Skip to main content

Transcutaneous Coupling Implantable Stimulator

  • Conference paper
Life System Modeling and Intelligent Computing (ICSEE 2010, LSMS 2010)

Abstract

Because of low energy transmission efficiency of the transcutaneous coupling power supply device, the factors affecting inefficiency are analyzed and an implantable stimulator external powered is designed. The circuit consists of High-frequency inverter module, transcutaneous transformer and an isolated pulse generator. The circuit realizes that the polarity, amplitude, frequency and pulse width of stimulating pulses are adjustable and controllable. The distance between two transcutaneous coupling coils is the thickness of human skin, usually 5~15mm. Through practical tests at a distance of 10mm, experimental results show that the maximum transmission efficiency is 7.66% at the high-frequency carrier of 300KHz. The variable range of amplitude is between 0 and 10 voltages. The range of frequency is between 100 and 300Hz. So the designed circuit meets the demand of implantable stimulators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kopparthi, S., Ajmera, P.K.: Power delivery for remotely located Microsystems. In: 2004 IEEE Region 5 Conference: Annual Technical and Leadership Workshop, pp. 31–39 (2004)

    Google Scholar 

  2. Pernia, A.M., Orille, I.C., Martinez, J.A., et al.: Transcutaneous microvalve activation system using a coreless transformer. Sensors and Actuators A-Physical 136(1), 313–320 (2007)

    Article  Google Scholar 

  3. Niu, C., Hao, H., Li, L., et al.: The transcutaneous Charger for Implanted Nerver Simulation Device. In: Proceeding of the 28th IEEE EMBS Annual International Conference, pp. 4941–4944 (2006)

    Google Scholar 

  4. Ben Hmida, G., Dhieb, M., Ghariani, H., et al.: Transcutaneous power and high data rate transmission for biomedical implants. In: International Conference on Design & Test of Integrated Systems in Nanoscale Technology, pp. 374–378 (2006)

    Google Scholar 

  5. Wu, Y., Yan, L.G., Xu, S.G.: Modeling and performance analysis of the New Contactless Power Supply System. In: Proceedings of the Eighth International Conference on Electrical Machines and Systems, pp. 1983–1987 (2005)

    Google Scholar 

  6. Shiba, K., Nukaya, M., Tsuji, T., et al.: Analysis of Current Density and Specific Absorption Rate in Biological Tissue Surrounding Transcutaneous Transformer for an Artificial Heart. IEEE Transactions on Biomedical Engineering 55(1), 205–213 (2008)

    Article  Google Scholar 

  7. Blad, B., Bertenstam, L., Rehncrona, S., et al.: Measurement of contact impedance of electrodes used for deep brain stimulation. ITBM-RBM 26, 344–346 (2005)

    Article  Google Scholar 

  8. Sato, F., Nomoto, T., Kano, G., et al.: A new contactless power-signal transmission device for implanted functional electrical stimulation (FES). IEEE Transactions on Magnetics 40(4), 2964–2966 (2004)

    Article  Google Scholar 

  9. Coston, A.F., John, K.J.: Transdermal drugdelivery: a comparative analysis of skin impedancemodels and parameters. In: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Cancun, Mexico, September 17-21, pp. 2982–2985. IEEE, Los Alamitos (2003)

    Google Scholar 

  10. Arai, S., Miura, H., Sato, F., et al.: Examination of Circuit Parameters for Stable High Efficiency TETS for Artificial Hearts. IEEE Transactions on Magnetics, 4170–4171 (2005)

    Google Scholar 

  11. Chen, Q., Wong, S.C., Tse, C.K., et al.: Analysis, Design, and Control of a Transcutaneous Power Regulator for Artificial Hearts. IEEE Transaction on Biomedical Circuits And Systems, 23–31 (2009)

    Google Scholar 

  12. Lee, S.-Y., Lee, S.-C.: An Implantable Wireless Bidirectional Communication Microstimulator for Neuromuscular Stimulation. IEEE Transactions on Circuits and Systems 5(12), 2526–2538 (2005)

    Google Scholar 

  13. Yao, N., Lee, H.N., Chang, C.C., et al.: A power-efficient communication system between brain-implantable devices and external computers. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, August 23-26, pp. 6588–6591. IEEE, Los Alamitos (2007)

    Chapter  Google Scholar 

  14. Si, P., Hu, A.P., Hsu, J.W., Chiang, M., Wang, Y., Malpas, S., Budgett, D.: Wireless Power Supply for Implantable Biomedical Device Based on Primary Input Voltage Regulation. In: IEEE Conference, ICIEA 2007, pp. 235–239. IEEE, USA (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xiong, H., Li, G., Lin, L., Zhang, W., Xu, R. (2010). Transcutaneous Coupling Implantable Stimulator. In: Li, K., Jia, L., Sun, X., Fei, M., Irwin, G.W. (eds) Life System Modeling and Intelligent Computing. ICSEE LSMS 2010 2010. Lecture Notes in Computer Science(), vol 6330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15615-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15615-1_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15614-4

  • Online ISBN: 978-3-642-15615-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics