
ar
X

iv
:1

00
5.

34
17

v2
 [

m
at

h.
A

G
]

 1
4

Ju
l 2

01
0

An algorithm of computing inhomogeneous

differential equations for definite integrals

Hiromasa Nakayama, Kenta Nishiyama ∗

July 14, 2010

Abstract

We give an algorithm to compute inhomogeneous differential equations

for definite integrals with parameters. The algorithm is based on the

integration algorithm for D-modules by Oaku. Main tool in the algorithm

is the Gröbner basis method in the ring of differential operators.

1 Introduction

Let us denote by D = K〈x1, . . . , xn, ∂1, . . . , ∂n〉 the Weyl algebra in n variables,
where K is Q or C and ∂i is the differential operator standing for xi. We denote
by D′ = K〈xm+1, . . . , xn, ∂m+1, . . . , ∂n〉 the Weyl algebra in n − m variables,
where m ≤ n and D′ is a subring of D.

Let I be a holonomic left D-ideal ([8]). The integration ideal of I with
respect to x1, . . . , xm is defined by the left D′-ideal

(I + ∂1D + · · ·+ ∂mD) ∩D′.

Oaku ([6]) gave an algorithm computing the integration ideal. This algorithm
is called the integration algorithm for D-modules. The Gröbner basis method
in D is used in this algorithm.

We give a new algorithm computing not only generators of the integration
ideal J but also P0 ∈ I and P1, . . . , Pm ∈ D such as

P = P0 + ∂1P1 + · · ·+ ∂mPm

for any generator P ∈ J . Our algorithm is based on Oaku’s one. We call these
P1, . . . , Pm inhomogeneous parts of P . As an important application of our algo-
rithm, we can obtain inhomogeneous differential equations for definite integrals
with parameters by using generators of the integration ideal and inhomogeneous
parts.

∗Department of Mathematics, Kobe University and JST CREST.

1

http://arxiv.org/abs/1005.3417v2

For example, we compute an inhomogeneous differential equation for the

integral A(x2) =
∫ b

a
e−x1−x2x

3

1dx1. This is the case of m = 1, n = 2. The

annihilating ideal of the integrand f(x1, x2) = e−x1−x2x
3

1 in D is I = 〈∂1 + 1 +
3x2x

2
1, ∂2 + x3

1〉. The integration ideal of I with respect to x1 is J = 〈27x3
2∂

2
2 +

54x2
2∂2+6x2+1〉 = 〈P 〉. The operator P1 = −(∂2

1+3∂1+3) is an inhomogeneous
part of P . We apply the operator P to the integral A(x2) and obtain

P · A(x2) =

∫ b

a

∂1(P1 · e
−x1−x2x

3

1)dx1 =
[

P1 · e
−x1−x2x

3

1

]x1=b

x1=a

= −
[

(9x2
2x

4
1 − 3x2x

2
1 − 6x2x1 + 1)e−x1−x2x

3

1

]x1=b

x1=a
.

In this way, we get an inhomogeneous differential equation for the integralA(x2).
We will give an algorithm to compute inhomogeneous parts of the integra-

tion ideal and give some examples. Other algorithms to compute differential
equations for definite integrals are the Almkvist-Zeilberger algorithm ([1], [10],
[2]), the Chyzak algorithm ([4]) and the Oaku-Shiraki-Takayama algorithm ([7]).
A comparison with these algorithms are also given.

We implement our algorithms on the computer algebra system Risa/Asir
([11]). They are in the program package nk restriction.rr ([14]). Packages
Mgfun in Maple and HolonomicFunctions in Mathematica offers an analogous
functionality, and are based on the Chyzak algorithm ([12], [13]).

2 Review of the integration algorithm for D-

modules

We will review the integration algorithm for D-modules. We define the ring
isomorphism F : D → D satisfying

F(xi) =

{

−∂i (1 ≤ i ≤ m)

xi (m < i ≤ n)
,F(∂i) =

{

xi (1 ≤ i ≤ m)

∂i (m < i ≤ n)
.

This map is called the Fourier transformation in D.
The integration ideal of a left holonomicD-ideal I with respect to x1, . . . , xm

is defined by the left D′-ideal J = (I + ∂1D + · · ·+ ∂mD) ∩D′.

Algorithm 1 (Integration algorithm for D-modules, [6], [8])

Input: Generators of a holonomic left D-ideal I and
a weight vector w = (w1, . . . , wm, wm+1, . . . , wn) such that w1, . . . , wm >

0, wm+1 = · · · = wn = 0.

Output: Generators of the integration ideal of I with respect to x1, . . . , xm.

1. Compute the restriction module of the left D-ideal F(I) with respect to
the weight vector w. The details of the computation are as follows.

2

(a) Compute the Gröbner basis of the left D-ideal F(I) with respect
to the monomial order <(−w,w). Let the Gröbner basis be G =
{h1, . . . , hl}.

(b) Compute the generic b-function b(s) of F(I) with respect to the
weight vector (−w,w).

(c) If b(s) has a non-negative integer root, then we set
s0 = (the maximal non-negative integer roots).
Otherwise, the integration ideal is 0 and finish.

(d) mi = ord(−w,w)(hi),

Bd = {∂i1
1 · · · ∂im

m | i1w1 + · · ·+ imwm ≤ d} (d ∈ N) ,
r = #{(i1, . . . , im) | i1w1 + · · ·+ imwm ≤ s0} = #Bs0 .

(e) B̃ =

l
⋃

i=1

{h̃iβ := ∂βhi | ∂
β ∈ Bs0−mi

},

B = {hiβ := h̃iβ |x1=···=xm=0 | h̃iβ ∈ B̃}.
Here, hiβ =

∑

∂α∈Bs0

gα∂
α (gα ∈ D′).

2. Let (D′)r be the left free D′-module with the base F−1(Bs0), i.e. (D
′)r =

∑

∂α∈Bs0

D′xα. Regard elements in F−1(B) as elements in the left D′-

module (D′)r. In other words, F−1(hiβ) =
∑

∂α∈Bs0

gαx
α (gα ∈ D′) is

regarded as an element in (D′)r. Let M be the left D′-submodule in (D′)r

generated by F−1(B).

3. Compute the Gröbner basis G of M with respect to a POT term order
such that the position corresponds to x0 = 1 is the minimum position.
Output G′ = G ∩D′. This set G′ generates the integration ideal of I.

We consider the following definite integral of a holonomic function f(x1, . . . , xn).

A(xm+1, . . . , xn) =

∫

R

f(x1, . . . , xn)dx1 · · · dxm, R =

m
∏

i=1

[ai, bi]

Let I = AnnDf := {P · f = 0 | P ∈ D} be the annihilating ideal of the
integrand, and J be the integration ideal of I. For every p ∈ J , there exist
p1, . . . , pm ∈ D such that

p−

m
∑

i=1

∂ipi ∈ I

and we have

p · A(xm+1, . . . , xn) =

∫

R

p · fdx1 · · · dxm =

∫

R

m
∑

i=1

(∂ipi) · fdx1 · · · dxm

=

m
∑

i=1

∫

R

∂i(pi · f)dx1 · · · dxm. (1)

3

Therefore, if we take an integration domain such that the right hand side of (1)
equals to zero, we can regard the integration ideal as a system of homogeneous
differential equations for the integral A(xm+1, . . . , xn). If the right hand side is
not zero, the equation (1) gives an inhomogeneous differential equations for the
function A.

3 Computing inhomogeneous parts of the inte-

gration ideal

In this section, we give a new algorithm of computing inhomogeneous differential
equations for definite integrals. For the purpose, we must find an explicit form
pi (1 ≤ i ≤ m) in the equation (1) in the section 2.

Theorem 1 Let J ⊂ D′ be the integration ideal of a holonomic left D-ideal

I. For any p ∈ J , there exists an algorithm to compute differential operators

pi ∈ D (1 ≤ i ≤ m) such that

p−
m
∑

i=1

∂ipi ∈ I. (2)

Proof. We will present an algorithm of obtaining operators pi. By applying
Algorithm 1, we obtain a generating set {g1, . . . , gt} of the integration ideal of
I. It is sufficient to compute inhomogeneous parts for each generator gj . From
the step 3 of Algorithm 1, gj can be expressed as gj =

∑

qjiβF
−1(hiβ) where

qjiβ ∈ D. Then these qjiβ ∈ D can be computed by referring the history of the
Gröbner basis computation in the step 3. Therefore, we have

I ∋
∑

qjiβF
−1(h̃iβ) = gj −

(

gj −
∑

qjiβF
−1(h̃iβ)

)

= gj −
∑

qjiβ

(

F−1(hiβ)−F−1(h̃iβ)
)

= gj −
∑

qjiβ

(

F−1(h̃iβ |x1=···=xm=0)− F−1(h̃iβ)
)

= gj −
∑

qjiβF
−1(h̃iβ |x1=···=xm=0 − h̃iβ).

Since each term of h̃iβ |x1=···=xm=0 − h̃iβ can be divided from the left by either

of x1, . . . , xm, each term of F−1(h̃iβ |x1=···=xm=0 − h̃iβ) can be divided from the
left by either of ∂1, . . . , ∂m. Thus we can rewrite

∑

qjiβF
−1(h̃iβ |x1=···=xm=0 − h̃iβ) =

m
∑

i=1

∂ipij .

Let us present our algorithm.

Algorithm 2

4

Input: Generators of a holonomic left ideal I ⊂ D and
a weight vector w = (w1, . . . , wm, wm+1, . . . , wn) such that w1, . . . , wm >

0, wm+1 = · · · = wn = 0.

Output: Generators {g1, . . . , gt} of the integration ideal of I w.r.t. x1, . . . , xm and
operators pij ∈ D satisfying gj −

∑m
i=1 ∂ipij ∈ I for each generator gj

(1 ≤ j ≤ t).

1. Apply Algorithm 1.

2. Compute qjiβ satisfying gj =
∑

qjiβF
−1(hiβ) by referring the history of

the Gröbner basis computation in the step 3 of Algorithm 1.

3. Rewrite Rj := gj −
∑

qjiβF
−1(h̃iβ) to the form of Rj =

m
∑

i=1

∂ipij .

Output pij .

Example 1 [Incomplete Gauss’s hypergeoemtric integral]
We set

F (x) =

∫ q

p

tb−1(1− t)c−b−1(1− xt)−adt.

We will compute a differential equation for the integral F (x). A holonomic ideal
annihilating the integrand f(x, t) = tb−1(1− t)c−b−1(1 − xt)−a is

If =〈(−x2 + x)∂2
x + ((−t+ 1)∂t + (−a− b− 1)x+ c− 1)∂x − ab,

(−t+ 1)x∂x + (t2 − t)∂t + (−c+ 2)t+ b− 1, (tx− 1)∂x + at〉

which is obtained by using Oaku’s algorithm to compute the annihilating ideal
of a power of polynomials. The generic b-function of F(If) with respect to the
weight vector w = (1, 0) (i.e. t’s weight is 1 and x’s weight is 0) is s(s−a+c−1).
We assume that a− c+1 is not a non-negative integer. Then the maximal non-
negative integer root s0 of b(s) is 0. Therefore, the integration ideal of If with
respect to t is

〈(−x2 + x)∂2
x + ((−a− b− 1)x+ c)∂x − ab〉 = 〈P 〉.

The differential equation P · g = 0 is Gauss’s hypergeometric equation. The
inhomogeneous part of P is ∂t(−t+1)∂x. We apply P to the integral F (x) and
obtain the inhomogeneous differential equation

P ·

∫ q

p

f(x, t)dt =

∫ q

p

(∂t(t− 1)∂x) · f(x, t)dt =

[

(t− 1)
∂f

∂x
(x, t)

]q

p

.

We present the output for this problem by the program nk restriction.rr

on the computer algebra system Risa/Asir ([11]). We use the command
nk restriction.integration ideal to compute the integration ideal. The
option inhomo=1 make the system compute inhomogeneous parts and the op-
tion param = [a,b,c] means that parameters are a, b, c. The sec shows the
exhausting time of each steps. This example and next example are executed on
a Linux machine with Intel Xeon X5570 (2.93GHz) and 48 GB memory.

5

[1743] load("nk_restriction.rr");

[1944] I_f=[-dx^2*x^2+(-dx*a-dx*b+dx^2-dx)*x-dx*dt*t-b*a+dx*c+dx*dt-dx,

(-dx*t+dx)*x+dt*t^2+(-c-dt+2)*t+b-1,dx*t*x+a*t-dx];

[(-x^2+x)*dx^2+((-t+1)*dt+(-a-b-1)*x+c-1)*dx-b*a,

(-t+1)*x*dx+(t^2-t)*dt+(-c+2)*t+b-1,(t*x-1)*dx+a*t]

[1945] nk_restriction.integration_ideal(I_f,[t,x],[dt,dx],[1,0]|param=

[a,b,c],inhomo=1);

-- nd_weyl_gr :0.004sec(0.000623sec)

-- weyl_minipoly_by_elim :0sec(0.000947sec)

-- generic_bfct_and_gr :0.004sec(0.001922sec)

generic bfct : [[1,1],[s,1],[s-a+c-1,1]]

S0 : 0

B_{S0} length : 1

-- fctr(BF) + base :0sec(0.000277sec)

-- integration_ideal_internal :0sec(0.000499sec)

[[(-x^2+x)*dx^2+((-a-b-1)*x+c)*dx-b*a],[[[[dt,(t-1)*dx]],1]]]

Example 2 [F (x) =
∫∞

0
e−t−xt3dt]

We consider the integral F (x) =
∫∞

0
e−t−xt3dt. A holonomic ideal anni-

hilating the integrand f(t, x) = e−t−xt3 is If = 〈∂t + 1 + 3xt2, ∂x + t3〉. The
integration ideal of If with respect to t is J = 〈27x3∂2

x+54x2∂x+6x+1〉 = 〈P 〉.
The inhomogeneous part of P is −∂t(∂

2
t + 3∂t + 3). We apply P to the integral

F (x) and obtain

P ·

∫ ∞

0

e−t−xt3dt = −

∫ ∞

0

(∂t(∂
2
t + 3∂t + 3)) · e−t−xt3dt

= −
[

(∂2
t + 3∂t + 3) · e−t−xt3

]∞

0

= −
[

(−6xt+ (1 + 3xt2)2 − 3− 9xt2 + 3)e−t−xt3
]∞

0
= 1.

[1946] load("nk_restriction.rr");

[2146] I_f=[dt+1+3*x*t^2, dx+t^3];

[dt+3*t^2*x+1,dx+t^3]

[2147] nk_restriction.integration_ideal(I_f,[t,x],[dt,dx],[1,0] |

inhomo=1);

-- nd_weyl_gr :0sec(0.000526sec)

-- weyl_minipoly :0sec(0.0002439sec)

-- generic_bfct_and_gr :0sec(0.001016sec)

generic bfct : [[1,1],[s,1]]

S0 : 0

B_{S0} length : 1

-- fctr(BF) + base :0sec + gc : 0.008sec(0.00691sec)

-- integration_ideal_internal :0sec(0.0003109sec)

[[27*x^3*dx^2+54*x^2*dx+6*x+1],[[[[dt,-dt^2-3*dt-3]],1]]]

Theorem 2 We consider the following multiple integral,

F (xm+1, . . . , xn) =

∫ b1

a1

· · ·

∫ bm

am

f(x1, . . . , xn)dx1 · · · dxm (m ≤ n). (3)

6

Let I be a holonomic left D-ideal annihilating the integrand f(x1, . . . , xn). There
exists an algorithm to compute inhomogeneous differential equations for the mul-

tiple integral F (xm+1, . . . , xn) from the holonomic ideal I. The algorithm is

described below.

For simplicity, we will explain the algorithm in the case of m = 2. We set

F (x3, . . . , xn) =

∫ b1

a1

∫ b2

a2

f(x1, . . . , xn)dx1dx2 (2 ≤ n),

and will compute an inhomogeneous differential equation of F .
Let I be a holonomic left D-ideal annihilating the integrand f(x1, . . . , xn).

We compute the integration ideal J of I with respect to x1, x2, i.e.

J = (I + ∂1D + ∂2D) ∩D′ (D′ = K〈x3, . . . , xn, ∂3, . . . , ∂n〉).

We take an element P ∈ J . There exist P0 ∈ I and P1, P2 ∈ D such that
P = P0 + ∂1P1 + ∂2P2 ∈ D′. We apply the operator P to the integral F , and
obtain

P ·F =

∫ b2

a2

(P1·f |x1=b1−P1·f |x1=a1
)dx2+

∫ b1

a1

(P2·f |x2=b2−P2·f |x2=a2
)dx1. (4)

Let F1, F2 be the first term and the second term of the right hand side and let
f1, f2 be the integrand of F1, F2.

To obtain a holonomic ideal annihilating the integral F1, we must compute
a holonomic ideal I1 annihilating the integrand f1. When the integrand f1 is
the power of polynomial, we can use Oaku’s algorithm to obtain the holonomic
ideal I1 ([6]). In general case, we can compute the holonomic ideal I1 from I by
the following method.

The ideal quotient I : P1 is holonomic and annihilates the function P1 ·f . To
obtain a holonomic ideal J1 annihilating P1 ·f |x1=b1 , we compute the restriction
ideal of I : P1 with respect to x1 = b1. Applying the same procedure for x1 = a1
instead of x1 = b1, we obtain a holonomic ideal J2 annihilating P1 ·f |x1=a1

. Since
J1 ∩ J2 is holonomic and annihilates f1(= P1 · f |x1=b1 −P1 · f |x1=a1

), we obtain
J1 ∩ J2 as I1.

We compute the integration ideal K1 of I1 with respect to x2, i.e.

K1 = (I1 + ∂2D1) ∩D′ (D1 = K〈x2, x3, . . . , xn, ∂2, ∂3, . . . , ∂n〉).

We take an element P (1) ∈ K1. There exist P
(1)
0 ∈ I1 and P

(1)
2 ∈ D1 such that

P (1) = P
(1)
0 + ∂2P

(1)
2 . We apply P (1) to the integral F1, and obtain

P (1) · F1 = P
(1)
2 · f1|x2=b2 − P

(1)
2 · f1|x2=a2

. (5)

Applying the same procedure for I2 instead of I1, we can compute the annihilat-
ing ideal I2 of the integrand f2 and the integration ideal K2 of I2 with respect
to x1.

7

By (4) and (5), we obtain

P (1) · P · F = P (1) · F1 + P (1) · F2,

and can compute the first term of the right hand side. To compute the second
term P (1) · F2, we compute K2 : P (1) and take an element P (2) in this ideal.
Since P (2)P (1) ∈ K2, we can compute P (2)P (1) · F2. Finally, we can obtain an
inhomogeneous differential equation

P (2)P (1)P · F = P (2)P (1) · F1 + P (2)P (1) · F2.

Remark 1 Let

ℓ1 · F = g1, · · · , ℓp · F = gp (ℓi ∈ D′, gi is a holonomic function)

be a system of inhomogeneous differential equations. When 〈ℓ1, . . . , ℓp〉 gener-
ates the left holonomic ideal inD′, we call the system inhomogeneous holonomic.
When m = 1, the output of the algorithm in Theorem 2 is inhomogeneous holo-
nomic. Although the algorithm outputs a lot of inhomogeneous differential
equations when P runs over the ideal J , it is an open question whether the
output of the algorithm is inhomogeneous holonomic when m > 1. However,
since the Oaku-Shiraki-Takayama algorithm gives holonomic output (see [7],
section 4.3), we can obtain inhomogeneous holonomic differential equations by
the following algorithm.

Algorithm 3

Input: Generators of a holonomic left ideal annihilating f(x1, . . . , xn).

Output: Generators of an inhomogeneous holonomic system for (3).

1. Apply the algorithm in Theorem 2.

2. Apply the Oaku-Shiraki-Takayama algorithm if the system obtained in
the step 1 is not inhomogeneous holonomic.

3. Merge the outputs of the step 1 and the step 2.

4 Comparison of our algorithm with other algo-

rithms

4.1 The Almkvist-Zeilberger algorithm

The Almkvist-Zeilberger algorithm (AZ algorithm, [1], [10], [2]) is very fast,
but works for hyperexponential functions. Our algorithm works for holonomic
functions. The AZ algorithm is based on the method of undetermined coeffi-
cients and Gosper’s algorithm, and our algorithm is based on the Gröbner basis
method in D.

8

4.2 The Chyzak algorithm

The Chyzak algorithm ([3], [4], [5]) is based on the method of undetermined
coefficients and the Gröbner basis method in the Ore algebra. By using the
Ore algebra, the Chyzak algorithm can compute various summations and inte-
grals like summations of holonomic sequences, integrals of holonomic functions
and its q-analogues. For the ring of differential operators with rational func-
tion coefficients K(x)〈∂〉, the Chyzak algorithm is a generalization of the AZ
algorithm and works for holonomic functions. The algorithm is often faster
than our algorithm. But, when the algorithm returns higher order differen-
tial equations or the number of variables are many, our algorithm is some-
times faster. Here, we show only one example. We present these examples at
http://www.math.kobe-u.ac.jp/OpenXM/Math/i-hg/nk restriction ex.html

Example 3 [F (x, y) =
∫ b

a
1

xt+y+t10
dt]

We set

F (x, y) =

∫ b

a

1

xt+ y + t10
dt.

We will compute differential equations for the integral F (x, y). The following
output is computed by our algorithm. It takes about 1.3 seconds.

[2345] load("nk_restriction.rr");

[2545] F=x*t+y+t^10$

[2546] Ann=ann(F)$ /* annihilating ideal of F^s */

0.052sec(0.0485sec)

[2547] Id=map(subst, Ann, s, -1)$ /* substitute s=-1 in Ann */

0sec(4.411e-05sec)

[1569] nk_restriction.integration_ideal(Id,[t,x,y],[dt,dx,dy],[1,0,0]

|inhomo=1);

-- nd_weyl_gr :0.012sec + gc : 0.008001sec(0.02009sec)

-- weyl_minipoly :0sec(0.001189sec)

-- generic_bfct_and_gr :0.016sec + gc : 0.008001sec(0.02358sec)

generic bfct : [[1,1],[s,1],[s-9,1]]

S0 : 9

B_{S0} length : 10

-- fctr(BF) + base :0.044sec + gc : 0.024sec(0.0674sec)

-- integration_ideal_internal :0.8321sec + gc : 0.236sec(1.071sec)

[[9*x*dx+10*y*dy+9,-10*dx^9-x*dy^9,-9*dx^10+y*dy^10+9*dy^9],

[[[[dt,-t]],1],[[[dt,-dy^8]],1],[[[dt,-t*dy^9]],1]]]

0.9081sec + gc : 0.28sec(1.19sec)

The following output is computed by the Chyzak algorithm (package Mgfun
[12]) on Maple12. It takes about 50 seconds.

with(Mgfun):

f:=1/(x*t+y+t^10):

ts:=time():

creative_telescoping(f,[x::diff,y::diff], t::diff):

time()-ts;

49.583

9

http://www.math.kobe-u.ac.jp/OpenXM/Math/i-hg/nk_restriction_ex.html

These computational experiments are executed on a Linux machine with
Intel Xeon5450 (3.00GHz) and 32 GB memory.

4.3 The Oaku-Shiraki-Takayama algorithm

Although our algorithm gives inhomogeneous differential equations for defi-
nite integrals, the Oaku-Shiraki-Takayama algorithm (OST algorithm, [7]) is
for computing homogeneous differential equations annihilating definite integrals
by using the Heaviside function and the integration algorithm. Since outputs
are different, they are different methods. However, in most examples, outputs
of our algorithm can be easily transformed to homogeneous systems. Thus, it
will be worth making comparison between our method and the OST method.

Let u(t, x) be a smooth function defined on an open neighborhood of [a, b]×U

where U is an open set of Rn−1. The Heaviside function Y (t) defined by Y (t) =
0 (t < 0), Y (t) = 1 (t ≥ 0). Then we can regard the integral of u(t, x) over [a, b]
as that of Y (t− a)Y (b − t)u(t, x) over (−∞,∞), and the following holds.

∫ b

a

u(t, x)dt =

∫ ∞

−∞

Y (t− a)Y (b − t)u(t, x)dt

Thus we can apply Algorithm 1 to obtain homogeneous differential equations.
The paper [7] proposes the two methods

(a) Method of using properties of the Heaviside function

(b) Method of using tensor product in D-module

to obtain differential equations annihilating the integrand of the right hand
side. In the former case, the computation finishes without a heavy part because
the procedure is only multiplication of polynomials. However, it is not known
whether the output is holonomic. In the latter case, when an input is holonomic,
an output is also holonomic. However, the computation is often heavy. We call
the former OST algorithm (a) and the latter OST algorithm (b) in this paper.
See [7, Chap 5] for details.

Let us show a relation of the outputs of OST algorithm and our algorithm.
We consider v(x) =

∫∞

0 e(−t3+t)xdt. OST algorithm (a) or (b) return the fol-
lowing ideal

〈 − 27x3∂3
x − 54x2∂2

x + (4x3 + 3x)∂x + 4x2 − 3,

27x2∂4
x + 135x∂3

x + (−4x2 + 105)∂2
x − 16x∂x − 8〉.

On the other hand, Algorithm 2 returns the following ideal generated by P and
its inhomogeneous part Q:

〈P 〉 = 〈−27x2∂2
x − 27x∂x + 4x2 + 3〉,

Q = ∂t(−9tx∂x + (−6t2 + 4)x+ 3t).

10

This output yields

P · v(x) =
[

(−9tx∂x + (−6t2 + 4)x+ 3t) · e(−t3+t)x
]t=∞

t=0
= −4x. (6)

Since the annihilating ideal of −4x is 〈x∂x − 1, ∂2
x〉, operators (x∂x − 1)P and

∂2
xP annihilate v(x). Although results of these algorithms are not coincide in

general, these operators coincide outputs of OST algorithm (a) and (b) in this
case. However, it seems that it is difficult to compute the right hand side of (6)
from the output of OST algorithm. Moreover, in our algorithm we have only to
do substitution process to compute for the integrals which has same integrand
and another integration domain because our algorithm does not depend on the
integration domain.

Table 1 shows the computing time of each part of Algorithm 2 and OST
algorithm (a), (b). The entries with parentheses for inputs v̄k mean that results
for vk were reused. For a comparison we show the computing time of Algorithm
1. The experiments were done on a Linux machine with Intel Xeon X5570
(2.93GHz) and 48 GB memory.

Alg 2 OST (a) OST (b) Alg 1
Input Alg 2 Ann Total Total (b) Alg 1 Total Total
v1 0.0042 0.0014 0.0056 0.0062 0.11 0.012 0.12 0.0039
v2 0.15 0.019 0.17 0.25 5.10 0.16 5.26 0.075
v3 19.91 0.45 20.36 96.14 24.54 95.24 119.8 13.58
v4 26724 28.33 26752 > 1 day 1726 > 1 day — 24003

v̄1 (0.0042) 0.0015 0.0057 0.0071 0.47 0.0050 0.48 n/a
v̄2 (0.15) 0.027 0.18 1.56 18230 1.19 18231 n/a
v̄3 (19.91) 1.62 21.53 3769 848 2802 3650 n/a
v̄4 (26724) 294 27018 > 1 day 16231 > 1 day — n/a

vk(x) =

∫ ∞

0

uk(t, x)dt, v̄k(x) =

∫ 1

0

uk(t, x)dtwhereuk(t, x) = exp

(

−tx

k
∏

i=1

(t2 − i2)

)

Table 1: The comparison of the computing time (seconds)

From the viewpoint of the computational efficiency, the computation time
of Algorithm 2 increases more than that of Algorithm 1 for computing inhomo-
geneous parts. That of OST algorithm increases because the input data of the
integration algorithm becomes bigger differential operators by procedure (a) or
(b). It seems that Algorithm 2 is faster than OST algorithm, since the compu-
tation of inhomogeneous parts can be done by multiplication and summation of
differential operators. However, to obtain homogeneous equation corresponding
to OST algorithm output, we must compute annihilating ideals of inhomoge-
neous parts.

11

Acknowledgement

We would like to thank Prof. Takayama for fruitful discussions and encourage-
ments.

References

[1] G.Almkvist, D.Zeilberger, The method of differentiating under the integral
sign, Journal of Symbolic Computation 10, 571-591, 1990.

[2] M.Apagodu, D.Zeilberger, Multi-variable Zeilberger and Almkvist-
Zeilberger algorithms and the sharpening of Wilf-Zeilberger theory, Ad-
vances in Applied Mathematics 37, 139-152, 2006.

[3] F.Chyzak, Gröbner Bases, Symbolic Summation and Symbolic Integration,
London Mathematics Lecture Notes Series, vol.251, 32-60, 1998.

[4] F.Chyzak, An Extension of Zeilberger’s Fast Algorithm to General Holo-
nomic Functions, Discrete Mathematics 217, 115-134, 2000.

[5] F.Chyzak, B. Salvy, Non-commutative Elimination in Ore Algebras Proves
Multivariate Holonomic Identities, Journal of Symbolic Computation 26,
187-227, 1998.

[6] T.Oaku, Algorithms for b-functions, restrictions, and algebraic local coho-
mology groups ofD-modules, Advances in Applied Mathematics 19, 61–105,
1997.

[7] T.Oaku, Y.Shiraki, and N.Takayama, Algebraic Algorithm for D-modules
and numerical analysis, Computer mathematics (Proceedings of ASCM
2003), 23–39, Lecture Notes Ser. Comput., 10, World Sci. Publ., River
Edge, NJ, 2003.

[8] M.Saito, B.Sturmfels, and N.Takayama, Gröbner Deformations of Hyper-

geometric Differential Equations, Springer, 2000.

[9] N.Takayama, An Approach to the Zero Recognition Problem by Buchberger
Algorithm, Journal of Symbolic Computation 14, 265–282, 1992.

[10] A.Tefera, MultInt, a Maple package for multiple integration by the WZ
method, Journal of Symbolic Computation 34, 329-353, 2002.

[11] M.Noro, et al: Risa/Asir, http://www.math.kobe-u.ac.jp/Asir

[12] F.Chyzak: Mgfun, http://algo.inria.fr/chyzak/mgfun.html

[13] C.Koutschan: HolonomicFunctions,
http://www.risc.jku.at/research/combinat/software/HolonomicFunctions/

[14] H.Nakayama, K.Nishiyama: nk restriction.rr,
http://www.math.kobe-u.ac.jp/~nakayama/nk restriction.rr

12

http://www.math.kobe-u.ac.jp/Asir
http://algo.inria.fr/chyzak/mgfun.html
http://www.risc.jku.at/research/combinat/software/HolonomicFunctions/
http://www.math.kobe-u.ac.jp/~nakayama/nk_restriction.rr

	1 Introduction
	2 Review of the integration algorithm for D-modules
	3 Computing inhomogeneous parts of the integration ideal
	4 Comparison of our algorithm with other algorithms
	4.1 The Almkvist-Zeilberger algorithm
	4.2 The Chyzak algorithm
	4.3 The Oaku-Shiraki-Takayama algorithm

