
Reliable computing with GNU MPFR

Paul Zimmermann

LORIA/INRIA Nancy-Grand Est, Équipe CARAMEL - bâtiment A,
615 rue du jardin botanique, F-54603 Villers-lès-Nancy Cedex

Abstract. This article presents a few applications where reliable com-
putations are obtained using the GNU MPFR library.

Keywords: reliable computing, correct rounding, IEEE 754, GNU MPFR

The overview of the 3rd International Workshop on Symbolic-Numeric Com-
putation (SNC 2009), held in Kyoto in August 2009, says: Algorithms that com-
bine ideas from symbolic and numeric computation have been of increasing inter-
est over the past decade. The growing demand for speed, accuracy and reliability
in mathematical computing has accelerated the process of blurring the distinc-
tion between two areas of research that were previously quite separate. [...] Using
numeric computations certainly speeds up several symbolic algorithms, however
to ensure the correctness of the final result, one should be able to deduce some
reliable facts from those numeric computations. Unfortunately, most numerical
software tools do not provide any accuracy guarantee to the user. Let us demon-
strate this fact on a few examples. Can we deduce the sign of sin(2100) from the
following computation with Maple version 13?

> evalf(sin(2^100));
0.4491999480

This problem concerns other computer algebra systems, for example Sage 4.4.2,
where the constant C = eπ

√
163 − 262537412640768744 evaluated to different

precisions yields different signs:

sage: f=exp(pi*sqrt(163))-262537412640768744
sage: numerical_approx(f, digits=15)
448.000000000000
sage: numerical_approx(f, digits=30)
-5.96855898038484156131744384766e-13

or Mathematica 6.0, where the same constant C ≈ −0.75 ·10−12, integrated from
0 to 1, yields a result too large by several orders of magnitude:

In[1]:= NIntegrate[Exp[Pi*Sqrt[163]]-262537412640768744,{x,0,1}]

Out[1]= -480.

Another example is FFTW, which is a very efficient Fast Fourier Transform
(FFT) library. On http://www.fftw.org/accuracy/comments.html one can

2 Paul Zimmermann

read: Our benchmark shows that certain FFT routines are more accurate than
others. In other cases, a routine is accurate on one machine but not on another.
[...] This non-reproducibility from one machine to another one is quite annoying,
since this means that a given program using FFTW might give different results
on different computers. One reason of this non-reproducibility is the fact that
FFTW uses trigonometric recurrences to compute the twiddle factors e2ikπ/2

n

needed in the FFT. On some architectures, those recurrences are evaluated in
double-extended precision — significand of 64 bits — instead of double-precision
— significand of 53 bits.

To avoid the above problems, developers of numerical software tools should
provide primitives with well-defined semantics. This is not an easy goal. The
more complex the numerical primitive is, the more difficult it is to provide rigor-
ous bounds on the error. For example consider the implicit two-dimensional plot
of | cos((x+iy)4)| = 1 for −3 ≤ x, y ≤ 3; the computation to 20 decimal places of
ρ(10) where ρ is Dickman’s function, defined by the difference-differential equa-
tion xρ′(x) + ρ(x− 1) = 0, with initial conditions ρ(x) = 1 for 0 ≤ x ≤ 1; or the
computation to 20 decimal places of the singular values of the Hilbert matrix of
order 50, defined by Mi,j = 1/(i+ j).

There are several ways for a numerical primitive to return valuable informa-
tion. One way is to give, in addition to the numerical approximation, a bound
on the absolute or relative error; or alternatively an interval enclosing the true
result. The ultimate — and more difficult solution, from the implementer point
of view — is to guarantee correct rounding as in IEEE 754 [6], i.e., that the given
approximation is the best possible according to the target precision. To rigor-
ously define what we mean by “best possible”, we have to introduce rounding
directions, which determine in which direction to round the approximation with
respect to the exact result, and how to break ties.

GNU MPFR (MPFR for short) is a C library implementing correct rounding
for basic arithmetic operations and mathematical functions in binary multiple-
precision. We refer the reader to [4] for a technical description of MPFR. We
focus here on a few applications of MPFR.

Companion Libraries MPFI and MPC. The MPFI library implements arbitrary
precision interval arithmetic on top of MPFR. It was originally designed by
N. Revol and F. Rouillier. For a monotonic function, implementing an interval
routine is trivial: just call the corresponding MPFR function with rounding
modes towards −∞ and +∞. However for a non-monotonic function, it requires
more work; for example does cos([103992, 103993]) contain 1?

The MPC library, developed by A. Enge, Ph. Théveny and the author, is an-
other companion library to MPFR, which provides arbitrary precision complex
floating-point numbers with correct rounding. MPC uses the cartesian represen-
tation z = x+ iy, where both x and y are correctly rounded. If MPFR provides
r rounding modes — r = 5 in MPFR 3.0.0 — then MPC can provide up to r2

complex rounding modes. The MPC library implements all functions from the
C99 standard.

Lecture Notes in Computer Science: Authors’ Instructions 3

Constant Folding in GCC. The GCC compilers for the C and Fortran languages
use MPFR for constant folding (see details in [5]). In short, when one writes
double y = sin(17.42) in a C program, GCC replaces this at compile time by
double y = -0.99004214446851813, using MPFR to perform the correspond-
ing computation. The advantage is twofold: on the one hand MPFR will yield the
same numerical result on any configuration, whatever the operating system, the
processor word size; and on the other hand MPFR guarantees correct rounding
for the sine mathematical function (which de facto implies reproducibility). Up
from version 4.5, GCC also uses the MPC library to provide constant folding of
complex floating-point expressions.

Maple. Since version 11, the Maple computer algebra system uses MPFR for
approximating real solutions of polynomial systems in the RootFinding package:

> sys:=[x^2+y^2-1, y-x^2]:
> RootFinding[Isolate](sys, [x,y], digits=1, output=interval);

-7251005348244714239 -906369071450328423
[[x = [--------------------, -------------------],

9223372036854775808 1152921504606846976

1414187776304389027 5711861873363103083
y = [-------------------, -------------------]], [...]]

2305843009213693952 9223372036854775808

This computation uses the Rational Univariate Representation designed by F. Rouil-
lier, and then the MPFI interval arithmetic library — which in turn uses MPFR —
is used to isolate the roots or perform arithmetic operations on the roots.

MPFR in Sage. The open-source Sage computer algebra system (sagemath.org)
uses MPFR for its arbitrary precision floating-point arithmetic, and MPFI for
the corresponding interval arithmetic. It should be noted that the user has access
to the MPFR rounding modes and to the exact representation m · 2e of binary
floating-point numbers, as the following example (with Sage 4.4.2) shows:

sage: D = RealField(42, rnd=’RNDD’); U = RealField(42, rnd=’RNDU’)
sage: D(pi), U(pi)
(3.14159265358, 3.14159265360)
sage: D(pi).exact_rational()
3454217652357/1099511627776
sage: x = RealIntervalField(42)(pi); x.lower(), x.upper()
(3.14159265358, 3.14159265360)

MPFR is also used by the Magma computational number theory system, and
by the Mathemagix free computer algebra system (in the numerix package).

Apart from the above indirect applications, where the final user is not always
aware that she/he is using MPFR, we mention here a few selected “direct”
applications of MPFR (more details can be found on http://www.mpfr.org/
pub.html). MPFR is often used as a reference correctly-rounded implementation

4 Paul Zimmermann

for mathematical functions in double precision [3, 8]. P. Kornerup, V. Lefèvre,
N. Louvet and J.-M. Muller used MPFR to prove — among other results — that
there exists no algorithm in less than 6 arithmetic operations to compute the
“TwoSum” of two floating-point numbers a and b, i.e., x and y such that x is the
rounding to nearest of a+ b, and y = a+ b− x; they used an exhaustive search
approach [7]. F. Chiba and T. Ushijima used MPFR to study waves produced
by a disc [1, 2].

Some funny applications of MPFR are the following. K. Briggs used MPFR
to find a new worst approximable pair; this result required computing 107 terms
of the continued fraction of 2 cos(2π/7). D. de Rauglaudre used MPFR to zoom
in the Mandelbrot/Julia sets, since from a given depth on, double precision is
not sufficient; the corresponding videos are available on Youtube1.

Conclusion. Numeric tools with well-defined semantics help improving the re-
liability and portability of mathematical software. MPFR does not solve all
problems: it only guarantees correct rounding for an atomic operation, thus for
a sequence of operations like the constant C in the introduction, one has to use
other means like interval arithmetic or a Real RAM implementation (like the
iRRAM package from N. Müller). We advise the developers of numeric tools to
provide such well-defined semantics, and their users to make good use of them!

Acknowledgement. The author thanks Nathalie Revol who noticed some typos
in a earlier version of that article.

References

1. Chiba, F., and Ushijima, T. Computation of the scattering amplitude for a
scattering wave produced by a disc – approach by a fundamental solution method.
Journal of Computational and Applied Mathematics 233, 4 (2009), 1155–1174.

2. Chiba, F., and Ushijima, T. Exponential decay of errors of a fundamental solution
method applied to a reduced wave problem in the exterior region of a disc. Journal
of Computational and Applied Mathematics 231, 2 (2009), 869–885.

3. de Dinechin, F., Ershov, A. V., and Gast, N. Towards the post-ultimate libm.
In Proceedings of 17th IEEE Symposium on Computer Arithmetic (Cape Cod, USA,
2005), pp. 288–295.

4. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., and Zimmermann, P.
MPFR: A multiple-precision binary floating-point library with correct rounding.
ACM Trans. Math. Softw. 33, 2 (2007), article 13.

5. Ghazi, K. R., Lefèvre, V., Théveny, P., and Zimmermann, P. Why and how
to use arbitrary precision. Computing in Science and Engineering 12, 3 (2010),
62–65.

6. IEEE standard for floating-point arithmetic, 2008. Revision of ANSI-IEEE Standard
754-1985, approved June 12, 2008: IEEE Standards Board.

7. Kornerup, P., Lefèvre, V., Louvet, N., and Muller, J.-M. On the com-
putation of correctly-rounded sums. In Proceedings of the 19th IEEE Symposium
on Computer Arithmetic (ARITH’19) (2009), J. D. Bruguera, M. Cornea, D. Das-
Sarma, and J. Harrison, Eds., IEEE Computer Society, pp. 155–160.

1 http://www.youtube.com/view_play_list?p=56029CB07C72B4A4

Lecture Notes in Computer Science: Authors’ Instructions 5

8. Lauter, C. Q., and Lefèvre, V. An efficient rounding boundary test for pow(x, y)
in double precision. IEEE Trans. Comput. 58, 2 (2009), 197–207.

