines. However, the key difference between
the work described in this dissertation and the others is the systematization of the design
process, which presented a well-defined sequence of activities, sub-activities and steps
with clearly defined inputs and outputs, and performed by a predefined set of roles with
clear responsibilities. This helped to reduce the gaps and lack of details among the few
steps and activities provided by the existing approaches and processes for service-oriented
product lines.

An approach for developing service-oriented product lines was published in Lee
et al. (2007) and Lee et al. (2008). These works present an initial development process
that provides methods for the identification and documentation of services and service
compositions. They focus on the development of service-oriented product lines that
are automatically configurable at runtime. In this case, SOA concepts, e.g., runtime
service discoverability and binding, are used to aid the development of Dynamic Software
Product Lines (DSPL).

Our work considers the identification of services from different sources, e.g., feature
models, use cases, business processes and quality attribute scenarios. The related work
mentioned does not use business processes to identify services. It is a negative point, since
the business processes are the focus of the service-oriented development. In addition,
our work provides guidelines to achieve some quality attributes, such as performance,
flexibility and evolvability, that are not mentioned in the related work. Moreover, SOPLE-
DE suggests a more detailed specification for services and service compositions, which
include information such as service level agreements and non-functional requirements.

The concept of Business Process Lines (BPL) was used in Ye et al. (2007) and Boffoli
et al. (2008). In this context, business processes are developed with variability in order
to fit the requirements of several customers. Thus, the business process activities are
customized, the optional and alternative ones are selected or excluded from the generic
process, and the target business process is created. Afterwards, the SOA system for this

111

7.2. FUTURE WORK

specific business process is developed.
SOPLE-DE considers variability in the business processes as well. However, it also

uses feature models to represent variability, since the business process models can become
polluted with too much information about variability. Other key difference of our work is
that we consider reuse of services as well as artifacts produced during the process, which
are developed with variability to be reused by several systems of the product line. The
related work considers only reuse of services and puts all the variability information in
the business processes.

In addition, the related work is technology specific, i.e., they use web services and
BPEL. At least, the related work provides tool support. The work presented in this
dissertation is intended to depict guidelines and activities during the process without
restrict it to a specific technology such as web services.

In Günther and Berger (2008), it is presented an initial process for service-oriented
product lines, but it basically compares SOA and SPL processes. It discusses about the
implementation of service variability using code transformation tools in the Web Store

domain. However, the related work provides no sequential activities and tasks to aid
the development of service-oriented product lines, different from SOPLE-DE that is
systematic.

7.2 Future Work

Due to the time constraints imposed on the master degree, this work can be seen as
an initial climbing towards a process for service-oriented product lines, and interesting
directions remain to improve what was started here and new routes can be explored in the
future. Thus, the following issues should be investigated as future work:

• Re-engineering activities: The proposed approach does not consider reengineer-
ing aspects, such as the identification of services from existing legacy applications,
nor redesign of existing services and components for the new service-oriented
product line. However, it does not exclude the possibility to integrate existing com-
ponents into the new architecture. Integration is one of the main benefits of SOA
due to its interoperability characteristics that allow legacy systems developed using
different platforms and languages to be leveraged in the new solution (Arsanjani
et al., 2008). A deep analysis of re-engineering aspects during the design approach,
i.e., the bottom-up strategy (Erl, 2005), is an important advancement that can be
considered as future work;

112

7.2. FUTURE WORK

• Extractive and reactive adoption: SPL can be adopted using different strategies,
e.g., proactive, extractive and reactive adoption models. This work uses a proactive
adoption model, which concentrates on the development of a SPL from scratch.
Thus, the adoption of SPL considering existing products (extractive) or the incre-
mental development of products (reactive) are not being considered in this work.
In this sense, these adoption models can be considered as future work to provide a
better design discipline;

• Experimental Study: This dissertation presented the definition, planning, opera-
tion, analysis and interpretation of an experimental study that was executed with
the purpose of evaluating and refining the SOPLE-DE approach. However, new
studies in different contexts, including more subjects and other domains are still
necessary in order to calibrate the proposed approach;

• Full Process: In the Chapter 5, we presented an approach to design service-oriented
product line architectures. However, a process that considers all the disciplines,
e.g., requirements, design and implementation, during the development of product
lines using service-oriented architectures is still missing in the literature.

• Other Directions in Software Development: The approach to design service-
oriented product line architectures proposed in this dissertation is based on four
solid concepts: service orientation, component-based, product line and design
principles, e.g., granularity, cohesion, coupling and variability. However, new direc-
tions started in the software development field such as Model-Driven Development
(MDD) and can be used in the development of service-oriented product lines. Some
directions in this sense are being investigated in Boffoli et al. (2009);

• Architecture Evaluation: The software architecture is a key asset for any organi-
zation that builds complex software-intensive systems. In SPL, this issue is even
more important, since the architecture should be used to create several products. In
addition, service-oriented architectures are distributed, thus, it is critical to perform
an architecture evaluation early in the software life-cycle to avoid failures of quality
attributes, e.g., security, performance, availability, and modifiability (Bianco et al.,
2007). Even being very important in SPL and SOA processes, this aspect was not
considered in this dissertation and can be considered as a future work.

113

7.3. CONCLUDING REMARKS

7.3 Concluding Remarks

Software reuse is a key factor for organizations interested in improvements related
to productivity, quality and cost reductions. In this context, this work presented the
SOPLE-DE, which is an approach to design service-oriented product line architectures.
It combines SPL and SOA concepts focusing on increasing reuse and productivity.

The motivation to combine SPL and SOA was to achieve desired benefits, such as
productivity gains, decreased development costs and effort, improved time-to-market,
applications customized to specific customers or market segment needs, competitive
advantage, flexibility and dynamic composition of software modules (Cohen and Krut,
2007). In particular, this work provided contributions to develop service-oriented systems
customizable to specific customers through increased flexibility and dynamic composi-
tions of software modules.

The SOPLE-DE approach was based on an extensive review of the available service-
oriented processes, their weak and strong points and gaps in the area. The SOPLE-DE
can be seen as a systematic way to design service-oriented product line architectures
through a well-defined sequence of activities, steps, inputs, outputs, and guidelines.

Additionally, the approach was evaluated in a service-oriented product line project
through an experimental study on the Travel Reservation domain, which analyzed it
both quantitatively and qualitatively. This experimental study presented findings that the
SOPLE-DE can be viable to aid software architects during the design of service-oriented
product line architectures.

Even it being an important contribution for the field, new routes need to be investigated
in order to define a more complete process that consider all the software development
disciplines, such as requirements, design and implementation, for product lines based on
services.

114

Bibliography

Abu-Matar, M. (2007). Toward a service-oriented analysis and design methodology for
software product lines. IBM Developer Works.

Acuña, C. J. and Marcos, E. (2006). Modeling semantic web services: a case study. In
ICWE’06: Proceedings of the 6th International Conference on Web Engineering, pages
32–39, New York, NY, USA. ACM.

Alvaro, A., Almeida, E. S., and Meira, S. L. (2006). A software component quality
model: A preliminary evaluation. In Proceedings of the 32nd Conference on Software

Engineering and Advanced Applications (EUROMICRO’06), pages 28–37, Washington,
DC, USA. IEEE Computer Society.

Arsanjani, A. (2004). Service-oriented modeling and architecture. Technical report,
Service-Oriented Architecture and Web services Center of Excellence, IBM.

Arsanjani, A. and Allam, A. (2006). Service-oriented modeling and architecture for
realization of a SOA. In SCC ’06: Proceedings of the IEEE International Conference

on Services Computing, page 521, Washington, DC, USA. IEEE Computer Society.

Arsanjani, A., Zhang, L.-J., Ellis, M., Allam, A., and Channabasavaiah, K. (2007). S3: A
service-oriented reference architecture. IT Professional, 9(3), 10–17.

Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T., Ganapathy, S., and Holley, K. (2008).
SOMA: A method for developing service-oriented solutions. IBM System Journal,
47(3), 377–396.

Azevedo, L. G., Santoro, F., Baião, F., Souza, J., Revoredo, K., Pereira, V., and Herlain, I.
(2009). A method for service identification from business process models in a SOA
approach. In 10th International Workshops on Business Process Modeling, Devel-

opment and Support (BPMDS), volume 29 of Lecture Notes in Business Information

Processing, pages 99–112. Springer Berlin Heidelberg.

Barbacci, M., Longstaff, T. H., Klein, M. H., and Weinstock, C. B. (1995). Quality
attributes. Technical report, Software Engineering Institute.

Basili, V., Caldiera, G., and Rombach, D. H. (1994). The goal question metric approach.
In Encyclopedia of Software Engineering. Wiley.

115

BIBLIOGRAPHY

Basili, V. R. (1996). The role of experimentation in software engineering: Past, present
and future. In ICSE’96: 18th International Conference on Software Engineering.

Basili, V. R., Selby, R. W., and Hutchens, D. H. (1986). Experimentation in software
engineering. IEEE Transactions on Software Engineering.

Bass, L., Clements, P., and Kazman, R. (2003). Software Architecture in Practices.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Bianco, P., Kotermanski, R., and Merson, P. (2007). Evaluating a service-oriented
architecture. Technical report, Software Engineering Institute.

Boehm, B. W. (1988). A spiral model of software development and enhancement. IEEE

Computer Society, 21(5), 61–72.

Boffoli, N., Caivano, D., Castelluccia, D., Maggi, F. M., and Visaggio, G. (2008). Busi-
ness process lines to develop service-oriented architectures through the software prod-
uct lines paradigm. In SOAPL’08: 2nd Workshop on Service-Oriented Architectures

and Software Product Lines, pages 143–147.

Boffoli, N., Cimitile, M., Maggi, F. M., and Visaggio, G. (2009). Managing SOA
system variation through business process lines and process-oriented development. In
SOAPL’09: 3rd Workshop on Service-Oriented Architectures and Software Product

Lines.

Booch, G. (1995). Object Solutions: Managing the Object-Oriented Project. Addison-
Wesley.

Bosch, J. (2000). Design and Use of Software Architectures: Adopting and Evolving a

Product-Line Approach. Addison-Wesley.

Brito, K. S. (2007). LIFT: A Legacy InFormation retrieval Tool. Master’s thesis, Federal
University of Pernambuco, Recife, Pernambuco, Brazil.

Brown, A., Johnston, S., and Kelly, K. (2003). Using service-oriented architecture and
component-based development to build web service applications. IBM Developer
Works.

Carter, S. (2007). The New Language of Business: SOA & Web 2.0. IBM Press.

116

BIBLIOGRAPHY

Cavalcanti, Y. C. (2009). BAST: A Bug Report Analysis and Search Tool. Master’s thesis,
Federal University of Pernambuco, Recife, Pernambuco, Brazil.

Chang, S. H. (2007). A systematic analysis and design approach to develop adaptable
services in service oriented computing. IEEE Congress on Services, pages 375–378.

Chang, S. H. and Kim, S. D. (2007). A service-oriented analysis and design approach
to developing adaptable services. In SCC’07: Proceedings of the IEEE International

Conference on Services Computing.

Chappell, D. (2004). Enterprise Service Bus: Theory in Practice. O’Reilly Media.

Chidamber, S. R. and Kemerer, C. F. (1994). A metrics suite for object oriented design.
IEEE Transactions on Software Engineering.

Clements, P. (2002). Being proactive pays off. IEEE Software, 19(4), 28–30.

Clements, P. and Northrop, L. (2001). Software Product Lines: Practices and Patterns.
Addison-Wesley.

Cohen, S. and Krut, R., editors (2007). Proceedings of the First Workshop on Service-

Oriented Architectures and Software Product Lines, 11th International Software Prod-

uct Line Conference.

de Almeida, E. S. (2007). RiDE: The RiSE Process for Domain Engineering. Ph.D.
thesis, Federal University of Pernambuco.

de Almeida, E. S., Alvaro, A., Lucredio, D., Garcia, V., and Meira, S. R. L. (2004). Rise
project: Towards a robust framework for software reuse. In IRI’04: International

Conference on Information Reuse and Integration.

de Castro, V., Marcos, E., and López-Sanz, M. (2006). A model driven method for service
composition modelling: a case study. International Journal of Web Engineering and

Technology, 2(4), 335–353.

Dias Jr., J. J. L. (2008). A Software Architecture Process for SOA-based Enterprise

Applications. Master’s thesis, Federal University of Pernambuco, Brazil.

Elfatatry, A. and Layzell, P. (2004). Negotiating in service-oriented environments.
Communications of the ACM, 47(8).

117

BIBLIOGRAPHY

Endrei, M., Ang, J., Arsanjani, A., Chua, S., Comte, P., Krogdahl, P., Luo, M., and
Newling, T. (2004). Patterns: Service-Oriented Architecture and Web Services. IBM
Redbooks.

Engels, G., Hess, A., Humm, B., Juwig, O., Lohmann, M., Richter, J.-P., Voß, M., and
Willkomm, J. (2008). A method for engineering a true service-oriented architecture.
In ICEIS’08: International Conference on Enterprise Information Systems, pages
272–281, Barcelona, Spain.

Erl, T. (2005). Service-Oriented Architecture: Concepts, Technology, and Design. Pren-
tice Hall, Upper Saddle River, NJ, USA.

Erl, T. (2006). Top 8 SOA Adoption Pitfalls. http://www.infoq.com/articles/Top-8-SOA-
Adoption-Pitfalls.

Erl, T. (2007). SOA Principles of Service Design (The Prentice Hall Service-Oriented

Computing Series from Thomas Erl). Prentice Hall PTR, Upper Saddle River, NJ,
USA.

Erl, T. (2009). SOA Design Patterns. Prentice Hall PTR.

Erradi, A., Anand, S., and Kulkarni, N. (2006). SOAF: An architectural framework for
service definition and realization. In SCC’06: International Conference on Services

Computing, pages 151–158. IEEE Computer Society.

Etxeberria, L., Sagardui, G., and Belategi, L. (2007). Modelling variation in quality
attributes. In VaMoS’07: 1st International Workshop on Variability Modelling of

Software-Intensive Systems.

Fenton, N. (1994). Software measurement: A necessary scientific basis. IEEE Transac-

tions on Software Engineering.

Frakes, W. (1994). Systematic software reuse: a paradigm shift. In ICSR’94: 2nd

International Conference on Software Reuse.

Gacek, C. and Anastasopoules, M. (2001). Implementing product line variabilities.
SSR’01: Symposium on Software Reusability, 26(3), 109–117.

Garcia, V. C., Lisboa, L. B., ao, F. A. D., Almeida, E. S., and Meira, S. R. L. (2008). A
lightweight technology change management approach to facilitating reuse adoption.

118

BIBLIOGRAPHY

In 2nd Brazilian Symposium on Software Components, Architectures, and Reuse

(SBCARS’08), Porto Alegre, Brazil.

Garlan, D. and Shaw, M. (1994). An introduction to software architecture. Technical
report, Software Engineering Institute.

Gomaa, H. (2004). Designing Software Product Lines with UML: From Use Cases to

Pattern-Based Software Architectures. Addison Wesley.

Günther, S. and Berger, T. (2008). Service-oriented product lines: Towards a development
process and feature management model for web services. In SOAPL’08: 2nd Workshop

on Service-Oriented Architectures and Software Product Lines, pages 131–136.

Havey, M. (2005). Essential Business Process Modeling. O’Reilly.

Helferich, A., Herzwurm, G., and Jesse, S. (2007). Software product lines and service-
oriented architecture: A systematic comparison of two concepts. In SPLC’07: 11th

International Software Product Line Conference. IEEE Computer Society.

Henderson-Sellers, B. (1995). Object-Oriented Metrics: Measures of Complexity. Pren-
tice Hall PTR.

Hewitt, E. (2009). Java SOA Cookbook. O’Reilly.

Hofmeister, H. and Wirtz, G. (2008). Supporting service-oriented design with metrics. In
EDOC’08: 12th Enterprise Distributed Object Computing Conference.

Ibrahim, D. and Misie, V. B. (2006). Service views: a coherent view model of the SOA
in the enterprise. In SCC ’06: Proceedings of the IEEE International Conference on

Services Computing.

Istoan, P. (2009). Software Product Lines for Creating Service-Oriented Applications.
Master’s thesis, Irisa Rennes Research Institute.

Jarczyk, A. P. J., Löffler, P., and Shipman, F. M. (1992). Design rationale for software
engineering: A survey. In HICSS’92: 25th Hawaii International Conference on System

Sciences.

Jones, C. (1995). Patterns of Software System Failure and Success. Intl Thomson
Computer.

119

BIBLIOGRAPHY

Jones, S. and Morris, M. (2005). A methodology for service architectures. Techni-
cal report, Organization for the Advancement of Structured Information Standards
(OASIS).

Josuttis, N. M. (2007). SOA in Practice. O’Reilly.

Kang, K. C., Lee, J., and Donohoe, P. (2002). Feature-oriented product line engineering.
IEEE Software.

Karhunen, H., Jantti, M., and Eerola, A. (2005). Service-Oriented Software Engineering
(SOSE) framework. ICSSSM’05: International Conference on Service Systems and

Service Management, 2, 1199–1204 Vol. 2.

Kästner, C., Apel, S., and Kuhlemann, M. (2008). Granularity in software product lines.
In 30th International Conference on Software Engineering (ICSE), pages 311–320.

Kim, S., Kim, M., and Park, S. (2008). Service identification using goal and scenario in
service oriented architecture. In APSEC’08: 15th Asia-Pacific Software Engineering

Conference, pages 419–426. IEEE Computer Society.

Kitchenham, B. (2004). Procedures for performing systematic reviews. Technical report,
Joint Technical Report, Keele University TR/SE-0401 and NICTA 0400011T.1.

Kitchenham, B. and Charters, S. (2007). Guidelines for performing Systematic Literature
Reviews in Software Engineering. Technical Report 2007-001, Keele University and
Durham University Joint Report.

Kitchenham, B., Pickard, L., and Pfleeger, S. L. (1995). Case studies for method and
tools evaluation. IEEE Software.

Kruchten, P. (1995). Architectural blueprints - the 4+1 view model of software architec-
ture. IEEE Software.

Kruchten, P. (2003). The Rational Unified Process: An Introduction. Addison Wesley,
third edition.

Krueger, C. (2002). Eliminating the adoption barrier. IEEE Software, 19(4), 29–31.

Krueger, C. W. (1992). Software reuse. ACM Computing Surveys, 24(2).

Laddad, R. (2003). AspectJ in Action: Practical Aspect-Oriented Programming. Manning
Publications.

120

BIBLIOGRAPHY

Lamparter, S. and Sure, Y. (2008). An interdisciplinary methodology for building service-
oriented systems on the web. In SCC’08: Proceedings of the IEEE International

Conference on Services Computing.

Larman, C. (2004). Applying UML and Patterns: An Introduction to Object-Oriented

Analysis and Design and Iterative Development. Prentice Hall.

Lee, J. and Kang, K. C. (2003). Feature binding analysis for product line component
development. In PFE’03: 5th International Workshop on Software Product-Family

Engineering, pages 250–260.

Lee, J., Muthig, D., and Naab, M. (2007). Identifying and specifying reusable ser-
vices of service centric systems through product line technology. In SPLC’07: 11th

International Software Product Line Conference. IEEE Computer Society.

Lee, J., Muthig, D., and Naab, M. (2008). An approach for developing service-oriented
product lines. In SPLC’08: 12th International Software Product Line Conference,
pages 275–284. IEEE Computer Society.

Lee, J., Kotonya, G., and Robinson, D. (2009). A negotiation framework for service-
oriented product line development. In ICSR’09: 11th International Conference on

Software Reuse.

Linden, F. J. v. d., Schmid, K., and Rommes, E. (2007). Software Product Lines in Action:

The Best Industrial Practice in Product Line Engineering. Springer-Verlag New York,
Inc., Secaucus, NJ, USA.

López-Sanz, M., Acuña, C. J., Cuesta, C. E., and Marcos, E. (2007). UML profile for
the platform independent modelling of service-oriented architectures. In ECSA’07:

Proceedings of the 1st European conference on Software Architecture, pages 304–307,
Berlin, Heidelberg. Springer-Verlag.

MacKenzie, C. M., Laskey, K., McCabe, F., Brown, P. F., and Metz, R. (2006). Refer-
ence model for service oriented architecture. Technical report, Organization for the
Advancement of Structured Information Standards (OASIS).

Martin, R. (1994). OO design quality metrics: An analysis of dependencies.
http://www.objectmentor.com/resources/articles/oodmetrc.pdf.

121

BIBLIOGRAPHY

Martins, A. C., Garcia, V. C., Almeida, E. S., and Meira, S. R. L. (2008). Enhancing
components search in a reuse environment using discovered knowledge techniques.
In 2nd Brazilian Symposium on Software Components, Architectures, and Reuse

(SBCARS’08), Porto Alegre, Brazil.

Mascena, J. C. C. P. (2006). ADMIRE: Asset Development Metric-based Integrated Reuse

Environment. Master’s thesis, Federal University of Pernambuco, Recife, Pernambuco,
Brazil.

McGovern, J., Tyagi, S., Stevens, M., and Mathew, S. (2003). Java Web Services

Architecture. Morgan Kaufmann.

Medeiros, F. M., de Almeida, E. S., and Meira, S. R. L. (2009). Towards an approach for
service-oriented product line architectures. In SOAPL’09: 3rd Workshop on Service-

Oriented Architectures and Software Product Lines.

Mendes, R. C. (2008). Search and Retrieval of Reusable Source Code using Faceted

Classification Approach. Master’s thesis, Federal University of Pernambuco, Recife,
Pernambuco, Brazil.

Naab, M. (2009). Achieving true flexibility of SOA-based information systems by
adopting practices from product line engineering. In Software Product Lines Doctoral

Symposium - 13th International Software Product Line Conference.

Nascimento, L. M. (2008). Core Assets Development in SPL - Towards a Practical

Approach for the Mobile Game Domain. Master’s thesis, Federal University of Per-
nambuco, Recife, Pernambuco, Brazil.

Neiva, D. F. S. (2009). RiPLE-RE: A Requirements Engineering Process for Software

Product Lines. Master’s thesis, Federal University of Pernambuco.

Panda, D., Rahman, R., and Lane, D. (2007). EJB 3 in Action. Manning Publications.

Papazoglou, M. P. and Heuvel, W.-J. V. D. (2006). Service-oriented design and de-
velopment methodology. International Journal of Web Engineering and Technology

(IJWET), 2(4), 412–442.

Perepletchikov, M., Ryan, C., Frampton, K., and Tari, Z. (2007). Coupling metrics
for predicting maintainability in service-oriented designs. In ASWEC’07: Australian

Software Engineering Conference.

122

BIBLIOGRAPHY

Pohl, K., Böckle, G., and van der Linden, F. J. (2005). Software Product Line Engineering:

Foundations, Principles and Techniques. Springer-Verlag New York, Inc., Secaucus,
NJ, USA.

Quynh, P. T. and Thang, H. Q. (2009). Dynamic coupling metrics for service–oriented
software. IJCSE’09: International Journal of Computer Science and Engineering.

Ramollari, E., Dranidis, D., and Simons, A. J. H. (2007). A survey of service oriented
development methodologies. YR-SOC’07: 2nd European Young Researchers Workshop

on Service Oriented Computing.

Razavian, M. and Khosravi, R. (2008). Modeling variability in business process models
using uml. In ITNG’08: 5th International Conference on Information Technology -

New Generations, pages 82–87.

Rosenberg, L. H. and Hyatt, L. (1998). Applying and interpreting object oriented metrics.
In Proceedings of the Software Technology Conference.

Santos, E. C. R., ao, F. A. D., Martins, A. C., Mendes, R., Melo, C., Garcia, V. C.,
Almeida, E. S., and Meira, S. R. L. (2006). Towards an effective context-aware
proactive asset search and retrieval tool. In 6th Workshop on Component-Based

Development (WDBC’06), pages 105–112, Recife, Pernambuco, Brazil.

Segura, S., Benavides, D., Ruiz-Cortés, A., and Trinidad, P. (2007). A taxonomy of
variability in web service flows. In SOAPL’07: 1st Workshop on Service-Oriented

Architectures and Software Product Lines.

Snell, J. (2002). Automating business processes and transactions in web services. Techni-
cal report, IBM.

Souza Filho, E. D., Cavalcanti, R. O., Neiva, D. F. S., Oliveira, T. H. B., Lisboa, L. B.,
de Almeida, E. S., and Meira, S. R. L. (2008). Evaluating domain design approaches
using a systematic review. In ECSA’08: 2nd European Conference on Software

Architecture, pages 50–65.

Souza Filho, E. D., de Almeida, E. S., and Meira, S. R. L. (2009). Experimenting a
process to design product line architectures. In EASA’09: Workshop on Empirical

Assessment in Software Architecture.

123

BIBLIOGRAPHY

Szyperski, C. (2003). Component technology: what, where, and how? In ICSE’03: 25th

International Conference on Software Engineering, pages 684–693. IEEE Computer
Society.

Tyagi, S. (2006). Restful web services. Technical report, Sun Microsystems.

van Gurp, J., Bosch, J., and Svahnberg, M. (2000). Managing variability in software
product lines. In LAC’00: 2nd Landelijk Architecture Congress.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and Wesslen, A. (2000).
Experimentation in Software Engineering: An Introduction. Springer.

Ye, E., Moon, M., Kim, Y., and Yeom, K. (2007). An approach to designing service-
oriented product-line architecture for business process families. In ICACT’07: 9th

International conference on Advanced Computing Technologies, pages 999–1002.

Zimmermann, O., Krogdahl, P., and Gee, C. (2004). Elements of service-oriented analysis
and design. IBM Developer Works.

124

Appendices

125

A
Architecture Document Template

As part of the SOPLE-DE, detailed in Chapter 5, an architecture document template was
defined with the purpose of facilitating the documentation of the service-oriented product
line architecture. The next sections list all the information that should be documented.

1. Introduction

This introduction provides an overview of the entire software architecture document. It
includes the purpose, scope, definitions, acronyms, abbreviations, and an overview of the
software architecture document.

2. References

This section describes references to other documents, if any.

• « Document 1 Name »: « Document general description »;

• « Document 2 Name »: « Document general description »;

• « Document 3 Name »: « Document general description »;

• « Document 4 Name »: « Document general description »;

• « Document 5 Name »: « Document general description ».

126

3. Technologies Description

In this section, it will be described the technologies that will be applied in the service-
oriented product line development. The description should be written according to the
following format:

• « Technology 1 Name »: « Rationale for the selection »;

• « Technology 2 Name »: « Rationale for the selection »;

• « Technology 3 Name »: « Rationale for the selection »;

• « Technology 4 Name »: « Rationale for the selection »;

• « Technology 5 Name »: « Rationale for the selection ».

4. Architectural Components

In this section, it will be described the architectural components that were identified from
the feature model and service candidates. This section is responsible for representing the
component specification. For each component, it is presented its description, use cases,
features, workflow, class diagrams and interfaces.

4.1 Component Name

Give a brief description of the architectural component emphasizing its purpose. For
each component in the architecture, repeat this section and the next sub-sections with the
information required.

Classes: This section presents the component internal structure with its classes and
relationships. The UML class diagrams representing the component internal behavior
should be here.

Workflow: This section describes the component workflow represented by UML
sequence or activity diagrams when necessary.

Provided and Required Interfaces This section presents the component provided
and required interfaces and its services offered.

Quality Attributes: This section presents the quality attributes that the component
should satisfy, e.g, modifiability, performance, and so on.

Traceability and Internal Variability: The traceability links of components should
be documented as in Table A.1.

127

Features: « Provide the features that will be implemented by this component. »

Use Cases: « Provide the use cases that will be implemented by this component. »

Business Activities: « Provide the business activities that will be implemented by this component. »

Interface Operations: « Provide the operations that will be implemented by this component. »

Variability: « If it contains variability, give a brief description of the variation point and its variants. »
« A brief description of the rationale to include variability in this component. »
« Describe the variability mechanism that will be used and the rationale to select it. »

Table A.1 Component Specification Template

5. Architectural Services

In this section, it will be described the architectural services that were identified from the
business process models, feature model, use cases and quality attribute scenarios. This
section is responsible for representing the service specification. For each service, it is
presented its description, use cases, features, workflow and interfaces.

5.1 Service Name

Give a brief description of the architectural service emphasizing its purpose. For each ser-
vice in the architecture, repeat this section and the next sub-sections with the information
required.

Workflow: This section describes the service workflow represented by UML se-
quence or activity diagrams when necessary.

Provided and Required Interfaces: This section presents the service provided and
required interfaces and its services offered.

Quality Attributes: This section presents the quality attributes that the service should
satisfy, e.g, modifiability, performance, and so on.

Traceability and Internal Variability: The traceability links of services should be
documented as in Table A.2.

Components: « Provide the components that will provide the implementation functionality to this service. »

Use Cases: « Provide the use cases that will be implemented by this service. »

Business Activities: « Provide the business activities that will be implemented by this service. »

Interface Operations: « Provide the operations that will be implemented by this service. »

Variability: « If it contains variability, give a brief description of the variation point and its variants. »
« A brief description of the rationale to include variability in this service. »
« Describe the variability mechanism that will be used and the rationale to select it. »

Table A.2 Service Specification Template

128

6. Architectural Service Orchestrations

In this section, it will be described the architectural service orchestrations that were
identified from the business process models, feature model and use cases. This section
is responsible for representing the service orchestration specification. For each service
orchestration, it is presented its description, features, workflow and interfaces.

6.1 Orchestration Service Name

Give a brief description of the architectural service orchestration emphasizing its purpose.
For each service orchestration in the architecture, repeat this section and the next sub-
sections with the information required.

Workflow: This section describes the service orchestration workflow represented by
UML sequence or activity diagrams.

Provided and Required Interfaces: This section presents the service orchestration
provided and required interfaces and its services offered.

Quality Attributes: This section presents the quality attributes that the service
orchestration should satisfy, e.g, modifiability, performance, and so on.

Traceability and Internal Variability: The traceability links of service orchestra-
tions should be documented as in Table A.3.

Services: « Provide the services that will be orchestrated by this service. »

Business Activities: « Provide the business activities that will be implemented by this service orchestration. »

Features: « Provide the features that will be implemented by this service orchestration. »

Interface Operations: « Provide the operations that will be implemented by this service orchestration. »

Variability: « If it contains variability, give a brief description of the variation point and its variants. »
« A brief description of the rationale to include variability in this service. »
« Describe the variability mechanism that will be used and the rationale to select it. »

Table A.3 Service Orchestration Specification Template

7. Communication Flows

In this section, it will be described the communication flows that were identified from the
services and service orchestrations. This section is responsible for representing the flow
specifications. For each flow, its details should be described in Table A.4.

129

Architectural Elements: « Provide the architectural elements involved in the communication flow. »

Protocol of Communication: « Provide the protocol used in the flow, e.g., REST and SOAP. »

Type of Communication: « Provide the type of communication that will be used, e.g., synchronous and asynchronous. »

Integration Mechanims: « Provide the integration mechanism that will be used in the flow, e.g, peer-to-peer or mediated
by an ESB. »

Variability: « If it contains variability, give a brief description of the variation point and its variants. »
« A brief description of the rationale to include the variability in this flow. »
« Describe the variability mechanism that will be used and the rationale to select it. »

Table A.4 Flow Specification Template

8. Architectural Views

Here, it will be described the architectural views that will be used to represent the service-
oriented product line architecture. The description should be written according to the
following format.

8.1 Architectural View Name

Give a brief description of this current view and the details that should be presented in it,
e.g., services and components that will be described, if all the services and components
of the architecture will be represented, or only the most important ones, and so on. The
diagram of the architectural view should be documented here.

130

B
Instruments of the Experimental Study

As part of the experiment instrumentation, detailed in Chapter 6, two questionnaires
were defined, and applied to the subjects. The next sections list all the questions of each
questionnaire.

The first questionnaire (detailed in Table B.1 and B.2) was intended to collect data
about the subjects background, and the second one (detailed in Table B.3) was created
with the purpose of collecting information about the use of the SOPLE-DE.

Questionnaire for Subjects Background

Degree: [] Graduation. [] Specialization. [] M.Sc. [] Ph.D.
How many years since graduation? [] years.

How many industrial software projects have you participated according to the fol-
lowing categories?

[] Low complexity (less than 6 months).
[] Medium complexity (more than 6 months and less than a year).
[] High complexity (more than a year).

What were the roles that you played in the projects cited before, e.g., architect,
designer, developer, tester. . . ?

Table B.1 Questionnaire for Subjects Background (Part 1)

131

How many academic software projects have you participated according to the fol-
lowing categories?

[] Low complexity (less than 6 months).
[] Medium complexity (more than 6 months and less than a year).
[] High complexity (more than a year).

What were the roles that you played in the projects cited before, e.g., architect,
designer, developer, tester. . . ?

How many SPL projects have you participated?

[] None.
[] Academic.
[] Industrial.

How many SOA projects have you participated?

[] None.
[] Academic.
[] Industrial.

How do you define your experience with software reuse?

Industrial: [] None. Academic: [] None.
[] Low. [] Low.
[] Medium. [] Medium.
[] High. [] High.

How do you define your experience with service orientation?

Industrial: [] None. Academic: [] None.
[] Low. [] Low.
[] Medium. [] Medium.
[] High. [] High.

How do you define your experience with domain design?

Industrial: [] None. Academic: [] None.
[] Low. [] Low.
[] Medium. [] Medium.
[] High. [] High.

Table B.2 Questionnaire for Subjects Background (Part 2)

132

Questionnaire for Subjects Feedback
Did you have any difficulties to understand the inputs of the experiment? Which
one(s)?

Did you have any difficulties to understand or apply the architectural element ac-
tivity of the SOPLE-DE?

Did you have any difficulties to understand or apply the variability analysis activity
of the SOPLE-DE?

Did you have any difficulties to understand or apply the architecture specification
activity of the SOPLE-DE?

Did you have any difficulties to understand or apply the architectural elements
specification activity of the SOPLE-DE?

Did you have any difficulties to understand or apply the design decisions documen-
tation activity of the SOPLE-DE?

Do you thing the SOPLE-DE training was efficacious? How do you classify it? []
Very Good.
[] Good.
[] Regular.
[] Unsatisfactory.

Do you think the SOPLE-DE documentation is sufficient? Please justify.

Which improvements would you suggest for the SOPLE-DE?

Table B.3 Questionnaire for Subjects Feedback

133

	Acronyms
	Introduction
	Motivation
	Problem Statement
	Overview of the Proposed Solution
	Context
	Outline of the Proposal

	Out of Scope
	Statement of the Contributions
	Organization of the Dissertation

	Software Product Line (SPL): An Overview
	Introduction
	Motivations of Software Product Line Engineering
	Software Product Line Engineering
	Software Product Line Adoption Models
	Product Line Architecture (PLA)
	The Benefits of the Software Architecture
	Factors that Influence the Architecture

	Chapter Summary

	Service-Oriented Architecture (SOA): An Overview
	Introduction
	SOA Characteristics
	Distributed Systems
	Different Owners
	Heterogeneity

	SOA Origins and Influences
	Object-Oriented Programming
	Web Services
	Business Process Modeling (BPM)
	Enterprise Application Integration (EAI)
	Aspect-Oriented Programming (AOP)

	SOA Motivations
	Service-Oriented Principles
	SOA Roles
	Enterprise Service Bus (ESB)
	Chapter Summary

	A Systematic Review on SOA Design Methodologies
	Introduction
	The Systematic Review Process
	Planning the Review
	Conducting the review
	Data Synthesis
	Results of the Systematic Review
	Activities, Artifacts and Roles
	Quality Attributes
	Delivery Strategy
	Adaptation of Existing Processes

	Chapter Summary

	An Approach to Design Service-Oriented Product Line Architectures
	Introduction
	Principles
	Component-Based Development (CBD)
	Feature-Oriented Development (FOD)
	Process-Oriented and Service-Oriented Development
	Separation of Concerns and Information Hiding
	Commonality and Variability
	Quality Attributes
	Cohesion and Granularity
	Top-Down and Proactive Development
	Systematic Sequence of Activities

	SOPLE-DE Overview
	Inputs and Outputs
	Roles
	Architectural Style
	Development Cycles
	Activities

	The SOPLE-DE Approach
	Architectural Elements Identification Activity
	Variability Analysis Activity
	Architecture Specification Activity
	Architectural Elements Specification Activity
	Design Decisions Documentation Activity

	Chapter Summary

	A Preliminary Experiment
	Introduction
	Background Information
	The Experimental Study
	Definition
	Planning
	Operation
	Analysis and Interpretation

	Conclusions and Lessons Learned
	Chapter Summary

	Conclusions
	Related Work
	Future Work
	Concluding Remarks

	Bibliography
	Appendices
	Architecture Document Template
	Instruments of the Experimental Study

