An algorithm of computing inhomogeneous differential equations for definite integrals

Hiromasa Nakayama, Kenta Nishiyama *

July 14, 2010

Abstract

We give an algorithm to compute inhomogeneous differential equations for definite integrals with parameters. The algorithm is based on the integration algorithm for D-modules by Oaku. Main tool in the algorithm is the Gröbner basis method in the ring of differential operators.

1 Introduction

Let us denote by $D=K\left\langle x_{1}, \ldots, x_{n}, \partial_{1}, \ldots, \partial_{n}\right\rangle$ the Weyl algebra in n variables, where K is \mathbb{Q} or \mathbb{C} and ∂_{i} is the differential operator standing for x_{i}. We denote by $D^{\prime}=K\left\langle x_{m+1}, \ldots, x_{n}, \partial_{m+1}, \ldots, \partial_{n}\right\rangle$ the Weyl algebra in $n-m$ variables, where $m \leq n$ and D^{\prime} is a subring of D.

Let I be a holonomic left D-ideal (8). The integration ideal of I with respect to x_{1}, \ldots, x_{m} is defined by the left D^{\prime}-ideal

$$
\left(I+\partial_{1} D+\cdots+\partial_{m} D\right) \cap D^{\prime}
$$

Oaku (6]) gave an algorithm computing the integration ideal. This algorithm is called the integration algorithm for D-modules. The Gröbner basis method in D is used in this algorithm.

We give a new algorithm computing not only generators of the integration ideal J but also $P_{0} \in I$ and $P_{1}, \ldots, P_{m} \in D$ such as

$$
P=P_{0}+\partial_{1} P_{1}+\cdots+\partial_{m} P_{m}
$$

for any generator $P \in J$. Our algorithm is based on Oaku's one. We call these P_{1}, \ldots, P_{m} inhomogeneous parts of P. As an important application of our algorithm, we can obtain inhomogeneous differential equations for definite integrals with parameters by using generators of the integration ideal and inhomogeneous parts.

[^0]For example, we compute an inhomogeneous differential equation for the integral $A\left(x_{2}\right)=\int_{a}^{b} e^{-x_{1}-x_{2} x_{1}^{3}} d x_{1}$. This is the case of $m=1, n=2$. The annihilating ideal of the integrand $f\left(x_{1}, x_{2}\right)=e^{-x_{1}-x_{2} x_{1}^{3}}$ in D is $I=\left\langle\partial_{1}+1+\right.$ $\left.3 x_{2} x_{1}^{2}, \partial_{2}+x_{1}^{3}\right\rangle$. The integration ideal of I with respect to x_{1} is $J=\left\langle 27 x_{2}^{3} \partial_{2}^{2}+\right.$ $\left.54 x_{2}^{2} \partial_{2}+6 x_{2}+1\right\rangle=\langle P\rangle$. The operator $P_{1}=-\left(\partial_{1}^{2}+3 \partial_{1}+3\right)$ is an inhomogeneous part of P. We apply the operator P to the integral $A\left(x_{2}\right)$ and obtain

$$
\begin{aligned}
P \cdot A\left(x_{2}\right) & =\int_{a}^{b} \partial_{1}\left(P_{1} \cdot e^{-x_{1}-x_{2} x_{1}^{3}}\right) d x_{1}=\left[P_{1} \cdot e^{-x_{1}-x_{2} x_{1}^{3}}\right]_{x_{1}=a}^{x_{1}=b} \\
& =-\left[\left(9 x_{2}^{2} x_{1}^{4}-3 x_{2} x_{1}^{2}-6 x_{2} x_{1}+1\right) e^{-x_{1}-x_{2} x_{1}^{3}}\right]_{x_{1}=a}^{x_{1}=b}
\end{aligned}
$$

In this way, we get an inhomogeneous differential equation for the integral $A\left(x_{2}\right)$.
We will give an algorithm to compute inhomogeneous parts of the integration ideal and give some examples. Other algorithms to compute differential equations for definite integrals are the Almkvist-Zeilberger algorithm (1], [10), [2]), the Chyzak algorithm ([4]) and the Oaku-Shiraki-Takayama algorithm ([7]). A comparison with these algorithms are also given.

We implement our algorithms on the computer algebra system Risa/Asir ([11). They are in the program package nk_restriction.rr ([14). Packages Mgfun in Maple and HolonomicFunctions in Mathematica offers an analogous functionality, and are based on the Chyzak algorithm ([12], [13]).

2 Review of the integration algorithm for D modules

We will review the integration algorithm for D-modules. We define the ring isomorphism $\mathcal{F}: D \rightarrow D$ satisfying

$$
\mathcal{F}\left(x_{i}\right)=\left\{\begin{array}{ll}
-\partial_{i} & (1 \leq i \leq m) \\
x_{i} & (m<i \leq n)
\end{array} \quad, \mathcal{F}\left(\partial_{i}\right)= \begin{cases}x_{i} & (1 \leq i \leq m) \\
\partial_{i} & (m<i \leq n)\end{cases}\right.
$$

This map is called the Fourier transformation in D.
The integration ideal of a left holonomic D-ideal I with respect to x_{1}, \ldots, x_{m} is defined by the left D^{\prime}-ideal $J=\left(I+\partial_{1} D+\cdots+\partial_{m} D\right) \cap D^{\prime}$.

Algorithm 1 (Integration algorithm for D-modules, [6], [8])

Input: Generators of a holonomic left D-ideal I and
a weight vector $w=\left(w_{1}, \ldots, w_{m}, w_{m+1}, \ldots, w_{n}\right)$ such that $w_{1}, \ldots, w_{m}>$ $0, w_{m+1}=\cdots=w_{n}=0$.

Output: Generators of the integration ideal of I with respect to x_{1}, \ldots, x_{m}.

1. Compute the restriction module of the left D-ideal $\mathcal{F}(I)$ with respect to the weight vector w. The details of the computation are as follows.
(a) Compute the Gröbner basis of the left D-ideal $\mathcal{F}(I)$ with respect to the monomial order $<_{(-w, w)}$. Let the Gröbner basis be $G=$ $\left\{h_{1}, \ldots, h_{l}\right\}$.
(b) Compute the generic b-function $b(s)$ of $\mathcal{F}(I)$ with respect to the weight vector $(-w, w)$.
(c) If $b(s)$ has a non-negative integer root, then we set $s_{0}=$ (the maximal non-negative integer roots) .
Otherwise, the integration ideal is 0 and finish.
(d) $m_{i}=\operatorname{ord}_{(-w, w)}\left(h_{i}\right)$,
$\mathcal{B}_{d}=\left\{\partial_{1}^{i_{1}} \cdots \partial_{m}^{i_{m}} \mid i_{1} w_{1}+\cdots+i_{m} w_{m} \leq d\right\} \quad(d \in \mathbb{N})$, $r=\#\left\{\left(i_{1}, \ldots, i_{m}\right) \mid i_{1} w_{1}+\cdots+i_{m} w_{m} \leq s_{0}\right\}=\# \mathcal{B}_{s_{0}}$.
(e) $\tilde{\mathcal{B}}=\bigcup_{i=1}^{l}\left\{\tilde{h}_{i \beta}:=\partial^{\beta} h_{i} \mid \partial^{\beta} \in \mathcal{B}_{s_{0}-m_{i}}\right\}$,

$$
\mathcal{B}=\left\{h_{i \beta}:=\left.\tilde{h}_{i \beta}\right|_{x_{1}=\cdots=x_{m}=0} \mid \tilde{h}_{i \beta} \in \tilde{\mathcal{B}}\right\} .
$$

$$
\text { Here, } h_{i \beta}=\sum_{\partial^{\alpha} \in \mathcal{B}_{s_{0}}} g_{\alpha} \partial^{\alpha} \quad\left(g_{\alpha} \in D^{\prime}\right)
$$

2. Let $\left(D^{\prime}\right)^{r}$ be the left free D^{\prime}-module with the base $\mathcal{F}^{-1}\left(B_{s_{0}}\right)$, i.e. $\left(D^{\prime}\right)^{r}=$ $\sum_{\partial^{\alpha} \in \mathcal{B}_{s_{0}}} D^{\prime} x^{\alpha}$. Regard elements in $\mathcal{F}^{-1}(\mathcal{B})$ as elements in the left D^{\prime} module $\left(D^{\prime}\right)^{r}$. In other words, $\mathcal{F}^{-1}\left(h_{i \beta}\right)=\sum_{\partial^{\alpha} \in \mathcal{B}_{s_{0}}} g_{\alpha} x^{\alpha} \quad\left(g_{\alpha} \in D^{\prime}\right)$ is regarded as an element in $\left(D^{\prime}\right)^{r}$. Let M be the left D^{\prime}-submodule in $\left(D^{\prime}\right)^{r}$ generated by $\mathcal{F}^{-1}(\mathcal{B})$.
3. Compute the Gröbner basis G of M with respect to a POT term order such that the position corresponds to $x^{0}=1$ is the minimum position. Output $G^{\prime}=G \cap D^{\prime}$. This set G^{\prime} generates the integration ideal of I.

We consider the following definite integral of a holonomic function $f\left(x_{1}, \ldots, x_{n}\right)$.

$$
A\left(x_{m+1}, \ldots, x_{n}\right)=\int_{R} f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \cdots d x_{m}, \quad R=\prod_{i=1}^{m}\left[a_{i}, b_{i}\right]
$$

Let $I=\operatorname{Ann}_{D} f:=\{P \cdot f=0 \mid P \in D\}$ be the annihilating ideal of the integrand, and J be the integration ideal of I. For every $p \in J$, there exist $p_{1}, \ldots, p_{m} \in D$ such that

$$
p-\sum_{i=1}^{m} \partial_{i} p_{i} \in I
$$

and we have

$$
\begin{align*}
p \cdot A\left(x_{m+1}, \ldots, x_{n}\right) & =\int_{R} p \cdot f d x_{1} \cdots d x_{m}=\int_{R} \sum_{i=1}^{m}\left(\partial_{i} p_{i}\right) \cdot f d x_{1} \cdots d x_{m} \\
& =\sum_{i=1}^{m} \int_{R} \partial_{i}\left(p_{i} \cdot f\right) d x_{1} \cdots d x_{m} \tag{1}
\end{align*}
$$

Therefore, if we take an integration domain such that the right hand side of (1) equals to zero, we can regard the integration ideal as a system of homogeneous differential equations for the integral $A\left(x_{m+1}, \ldots, x_{n}\right)$. If the right hand side is not zero, the equation (1) gives an inhomogeneous differential equations for the function A .

3 Computing inhomogeneous parts of the integration ideal

In this section, we give a new algorithm of computing inhomogeneous differential equations for definite integrals. For the purpose, we must find an explicit form $p_{i}(1 \leq i \leq m)$ in the equation (11) in the section 2,

Theorem 1 Let $J \subset D^{\prime}$ be the integration ideal of a holonomic left D-ideal I. For any $p \in J$, there exists an algorithm to compute differential operators $p_{i} \in D(1 \leq i \leq m)$ such that

$$
\begin{equation*}
p-\sum_{i=1}^{m} \partial_{i} p_{i} \in I \tag{2}
\end{equation*}
$$

Proof. We will present an algorithm of obtaining operators p_{i}. By applying Algorithm 1 , we obtain a generating set $\left\{g_{1}, \ldots, g_{t}\right\}$ of the integration ideal of I. It is sufficient to compute inhomogeneous parts for each generator g_{j}. From the step 3 of Algorithm [1] g_{j} can be expressed as $g_{j}=\sum q_{j i \beta} \mathcal{F}^{-1}\left(h_{i \beta}\right)$ where $q_{j i \beta} \in D$. Then these $q_{j i \beta} \in D$ can be computed by referring the history of the Gröbner basis computation in the step 3. Therefore, we have

$$
\begin{aligned}
I \ni \sum q_{j i \beta} \mathcal{F}^{-1}\left(\tilde{h}_{i \beta}\right) & =g_{j}-\left(g_{j}-\sum q_{j i \beta} \mathcal{F}^{-1}\left(\tilde{h}_{i \beta}\right)\right) \\
& =g_{j}-\sum q_{j i \beta}\left(\mathcal{F}^{-1}\left(h_{i \beta}\right)-\mathcal{F}^{-1}\left(\tilde{h}_{i \beta}\right)\right) \\
& =g_{j}-\sum q_{j i \beta}\left(\mathcal{F}^{-1}\left(\left.\tilde{h}_{i \beta}\right|_{x_{1}=\cdots=x_{m}=0}\right)-\mathcal{F}^{-1}\left(\tilde{h}_{i \beta}\right)\right) \\
& =g_{j}-\sum q_{j i \beta} \mathcal{F}^{-1}\left(\left.\tilde{h}_{i \beta}\right|_{x_{1}=\cdots=x_{m}=0}-\tilde{h}_{i \beta}\right) .
\end{aligned}
$$

Since each term of $\left.\tilde{h}_{i \beta}\right|_{x_{1}=\cdots=x_{m}=0}-\tilde{h}_{i \beta}$ can be divided from the left by either of x_{1}, \ldots, x_{m}, each term of $\mathcal{F}^{-1}\left(\left.\tilde{h}_{i \beta}\right|_{x_{1}=\cdots=x_{m}=0}-\tilde{h}_{i \beta}\right)$ can be divided from the left by either of $\partial_{1}, \ldots, \partial_{m}$. Thus we can rewrite

$$
\sum q_{j i \beta} \mathcal{F}^{-1}\left(\left.\tilde{h}_{i \beta}\right|_{x_{1}=\cdots=x_{m}=0}-\tilde{h}_{i \beta}\right)=\sum_{i=1}^{m} \partial_{i} p_{i j}
$$

Let us present our algorithm.

Algorithm 2

Input: Generators of a holonomic left ideal $I \subset D$ and
a weight vector $w=\left(w_{1}, \ldots, w_{m}, w_{m+1}, \ldots, w_{n}\right)$ such that $w_{1}, \ldots, w_{m}>$ $0, w_{m+1}=\cdots=w_{n}=0$.

Output: Generators $\left\{g_{1}, \ldots, g_{t}\right\}$ of the integration ideal of I w.r.t. x_{1}, \ldots, x_{m} and operators $p_{i j} \in D$ satisfying $g_{j}-\sum_{i=1}^{m} \partial_{i} p_{i j} \in I$ for each generator g_{j} $(1 \leq j \leq t)$.

1. Apply Algorithm [1]
2. Compute $q_{j i \beta}$ satisfying $g_{j}=\sum q_{j i \beta} \mathcal{F}^{-1}\left(h_{i \beta}\right)$ by referring the history of the Gröbner basis computation in the step 3 of Algorithm 1 .
3. Rewrite $R_{j}:=g_{j}-\sum q_{j i \beta} \mathcal{F}^{-1}\left(\tilde{h}_{i \beta}\right)$ to the form of $R_{j}=\sum_{i=1}^{m} \partial_{i} p_{i j}$. Output $p_{i j}$.

Example 1 [Incomplete Gauss's hypergeoemtric integral]
We set

$$
F(x)=\int_{p}^{q} t^{b-1}(1-t)^{c-b-1}(1-x t)^{-a} d t .
$$

We will compute a differential equation for the integral $F(x)$. A holonomic ideal annihilating the integrand $f(x, t)=t^{b-1}(1-t)^{c-b-1}(1-x t)^{-a}$ is

$$
\begin{aligned}
I_{f}= & \left\langle\left(-x^{2}+x\right) \partial_{x}^{2}+\left((-t+1) \partial_{t}+(-a-b-1) x+c-1\right) \partial_{x}-a b,\right. \\
& \left.(-t+1) x \partial_{x}+\left(t^{2}-t\right) \partial_{t}+(-c+2) t+b-1,(t x-1) \partial_{x}+a t\right\rangle
\end{aligned}
$$

which is obtained by using Oaku's algorithm to compute the annihilating ideal of a power of polynomials. The generic b-function of $\mathcal{F}\left(I_{f}\right)$ with respect to the weight vector $w=(1,0)$ (i.e. t 's weight is 1 and x 's weight is 0) is $s(s-a+c-1)$. We assume that $a-c+1$ is not a non-negative integer. Then the maximal nonnegative integer root s_{0} of $b(s)$ is 0 . Therefore, the integration ideal of I_{f} with respect to t is

$$
\left\langle\left(-x^{2}+x\right) \partial_{x}^{2}+((-a-b-1) x+c) \partial_{x}-a b\right\rangle=\langle P\rangle
$$

The differential equation $P \cdot g=0$ is Gauss's hypergeometric equation. The inhomogeneous part of P is $\partial_{t}(-t+1) \partial_{x}$. We apply P to the integral $F(x)$ and obtain the inhomogeneous differential equation

$$
P \cdot \int_{p}^{q} f(x, t) d t=\int_{p}^{q}\left(\partial_{t}(t-1) \partial_{x}\right) \cdot f(x, t) d t=\left[(t-1) \frac{\partial f}{\partial x}(x, t)\right]_{p}^{q}
$$

We present the output for this problem by the program nk_restriction.rr on the computer algebra system Risa/Asir ([11). We use the command nk_restriction.integration_ideal to compute the integration ideal. The option inhomo=1 make the system compute inhomogeneous parts and the option param $=[\mathrm{a}, \mathrm{b}, \mathrm{c}]$ means that parameters are a, b, c. The sec shows the exhausting time of each steps. This example and next example are executed on a Linux machine with Intel Xeon X5570 $(2.93 \mathrm{GHz})$ and 48 GB memory.

```
[1743] load("nk_restriction.rr");
[1944] I_f=[-dx^2*x^2+(-dx*a-dx*b+dx^2-dx)*x-dx*dt*t-b*a+dx*c+dx*dt-dx,
(-dx*t+dx)*x+dt*t^2+(-c-dt+2)*t+b-1,dx*t*x+a*t-dx];
[(-x^2+x)*dx^2+((-t+1)*dt+(-a-b-1)*x+c-1)*dx-b*a,
(-t+1)*x*dx+(t^2-t)*dt+(-c+2)*t+b-1, (t*x-1)*dx+a*t]
[1945] nk_restriction.integration_ideal(I_f,[t,x],[dt,dx],[1,0]|param=
[a,b,c],inhomo=1);
-- nd_weyl_gr :0.004sec(0.000623sec)
-- weyl_minipoly_by_elim :0sec(0.000947sec)
-- generic_bfct_and_gr :0.004sec(0.001922sec)
generic bfct : [[1,1],[s,1],[s-a+c-1,1]]
SO : 0
B_{SO} length : 1
-- fctr(BF) + base :Osec(0.000277sec)
-- integration_ideal_internal :0sec(0.000499sec)
[[(-x^2+x)*dx^2+((-a-b-1)*x+c)*dx-b*a],[[[[dt,(t-1)*dx]],1]]]
```

Example $2\left[F(x)=\int_{0}^{\infty} e^{-t-x t^{3}} d t\right]$
We consider the integral $F(x)=\int_{0}^{\infty} e^{-t-x t^{3}} d t$. A holonomic ideal annihilating the integrand $f(t, x)=e^{-t-x t^{3}}$ is $I_{f}=\left\langle\partial_{t}+1+3 x t^{2}, \partial_{x}+t^{3}\right\rangle$. The integration ideal of I_{f} with respect to t is $J=\left\langle 27 x^{3} \partial_{x}^{2}+54 x^{2} \partial_{x}+6 x+1\right\rangle=\langle P\rangle$. The inhomogeneous part of P is $-\partial_{t}\left(\partial_{t}^{2}+3 \partial_{t}+3\right)$. We apply P to the integral $F(x)$ and obtain

$$
\begin{aligned}
P \cdot \int_{0}^{\infty} e^{-t-x t^{3}} d t & =-\int_{0}^{\infty}\left(\partial_{t}\left(\partial_{t}^{2}+3 \partial_{t}+3\right)\right) \cdot e^{-t-x t^{3}} d t \\
& =-\left[\left(\partial_{t}^{2}+3 \partial_{t}+3\right) \cdot e^{-t-x t^{3}}\right]_{0}^{\infty} \\
& =-\left[\left(-6 x t+\left(1+3 x t^{2}\right)^{2}-3-9 x t^{2}+3\right) e^{-t-x t^{3}}\right]_{0}^{\infty}=1
\end{aligned}
$$

[1946] load("nk_restriction.rr");
[2146] I_f=[dt+1+3*x*t^2, dx+t^3];
[dt+3*t^2*x+1, dx+t^3]
[2147] nk_restriction.integration_ideal(I_f,[t,x],[dt,dx],[1,0] |
inhomo=1);
-- nd_weyl_gr : 0sec (0.000526sec)
-- weyl_minipoly :0sec (0.0002439sec)
-- generic_bfct_and_gr :0sec(0.001016sec)
generic bfct : [[1, 1], [s,1]]
S0 : 0
$B_{_}\{\mathrm{SO}\}$ length : 1
-- fctr (BF) + base :0sec + gc : 0.008sec (0.00691sec)
-- integration_ideal_internal :0sec (0.0003109sec)
$\left[\left[27 * x^{\wedge} 3 * d x^{\wedge} 2+54 * x^{\wedge} 2 * d x+6 * x+1\right],[[[[d t,-d t \wedge 2-3 * d t-3]], 1]]\right]$
Theorem 2 We consider the following multiple integral,

$$
\begin{equation*}
F\left(x_{m+1}, \ldots, x_{n}\right)=\int_{a_{1}}^{b_{1}} \cdots \int_{a_{m}}^{b_{m}} f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \cdots d x_{m} \quad(m \leq n) \tag{3}
\end{equation*}
$$

Let I be a holonomic left D-ideal annihilating the integrand $f\left(x_{1}, \ldots, x_{n}\right)$. There exists an algorithm to compute inhomogeneous differential equations for the multiple integral $F\left(x_{m+1}, \ldots, x_{n}\right)$ from the holonomic ideal I. The algorithm is described below.

For simplicity, we will explain the algorithm in the case of $m=2$. We set

$$
F\left(x_{3}, \ldots, x_{n}\right)=\int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} f\left(x_{1}, \ldots, x_{n}\right) d x_{1} d x_{2} \quad(2 \leq n)
$$

and will compute an inhomogeneous differential equation of F.
Let I be a holonomic left D-ideal annihilating the integrand $f\left(x_{1}, \ldots, x_{n}\right)$. We compute the integration ideal J of I with respect to x_{1}, x_{2}, i.e.

$$
J=\left(I+\partial_{1} D+\partial_{2} D\right) \cap D^{\prime} \quad\left(D^{\prime}=K\left\langle x_{3}, \ldots, x_{n}, \partial_{3}, \ldots, \partial_{n}\right\rangle\right)
$$

We take an element $P \in J$. There exist $P_{0} \in I$ and $P_{1}, P_{2} \in D$ such that $P=P_{0}+\partial_{1} P_{1}+\partial_{2} P_{2} \in D^{\prime}$. We apply the operator P to the integral F, and obtain

$$
\begin{equation*}
P \cdot F=\int_{a_{2}}^{b_{2}}\left(\left.P_{1} \cdot f\right|_{x_{1}=b_{1}}-\left.P_{1} \cdot f\right|_{x_{1}=a_{1}}\right) d x_{2}+\int_{a_{1}}^{b_{1}}\left(\left.P_{2} \cdot f\right|_{x_{2}=b_{2}}-\left.P_{2} \cdot f\right|_{x_{2}=a_{2}}\right) d x_{1} \tag{4}
\end{equation*}
$$

Let F_{1}, F_{2} be the first term and the second term of the right hand side and let f_{1}, f_{2} be the integrand of F_{1}, F_{2}.

To obtain a holonomic ideal annihilating the integral F_{1}, we must compute a holonomic ideal I_{1} annihilating the integrand f_{1}. When the integrand f_{1} is the power of polynomial, we can use Oaku's algorithm to obtain the holonomic ideal $I_{1}(\boxed{6})$. In general case, we can compute the holonomic ideal I_{1} from I by the following method.

The ideal quotient $I: P_{1}$ is holonomic and annihilates the function $P_{1} \cdot f$. To obtain a holonomic ideal J_{1} annihilating $\left.P_{1} \cdot f\right|_{x_{1}=b_{1}}$, we compute the restriction ideal of $I: P_{1}$ with respect to $x_{1}=b_{1}$. Applying the same procedure for $x_{1}=a_{1}$ instead of $x_{1}=b_{1}$, we obtain a holonomic ideal J_{2} annihilating $\left.P_{1} \cdot f\right|_{x_{1}=a_{1}}$. Since $J_{1} \cap J_{2}$ is holonomic and annihilates $f_{1}\left(=\left.P_{1} \cdot f\right|_{x_{1}=b_{1}}-\left.P_{1} \cdot f\right|_{x_{1}=a_{1}}\right)$, we obtain $J_{1} \cap J_{2}$ as I_{1}.

We compute the integration ideal K_{1} of I_{1} with respect to x_{2}, i.e.

$$
K_{1}=\left(I_{1}+\partial_{2} D_{1}\right) \cap D^{\prime} \quad\left(D_{1}=K\left\langle x_{2}, x_{3}, \ldots, x_{n}, \partial_{2}, \partial_{3}, \ldots, \partial_{n}\right\rangle\right)
$$

We take an element $P^{(1)} \in K_{1}$. There exist $P_{0}^{(1)} \in I_{1}$ and $P_{2}^{(1)} \in D_{1}$ such that $P^{(1)}=P_{0}^{(1)}+\partial_{2} P_{2}^{(1)}$. We apply $P^{(1)}$ to the integral F_{1}, and obtain

$$
\begin{equation*}
P^{(1)} \cdot F_{1}=\left.P_{2}^{(1)} \cdot f_{1}\right|_{x_{2}=b_{2}}-\left.P_{2}^{(1)} \cdot f_{1}\right|_{x_{2}=a_{2}} . \tag{5}
\end{equation*}
$$

Applying the same procedure for I_{2} instead of I_{1}, we can compute the annihilating ideal I_{2} of the integrand f_{2} and the integration ideal K_{2} of I_{2} with respect to x_{1}.

By (4) and (5), we obtain

$$
P^{(1)} \cdot P \cdot F=P^{(1)} \cdot F_{1}+P^{(1)} \cdot F_{2},
$$

and can compute the first term of the right hand side. To compute the second term $P^{(1)} \cdot F_{2}$, we compute $K_{2}: P^{(1)}$ and take an element $P^{(2)}$ in this ideal. Since $P^{(2)} P^{(1)} \in K_{2}$, we can compute $P^{(2)} P^{(1)} \cdot F_{2}$. Finally, we can obtain an inhomogeneous differential equation

$$
P^{(2)} P^{(1)} P \cdot F=P^{(2)} P^{(1)} \cdot F_{1}+P^{(2)} P^{(1)} \cdot F_{2}
$$

Remark 1 Let

$$
\ell_{1} \cdot F=g_{1}, \cdots, \ell_{p} \cdot F=g_{p} \quad\left(\ell_{i} \in D^{\prime}, g_{i} \text { is a holonomic function }\right)
$$

be a system of inhomogeneous differential equations. When $\left\langle\ell_{1}, \ldots, \ell_{p}\right\rangle$ generates the left holonomic ideal in D^{\prime}, we call the system inhomogeneous holonomic. When $m=1$, the output of the algorithm in Theorem 2 is inhomogeneous holonomic. Although the algorithm outputs a lot of inhomogeneous differential equations when P runs over the ideal J, it is an open question whether the output of the algorithm is inhomogeneous holonomic when $m>1$. However, since the Oaku-Shiraki-Takayama algorithm gives holonomic output (see [7], section 4.3), we can obtain inhomogeneous holonomic differential equations by the following algorithm.

Algorithm 3

Input: Generators of a holonomic left ideal annihilating $f\left(x_{1}, \ldots, x_{n}\right)$.
Output: Generators of an inhomogeneous holonomic system for (3).

1. Apply the algorithm in Theorem 2,
2. Apply the Oaku-Shiraki-Takayama algorithm if the system obtained in the step 1 is not inhomogeneous holonomic.
3. Merge the outputs of the step 1 and the step 2 .

4 Comparison of our algorithm with other algorithms

4.1 The Almkvist-Zeilberger algorithm

The Almkvist-Zeilberger algorithm (AZ algorithm, [1, [10], [2]) is very fast, but works for hyperexponential functions. Our algorithm works for holonomic functions. The AZ algorithm is based on the method of undetermined coefficients and Gosper's algorithm, and our algorithm is based on the Gröbner basis method in D.

4.2 The Chyzak algorithm

The Chyzak algorithm (3 , 4], [5) is based on the method of undetermined coefficients and the Gröbner basis method in the Ore algebra. By using the Ore algebra, the Chyzak algorithm can compute various summations and integrals like summations of holonomic sequences, integrals of holonomic functions and its q-analogues. For the ring of differential operators with rational function coefficients $K(x)\langle\partial\rangle$, the Chyzak algorithm is a generalization of the AZ algorithm and works for holonomic functions. The algorithm is often faster than our algorithm. But, when the algorithm returns higher order differential equations or the number of variables are many, our algorithm is sometimes faster. Here, we show only one example. We present these examples at http://www.math.kobe-u.ac.jp/OpenXM/Math/i-hg/nk_restriction_ex.html

Example $3\left[F(x, y)=\int_{a}^{b} \frac{1}{x t+y+t^{10}} d t\right]$
We set

$$
F(x, y)=\int_{a}^{b} \frac{1}{x t+y+t^{10}} d t
$$

We will compute differential equations for the integral $F(x, y)$. The following output is computed by our algorithm. It takes about 1.3 seconds.

```
[2345] load("nk_restriction.rr");
[2545] F=x*t+y+t^10$
[2546] Ann=ann(F)$ /* annihilating ideal of F^s */
0.052sec(0.0485sec)
[2547] Id=map(subst, Ann, s, -1)$ /* substitute s=-1 in Ann */
0sec(4.411e-05sec)
[1569] nk_restriction.integration_ideal(Id, [t,x,y], [dt,dx,dy], [1, 0,0]
|inhomo=1);
-- nd_weyl_gr :0.012sec + gc : 0.008001sec(0.02009sec)
-- weyl_minipoly :0sec(0.001189sec)
-- generic_bfct_and_gr :0.016sec + gc : 0.008001sec(0.02358sec)
generic bfct : [[1,1],[s,1],[s-9,1]]
SO : 9
B_{SO} length : 10
-- fctr(BF) + base :0.044sec + gc : 0.024sec(0.0674sec)
-- integration_ideal_internal :0.8321sec + gc : 0.236sec(1.071sec)
[[9*x*dx+10*y*dy+9, -10*dx^9-x*dy^9, -9*dx^10+y*dy^10+9*dy^9],
[[[[dt,-t]], 1],[[[dt,-dy^8]], 1],[[[dt, -t*dy^9]], 1]]]
0.9081sec + gc : 0.28sec(1.19sec)
```

The following output is computed by the Chyzak algorithm (package Mgfun [12]) on Maple12. It takes about 50 seconds.

```
with(Mgfun):
f:=1/(x*t+y+t^10):
ts:=time():
creative_telescoping(f,[x::diff,y::diff], t::diff):
time()-ts;
```

These computational experiments are executed on a Linux machine with Intel Xeon5450 $(3.00 \mathrm{GHz})$ and 32 GB memory.

4.3 The Oaku-Shiraki-Takayama algorithm

Although our algorithm gives inhomogeneous differential equations for definite integrals, the Oaku-Shiraki-Takayama algorithm (OST algorithm, [7]) is for computing homogeneous differential equations annihilating definite integrals by using the Heaviside function and the integration algorithm. Since outputs are different, they are different methods. However, in most examples, outputs of our algorithm can be easily transformed to homogeneous systems. Thus, it will be worth making comparison between our method and the OST method.

Let $u(t, x)$ be a smooth function defined on an open neighborhood of $[a, b] \times U$ where U is an open set of \mathbf{R}^{n-1}. The Heaviside function $Y(t)$ defined by $Y(t)=$ $0(t<0), Y(t)=1(t \geq 0)$. Then we can regard the integral of $u(t, x)$ over $[a, b]$ as that of $Y(t-a) Y(b-t) u(t, x)$ over $(-\infty, \infty)$, and the following holds.

$$
\int_{a}^{b} u(t, x) d t=\int_{-\infty}^{\infty} Y(t-a) Y(b-t) u(t, x) d t
$$

Thus we can apply Algorithm 1 to obtain homogeneous differential equations. The paper [7] proposes the two methods
(a) Method of using properties of the Heaviside function
(b) Method of using tensor product in D-module
to obtain differential equations annihilating the integrand of the right hand side. In the former case, the computation finishes without a heavy part because the procedure is only multiplication of polynomials. However, it is not known whether the output is holonomic. In the latter case, when an input is holonomic, an output is also holonomic. However, the computation is often heavy. We call the former OST algorithm (a) and the latter OST algorithm (b) in this paper. See [7, Chap 5] for details.

Let us show a relation of the outputs of OST algorithm and our algorithm. We consider $v(x)=\int_{0}^{\infty} e^{\left(-t^{3}+t\right) x} d t$. OST algorithm (a) or (b) return the following ideal

$$
\begin{aligned}
& \left\langle-27 x^{3} \partial_{x}^{3}-54 x^{2} \partial_{x}^{2}+\left(4 x^{3}+3 x\right) \partial_{x}+4 x^{2}-3\right. \\
& \left.27 x^{2} \partial_{x}^{4}+135 x \partial_{x}^{3}+\left(-4 x^{2}+105\right) \partial_{x}^{2}-16 x \partial_{x}-8\right\rangle
\end{aligned}
$$

On the other hand, Algorithm 2 returns the following ideal generated by P and its inhomogeneous part Q :

$$
\begin{aligned}
\langle P\rangle & =\left\langle-27 x^{2} \partial_{x}^{2}-27 x \partial_{x}+4 x^{2}+3\right\rangle \\
Q & =\partial_{t}\left(-9 t x \partial_{x}+\left(-6 t^{2}+4\right) x+3 t\right)
\end{aligned}
$$

This output yields

$$
\begin{equation*}
P \cdot v(x)=\left[\left(-9 t x \partial_{x}+\left(-6 t^{2}+4\right) x+3 t\right) \cdot e^{\left(-t^{3}+t\right) x}\right]_{t=0}^{t=\infty}=-4 x \tag{6}
\end{equation*}
$$

Since the annihilating ideal of $-4 x$ is $\left\langle x \partial_{x}-1, \partial_{x}^{2}\right\rangle$, operators $\left(x \partial_{x}-1\right) P$ and $\partial_{x}^{2} P$ annihilate $v(x)$. Although results of these algorithms are not coincide in general, these operators coincide outputs of OST algorithm (a) and (b) in this case. However, it seems that it is difficult to compute the right hand side of (6) from the output of OST algorithm. Moreover, in our algorithm we have only to do substitution process to compute for the integrals which has same integrand and another integration domain because our algorithm does not depend on the integration domain.

Table 1 shows the computing time of each part of Algorithm 2 and OST algorithm (a), (b). The entries with parentheses for inputs \bar{v}_{k} mean that results for v_{k} were reused. For a comparison we show the computing time of Algorithm 1. The experiments were done on a Linux machine with Intel Xeon X5570 $(2.93 \mathrm{GHz})$ and 48 GB memory.

	Alg 2			OST (a)	OST (b)			Alg 1
Input	Alg 2	Ann	Total	Total	(b)	Alg 1$]$	Total	Total
v_{1}	0.0042	0.0014	0.0056	0.0062	0.11	0.012	0.12	0.0039
v_{2}	0.15	0.019	0.17	0.25	5.10	0.16	5.26	0.075
v_{3}	19.91	0.45	20.36	96.14	24.54	95.24	119.8	13.58
v_{4}	26724	28.33	26752	>1 day	1726	>1 day	-	24003
\bar{v}_{1}	(0.0042)	0.0015	0.0057	0.0071	0.47	0.0050	0.48	n / a
\bar{v}_{2}	(0.15)	0.027	0.18	1.56	18230	1.19	18231	n / a
\bar{v}_{3}	(19.91)	1.62	21.53	3769	848	2802	3650	n / a
\bar{v}_{4}	(26724)	294	27018	>1 day	16231	>1 day	-	n / a

$v_{k}(x)=\int_{0}^{\infty} u_{k}(t, x) d t, \bar{v}_{k}(x)=\int_{0}^{1} u_{k}(t, x) d t$ where $u_{k}(t, x)=\exp \left(-t x \prod_{i=1}^{k}\left(t^{2}-i^{2}\right)\right)$

Table 1: The comparison of the computing time (seconds)
From the viewpoint of the computational efficiency, the computation time of Algorithm 2 increases more than that of Algorithm 1 for computing inhomogeneous parts. That of OST algorithm increases because the input data of the integration algorithm becomes bigger differential operators by procedure (a) or (b). It seems that Algorithm 2 is faster than OST algorithm, since the computation of inhomogeneous parts can be done by multiplication and summation of differential operators. However, to obtain homogeneous equation corresponding to OST algorithm output, we must compute annihilating ideals of inhomogeneous parts.

Acknowledgement

We would like to thank Prof. Takayama for fruitful discussions and encouragements.

References

[1] G.Almkvist, D.Zeilberger, The method of differentiating under the integral sign, Journal of Symbolic Computation 10, 571-591, 1990.
[2] M.Apagodu, D.Zeilberger, Multi-variable Zeilberger and AlmkvistZeilberger algorithms and the sharpening of Wilf-Zeilberger theory, Advances in Applied Mathematics 37, 139-152, 2006.
[3] F.Chyzak, Gröbner Bases, Symbolic Summation and Symbolic Integration, London Mathematics Lecture Notes Series, vol.251, 32-60, 1998.
[4] F.Chyzak, An Extension of Zeilberger's Fast Algorithm to General Holonomic Functions, Discrete Mathematics 217, 115-134, 2000.
[5] F.Chyzak, B. Salvy, Non-commutative Elimination in Ore Algebras Proves Multivariate Holonomic Identities, Journal of Symbolic Computation 26, 187-227, 1998.
[6] T.Oaku, Algorithms for b-functions, restrictions, and algebraic local cohomology groups of D-modules, Advances in Applied Mathematics 19, 61-105, 1997.
[7] T.Oaku, Y.Shiraki, and N.Takayama, Algebraic Algorithm for D-modules and numerical analysis, Computer mathematics (Proceedings of ASCM 2003), 23-39, Lecture Notes Ser. Comput., 10, World Sci. Publ., River Edge, NJ, 2003.
[8] M.Saito, B.Sturmfels, and N.Takayama, Gröbner Deformations of Hypergeometric Differential Equations, Springer, 2000.
[9] N.Takayama, An Approach to the Zero Recognition Problem by Buchberger Algorithm, Journal of Symbolic Computation 14, 265-282, 1992.
[10] A.Tefera, MultInt, a Maple package for multiple integration by the WZ method, Journal of Symbolic Computation 34, 329-353, 2002.
[11] M.Noro, et al: Risa/Asir, http://www.math.kobe-u.ac.jp/Asir
[12] F.Chyzak: Mgfun, http://algo.inria.fr/chyzak/mgfun.html
[13] C.Koutschan: HolonomicFunctions, http://www.risc.jku.at/research/combinat/software/HolonomicFunctions/
[14] H.Nakayama, K.Nishiyama: nk_restriction.rr, http://www.math.kobe-u.ac.jp/~nakayama/nk_restriction.rr

[^0]: *Department of Mathematics, Kobe University and JST CREST.

