Approximate Model Checking of Stochastic COWS

Paola Quaglia and Stefano Schivo

Dipartimento di Ingegneria e Scienza dell’ Informazione, Universita di Trento

Abstract. Given the description of a model and a probabilistic formula, approxi-
mate model checking is a verification technique based on statistical reasoning that
allows answering whether or not the model satisfies the formula. Only a subset of
the properties that can be analyzed by exact model checking can be attacked by
approximate methods. These latest methods, though, being based on simulation
and sampling have the advantage of not requiring the generation of the complete
state-space of the model.

Here we describe an efficient tool for the approximate model checking of services
written in a stochastic variant of COWS, a process calculus for the orchestration
of services.

1 Introduction

Stochastic process calculi have been mainly defined to ground the formal quantitative
analysis of both performance and reliability aspects of concurrent distributed systems.
When specializing the distributed paradigm to the case of service-oriented computa-
tion, performance issues suddenly become even more demanding by clearly expressing
features like, e.g., quality of service, resource usage, and dependability. That is why
recent research work in the concurrency community focussed on the definition of prob-
abilistic/stochastic extensions of calculi explicitly meant to specify services and hence
natively equipped with primitives for rendering basic service operations as sessioning
or protection [3, 15].

On the quantitative analysis side, the primary techniques to be applied are Monte
Carlo simulation and probabilistic model checking. The first one, which is mostly used
to reason about really huge systems (e.g., biological ones), consists in running a number
of execution traces of the system, and then inferring the relevant information by apply-
ing statistical methods. Model checking, which can be either exact or approximate,
grounds on a quite distinctive point of view. Both in the exact and in the approximate
case, indeed, model checking consists in contrasting the behaviour of the system against
a specific property expressed as a formula of a given probabilistic or stochastic logic
(e.g., CSL [1]).

In more detail, exact model checking numerically checks the complete state-space
of the system against a formula and returns a totally accurate result. Approximate model
checking, instead, is based on simulation and sampling. The estimation if the given
property holds is rather based on statistical reasoning on the generated samples. Dif-
ferent approaches offer a choice between a priori setting a fixed number of samples or
not. In the first case, the generation of samples is stopped when the predetermined max-
imum is reached and an answer is given based on the available data. When the number

of samples is not fixed, the user can set a desired error probability (confidence level).
The lower the confidence level, the bigger the number of samples to be generated.

Approximate model checking cannot have the same high level of accuracy as the
result of the numerical methods of exact model checking. Also, given that samples are
deemed to have finite length, approximate model checking cannot be used to check
as many kinds of formulae as those checked by exact techniques. Building the com-
plete state-space of the system, though, is not necessary. This is the good point of ap-
proximate model checking: memory requirements are negligible if compared to those
imposed by numerical methods. Indeed, especially for loosely coupled interacting sys-
tems as those used for representing service computations, the size of the corresponding
model typically suffers an exponential blow-up leading to state-space explosion.

This paper describes a tool for the approximate model checking of services de-
scribed in Scows [17], the stochastic extension of COWS [14] (Calculus for Orches-
tration of Web Services), a calculus for service-oriented computation strongly inspired
by WS-BPEL. We first overview the source language (Section 2) which extends the
work presented in [15] to polyadic communication. Then we describe the tool, called
Scows_amc, together with the foundational theory it is based upon (Section 3). Fur-
ther, in Section 4, based on a simple service describing the classical scenario of the
dining philosophers, the efficiency of Scows_amc is compared to the results obtained
by applying Scows_lIts [2], a tool that builds the complete Continuos Time Markov
Chain (CTMC) corresponding to Scows services and allows their exact model checking
through PRISM [13].

2 Scows overview

Scows is a stochastic extension of COWS, to which the capability to represent quantita-
tive aspects of services (in particular, execution time) has been added. The semantics of
Scows reflects the one of the basic calculus, where an original communication paradigm
is used. This paradigm is based on a mechanism of best-matching of the parameters of
complementary invoke (send) and request (receive) activities.

The COWS communication paradigm is best illustrated by a simple example. To
this purpose, let us consider the following term composed of three parallel services:

[n7,n2,y1,y21(p.o'{n1,nm2) | p.o?{n1,y2). 51| p.o?{y1,y2). 52) (D

where [n;,n;,y;,y21] is a scope delimiter for ny,n,,y;, and y,. The leftmost subcom-
ponent p.o ! {n,ny) can send the tuple of names (n;, n,) over the endpoint p.o (an end-
point is given by a partner name and an operation name, respectively p and o in this
case). In (1) the middle service p.o ?{n,y,). s; is a request-guarded term. It is waiting
to receive over the endpoint p.o a pair of actual parameters matching the formal tuple
(n1,y2), where y; is a variable. Names and variables play quite distinctive roles in the
matching policy. Names can be thought of as constants or ground objects: each name
can only match itself. Variables instead can match any name. Briefly put, matching two
tuples means finding a substitution of names for variables that, applied to the tuple of
the receiving service, makes it equal to the tuple of actual parameters offered by the

sending service. So, for instance, the tuples (n;, n,) and {(n;, y,) match because the sub-
stitution of n, for y,, written {"2/y,}, when applied to {n;, y,) results in (n;,n,). Going
back to the behaviour of the service p.o ? (n1, y»). 51, the execution of the request activ-
ity would unblock the continuation service s; and would make it dependent on the sub-
stitution induced by the matching. For instance, a communication between the leftmost
parallel services in (1) would result in running s;{"%2/y,}. The rightmost parallel compo-
nent p.o ?(y,y2). s> is much similar in its structure to the middle one. It is a request-
guarded term with potentials for interaction with whichever service can offer over p.o
a tuple matching (y;, y,), where y; is yet another variable. The tuple (n, n,) offered
by the leftmost service matches (y;,y,) by inducing the substitution {"i/y;, ?2/y,}. Out
of a set of potential communications, the best-matching mechanism adopted by COWS
amounts to allow only those communications that induce substitutions as small as pos-
sible. So in our example p.o ! (ny, n,) can only communicate with p.o 7 (ny,y»). s;. Here
notice that if the global service were augmented by adding a fourth parallel component
p.o?{(y1,ny). s3, then p.o!{ny,ny) could communicate with either p.o?(ny,y,).s; or
p-o 7{y1,nz). s3. So the best-matching policy is not a cure against non-determinism. It
rather serves the purpose of implementing sessioning: opening a session is rendered
by passing a unique name as session identifier, and all the communications relative to
that session will carry on that identifier as parameter. Moreover, in the same way as the
interaction of p.o!(n,ny) with p.o ?(ny,y,). s| pre-empties the communication with
p.o ?{y1,¥2). 52, concluding the operations relative to an open session will have priority
over opening a new session (just think of #n; as of a session identifier).

In the stochastic extension of COWS, each basic action (the two communicating
primitives request and invoke, plus a special killing activity used for process termina-
tion) is enriched by a real number representing the rate of an exponential distribution,
which models the time taken by the service to execute the corresponding action. For
example, letting 01, 02,03 to stay for rates, the term in (1) would be written as follows
in Scows:

[n;,n2,y1,y2 1 ((p-oXn;,n2),61) | (p.oUng,¥2),62). 51 | (p.0NY1,¥2),63). 52).

The interaction paradigm adopted in the basic calculus, and retained in Scows, is
responsible of a rather complex rate computation method for communications. Indeed,
the competition induced by the best-matching policy for pairing invoke and request
activities has to be correctly reflected in the rate of the resulting action. In particular,
polyadicity makes rate computation quite more intricate in Scows than what can be seen
in [15] where a monadic version of the basic calculus was considered. On the other
hand, polyadic communication allows the user to explicitly render the use of session
identifiers.

We will briefly illustrate the main issues about rate computation by means of a
simple example. Consider the following service definition:

S =[m,n,n',x,y]((p.om,n),8,) | (p.om,n’),)| (p.on,n’),83) | (p.ol{n,n),s,)
S S2 S3 Sy
| (p.oXm,x),71).0 | (p.oXy,n’),v2).0)

Ss Se

Using the notation S ; > S to mean that services S; and S; communicate (with S ;
sending and S receiving), we list below all the communications allowed in S by the
matching paradigm:

- S| > S5, matching m with m and substituting x by n;
- S, > S5, matching m with m and substituting x by n’;
— S, > S¢, substituting y by m and matching n’ with n’;
S35 > S, substituting y by n and matching n’ with n’;
no service can successfully match S 4’s tuple, so S 4 does not communicate.

Observing the interaction capabilities of the processes in the example, we suggest an
asymmetric way to intend the communication paradigm in Scows in the sense that the
choice of an invoke action also determines the set of possible communications. For
instance, one single communication is possible when choosing the invoking service S,
and the same holds when selecting S'3. On the other hand, if the sending service S is
chosen, then there are two possible communications: S, >S5 and S, > S¢. Note that, as
both S, >S5 and S, > S¢ induce one substitution, they are equally viable from the non-
stochastic point of view, while the stochastic rates of the two transitions can determine
different probabilities for the execution of the two distinct actions.

In case of communications, the rate computation also depends on the so-called ap-
parent rate of the participants. The apparent rate represents the rate at which actions of
the same type are perceived by an observer located outside the service. We consider two
actions to be indistinguishable from the point of view of an external observer if these
actions are competing to participate with the same role in the same communication.
In the case of an invoke action the actions competing with it are all the send-actions
available on the same endpoint. The case of a request action is more complicated, as it
requires to take into account also all the actions which would have been in competition
with the chosen one if another invoke action would have been selected. The formal def-
inition of the Scows operational semantics is outside the scope of the present paper. For
more details on the actual computation of apparent rates the interested reader is referred
to [17].

The rate of a communication event is obtained by multiplying the apparent rate of
the communication by the probability to choose exactly the two participants involved in
that communication. Adopting a classical way of approximating exponential rates [9],
we take the apparent rate of a communication to be the minimum between the apparent
rates of the participating services (i.e., the communication proceeds at the speed of the
“slowest” of the participants). So, the formula for the rate of a communication between
the invoking service S ; and the requesting service S has the following form:

P(S ;> Sy) -min (appRate(Sj), appRate(Sk)) ,

where P(S ; > §) is the probability that services S ; and S are involved in the com-
munication, and appRate(S ;) (resp. appRate(Sy)) represents the apparent rate of the
invoke (request) action computed considering the whole service containing S ; and S.
As we consider request actions to be dependent on invoke actions, the probability to
choose a particular invoke-request pair is computed as a conditional probability:

PWS;>S) =P) - PSklS).

This means that the probability of a communication between the invoke §; and the
request S is given by the product of the probability to have chosen § ; among all possi-
ble invoke actions on endpoint p.o and the probability to choose S among the request
actions made available by the choice of S ; (i.e., the request actions best-matching S ;).

In the above example, the probability that a communication occurs between S, and
S5 is calculated as follows:

P(S2>85)=P(S2)-P(S51S2)
_ 62 N
S51+6:+63 vi+y

Given that S 4 cannot take part into any communication, the rate ¢4 of service S4 is not
taken into account. On the other hand, as S5 is the single request action matching with
S 1, the probability of a communication between S| and S's is basically the probability
of choosing S;:

PS1>8s5)=PS1)-PSs151)
B 01+ 5

Here notice that we do not take into account the rate d3 of service S3, as S3 cannot
communicate with S5 (n # m) and thus cannot influence the above communication.

3 Scows_amc

Generating a CTMC from a Scows term, as required by exact model checking, can be
a computationally costly task, and could even lead to state-explosion when building the
underlying transition system. This issue is most evident when a model comprises a num-
ber of loosely coupled components, as it is often the case when dealing with distributed
systems. A compositional generation of the transition system might help minimizing the
state space, thanks to the fact that parallel components could be considered in isolation
and then merged with less-than-exponential execution time. Unfortunately, this type of
approach cannot be applied in the case of Scows. This is due to the adopted commu-
nication paradigm which requires the complete knowledge of the model to calculate
each single communication action, de facto preventing a compositional generation of
the transition system. In languages with multi-way synchronization and not featuring
name-passing, like e.g. in PEPA [9], the compositional approach can be applied and is
in fact feasible: for instance, such an approach is used for the generation of CTMCs
from PEPA models in PRISM, which is based on MTBDD (Multi-Terminal Binary De-
cision Diagrams [4, 8]) representations. Another example of application of the same
principle can be seen in CASPA [12], a tool which generates a MTBDD representation
from YAMPA, a stochastic process algebra based on TIPP [7].

Below we present a tool, called Scows_amc, that allows statistical model check-
ing of Scows terms while maintaining acceptable computation time and approximation
values. In order not to generate complete transition systems, we base our approach on
direct simulations of Scows models. In particular, we generate a number of simulation

traces by applying the operational semantics rules directly to Scows services, and then
perform the computations necessary to check the desired formula against these traces.
As a single execution trace of a stochastic model is by definition a random walk on the
transition system of the model, we resort to statistical reasoning in order to estimate the
size of the error we make in evaluating the requested property through a finite number
of random walks. The theories behind the reasoning on which the approach used by
Scows_amc is based are the one adopted in Ymer [11], and the one adopted in APMC
[5, 6]. In particular, letting >« € {<, <, >, >}, fo,#; € R*, and 6 € [0, 1], Scows_amc can
model check Scows terms against the usual CSL time-bounded until properties of the
form:

Poce [F1 U 5] ©)

and their numerical corresponding in the following shape:
P (1 U)] 3)
which can be read as:

“Is there a probability p >« 6 that state formula ¥ will hold until, inside the
time interval [fy,], state formula ¥, holds?”

and, respectively,

“What is the probability that state formula ¥; will hold until, inside the time
interval [#y, t1], state formula ¥, holds?”

where the state formulae ¥; and ¥, are to be intended as state labels.

The truth value of CSL probabilistic formulae of the type (2) is calculated through
the sequential probability ratio test [18]. This method requires to perform a sequence of
observations of the hypothesis to be tested. After each observation an error estimation
is made, taking into account the results of all the previous observations. When a given
error threshold is crossed, the hypothesis is either accepted or rejected. In our case,
performing an observation corresponds to testing the formula over an execution trace,
which is generated on demand. This kind of approach does not require to have an exact
estimation of the real probability to have the property verified: it only checks whether
the probability lies below or beyond the specified threshold. The algorithm implemented
to apply the sequential probability ratio test and to evaluate formulae of type (2) is re-
ported as pseudocode in Algorithm 1. The applied method computes estimations based
on three approximation parameters: « (the probability to get a false negative), S5 (the
probability to get a false positive), and (the semi-distance from 6 used to define the
indifference region). These parameters must be chosen making a trade-off between the
execution time and the answer confidence.

In order to obtain the approximate model checking of formulae of type (3), we rely
on a method presented in [5] and based on [10]. As in the case of formulae of type (2),
the value of properties is estimated by means of a series of observations on random
walks over the transition system. This time, however, the number of observations nec-
essary to obtain the desired approximation level is determined before observations are
made. This allows the user to make trade-offs between speed and approximation with

Algorithm 1 The algorithm used to perform the sequential probability ratio test.
input @, 3, 5, @ = P..g [¢]
Po—0+96
pL—60-96
logA « In %
logB < In %

nSamples « 0

d<0

while logB < d A d < logA do
generate a random walk o
if o = ¢ then

de—d+InZ
Po
else
de—d+Ini2
end if
nSamples < nSamples + 1
end while

if >« € {>, >} then
return d < logB

else
return d > logB

end if

a deeper insight on the effects of his choices. Two main parameters are used for error
estimation: the approximation parameter &, and the confidence parameter 6. It can be
shown that the evaluation of the given formula on O (s_lz -log %) random walks brings
to a probability estimation differing from the real value by less than & with probability
1 — 6. The number of random walks necessary to obtain the desired result is given by

the following formula:

nObservations = 4 - 5 “)

Algorithm 2 is used in Scows_amc for the estimation of type (3) formulae and it is in fact
the one presented in [5]. The idea on which the algorithm is based in order to compute
the probability estimation for P-- [¢] is to execute a fixed number of observations of the
truth value of the formula ¢, and then count the number of positive results. The prob-
ability that ¢ is true is given by the ratio between the number of positive observations
and the total number of observations.

A final observation is about what is involved in checking until path formulae. Algo-
rithm 3 is used to obtain the truth value for one of such formulae on a single simulation
trace of the model. Notice that the algorithm performs the checking of the formula as
the generation of the trace goes along. This is a solution which has a better average
execution time w.r.t. an approach in which a complete simulation trace is generated and
then checked against the path formula. This is possible thanks to the fact that the until
formula has time bounds, which allows us to stop the generation of a trace when “time
is up” or when a truth value for the formula has been found, even if the simulation could
proceed further.

Algorithm 2 The algorithm used in Scows_amc for the estimation of a CSL formula in
the form P-, [¢].
input 6, ¢
nObservations < 4log (%)/82
count «— 0
for i = 1 to nObservations do
generate a random walk o
if o = ¢ then
count < count + 1
end if
end for
return count/nObservations

Algorithm 3 Verification of a bounded until formula.

1: input @, B, 6, Scowsmodel, ¢ = @, UMMl p,
2: totalTime <« 0O
3: nextTime < 0
4: currState « initialState(Scowsmodel)
5: transitions < computeTransitions(currState)
6: while —isEmpty(transitions) do
7: (nextState, T) «— computeNextState(transitions)
8: nextTime < totalTime + T
9. if tmin < totalTime then
10: if verify(®,, currState, a, B, §) then
11: return true
12: else if —verify(®y, currState, a, B, §) then
13: return false
14: end if
15: else
16: if —verify(®,, currState, «, B, §) then
17: return false
18: else if tmin < nextTime A verify(®,, currState, a, 8, §) then
19: return true
20: end if
21: end if
22: currState «— nextState
23: totalTime < nextTime
24: if tmax < totalTime then
25: return false
26: end if
27: transitions « computeTransitions(currState)
28: if isEmpty(transitions) then
20: return verify(®,, currState, a, B, 6)

30: end if
31: end while
32: return false

4 Comparison with CTMC generation

To the best of our knowledge, the single other tool available for the quantitative model
checking of Scows is Scows_lts [2], which takes an approach orthogonal to that of
Scows_amc. Indeed Scows_lts performs probabilistic model checking by generating a
CTMC from a Scows model and then by using PRISM to obtain an assessment of the
model.

In what follows, we show a test for the performance of Scows_amc by comparing
it against Scows_lts. As a test-bed for the comparison we use a simple model of the
system of the dining philosophers, an instance of which is presented in Table 1 using the
Scows syntax accepted by Scows_amc. We model the problem using knives and forks
as cutlery, and coupling right-handed philosophers with left-handed ones, in order to
have an alternating pattern allowing each philosopher to eat with the preferred hand.
The rates rl, r2, r3, ... are defined as parameters of the model. This feature is meant
to foster sensitivity analysisis, and indeed Scows_lts can itself handle parametric rates.

The model in Table 1 is used in the experiment varying the number of dining
philosophers between 2 and 12, properly adapting the available cutlery. As we differ-
entiate between right-handed and left-handed philosophers, the resulting models will
include an even number of philosophers. The CSL formula against which all the mod-
els are checked is the following one:

P_, [true U fed = N]
meaning
“What is the probability that N philosophers are fed at time T?”.

The formula has been checked with parameters N and T varying between O and the
number of philosophers in the model, and, respectively, between 0 and 40 time units.
The settings for Scows_amc have been chosen so to obtain results with approximation
of 102 with confidence of 0.9, and hence are € = 0.01 and 6 = 0.1. This implies
that 52042 simulation traces need to be computed for each configuration of the CSL
formula. Actually, the number of computed traces is 52042 in total, as our tool uses an
optimization which allows us to reduce the number of simulation traces needed to obtain
the requested evaluations. Basically, we reuse the same trace for testing all the formulae
which we need to test before proceeding with the computation of a new simulation trace.

As said, Scows_amc is compared against Scows_lts, which actually exploits PRISM
for the analysis of CTMCs. The version of PRISM employed in our tests is the 3.3.1,
available for download from the PRISM web site [16]. The CSL property has been
checked against the relevant CTMCs by means of both the numerical (exact) and the
simulation-based (approximate) approaches available in PRISM. As the approximate
model checking used in PRISM is the same as the one used in Scows_amc, we have used
the same parameters also for PRISM. All the tests have been executed on a workstation
equipped with an Intel (R) Pentium (R) D 3.40 GHz CPU and 2 Gigabyte of RAM,
running Ubuntu Linux 9.10.

The results of the comparison are shown in Table 2, where we report the execution
time of Scows_amc against that of Scows_lts together with PRISM, when checking

//Agents

//RHphil: right-handed philosopher
RHphil (right#, left#) =
[fork] [knife] ((right#.take#?<fork>,r1) . (left#.take#?<knife>,r2) .
[eat#] [food#] ((eat#.eat#!<food#>,r3) | (eat#.eat#?<food#>,r4) .
((left#.release#!<knife>,r5) | (right#.release#!<fork>,r6))
)
s

//LHphil: left-handed philosopher
LHphil (right#, left#) =
[knife] [fork] ((right#.take#?<knife>,r7) . (left#.take#?<fork>,r8) .
[eat#] [food#] ((eat#.eat#!<food#>,r9) | (eat#.eat#?<food#>,rl10)
((left#.release#!<fork>,r11) | (right#.release#!<knife>,r12))
)
s

Cutlery(f#) = [p#] ((f#.take#!<p#>,r13)
| (f#.release#?<p#>,rl14).Cutlery(f#));

$
//initial process

[fork1#] [knifel#] [fork2#] [knife2#] [take#][release#] (
RHphil (fork1#, knifel#) | LHphil(knifel#, fork2#)
| RHphil(fork2#, knife2#) | LHphil(knife2#, forkl#)
| Cutlery(forkl#) | Cutlery(knifel#)
| Cutlery(fork2#) | Cutlery(knife2#)
)

$
//counter definitions
fed : [0 .. 4 1];

$

//cows actions <-> counter modifications

eat#.eat#<*>: fed < 4 : (fed’ = fed + 1);

Table 1. An instance of the dining philosophers system modelled in Scows.

Philosophers||State space size||Scows_Its PRISM Scows_amc
Exact |Approx.

2 20 0.9 1.9 95.5 395.6

4 249 3454 153.5| 1871.2 5537.8

6 3247|1523173.0{138749.0|73729.4 31109.4

8 - - - - 113603.0

10 - - - -l 309769.1

12 - - - -l 719487.9

Table 2. Computational time results for the example model checking (time is expressed in sec-
onds). The two columns for PRISM correspond to the numerical (exact) and simulation-based
(approximate) model checking approaches.

T
Scows_amc —e—

Scows_lts —8—

. 10° F
o F
= L
2 107
2 i
£ 10°
= F
s L
< 10°
4 :
; 10* -
e 3 L
£ 10
8 102 |
= F
é 1 [
£ 10 a2
o
U L
100
2

6

8

Number of philosophers

10

Fig. 1. Graph plotting execution time performances of the two approaches for model checking

Scows models.

the models against the CSL formula. The time taken to model check the CTMC with
PRISM is shown separately in order to highlight the actual time taken to produce the
relevant CTMC. The execution time results are plotted in Figure 1. Data for 8, 10, and
12 philosophers are not available for the case of CTMC-based model checking, as the
estimated computational times for the generation of the CTMCs was too high. Relative
to this issue, we notice here that Scows_lts undergoes a number of computationally
heavy optimizations mainly related to congruence checking of the states of the labelled
transition system the CTMC is based upon. These optimizations, which involve, e.g.,
verifying a-equivalence of Scows terms, are fundamental to keep the state-space as
small as possible and hence to limit the effects of memory usage.

Our comparison in Table 2 shows that when the number of states in the model is an-
ticipated to be at most in the order of hundreds, the most convenient approach to model
checking is to build a CTMC from the Scows model and use CTMC-based tools to
perform the desired performance measures (either exact or approximate). Conversely,
when the size of the state-space is estimated to be larger than few hundreds, the exe-
cution time of Scows_amc is expected to be lower. This execution speed comes at the
price of precision, which however can be adjusted as necessity dictates.

5 Concluding remarks

A tool for the approximate model checking of Scows was described. An application
of the tool was also presented, measuring its performances in terms of execution time.
The example clearly shows, whenever applicable, the advantage of approximated model
checking over its exact counter-part which involves the generation of the full state-space
of the term.

Acknowledgements This work has been partially sponsored by the project SENSORIA,
IST-2005-016004.

References

1. Adnan Aziz, Kumud Sanwal, Vigyan Singhal, and Robert Brayton. Model-checking
continous-time Markov chains. ACM Trans. on Computational Logic, 1(1):162-170, 2000.

2. Igor Cappello and Paola Quaglia. A Tool for Checking Probabilistic Properties of
COWS Services. Proceedings of TGC 2010. Tool available at http://disi.unitn.it/
~cappello/, 2010.

3. Rocco De Nicola, Diego Latella, Michele Loreti, and Mieke Massink. MarCaSPiS: a Marko-
vian Extension of a Calculus for Services. Electronic Notes in Theoretical Computer Science,
229(4):11-26, 2009.

4. Masahiro Fujita, Patrick C. McGeer, and Jerry C.-Y. Yang. Multi-Terminal Binary Decision
Diagrams: An efficient data structure for matrix representation. Formal Methods in System
Design, 10:149-169(21), 1997.

5. Thomas Hérault, Richard Lassaigne, Frédéric Magniette, and Sylvain Peyronnet. Approxi-
mate probabilistic model checking. In Proc. 5th Int. Conf. on Verification, Model Checking
and Abstract Interpretation (VM CAI 2004), volume 2937 of LNCS, pages 307-329. Springer,
2004.

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Thomas Hérault, Richard Lassaigne, and Sylvain Peyronnet. APMC 3.0: Approximate Ver-

ification of Discrete and Continuous Time Markov Chains. In Proc. 3rd Int. Conf. on Quan-
titative Evaluation of Systems, QEST 2006, pages 129-130. IEEE, 2006.

. Holger Hermanns, Ulrich Herzog, and Joost-Pieter Katoen. Process algebra for performance

evaluation. Theoretical Computer Science, 274(1-2):43 — 87, 2002.

. Holger Hermanns, Joachim Meyer-Kayser, and Markus Siegle. Multi terminal binary de-

cision diagrams to represent and analyse continuous time Markov chains. In B. Plateau,
W. Stewart, and M. Silva, editors, Proc. 3rd International Workshop on Numerical Solution
of Markov Chains (NSMC 1999), pages 188-207. Prensas Universitarias de Zaragoza, 1999.

. Jane Hillston. A compositional approach to performance modelling. Cambridge University

Press, New York, NY, USA, 1996.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal
of the American Statistical Association, 58(301):13-30, 1963.

Hakan L. Younes. Verification and Planning for Stochastic Processes with Asynchronous
Events. PhD thesis, Computer Science Department, Carnegie Mellon University, Pittsburgh,
Pennsylvania, 2005.

Georg Wolfgang Matthias Kuntz. Symbolic Semantics and Verification of Stochastic Pro-
cess Algebras. PhD thesis, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen,
March 2006.

Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM: Probabilistic Model
Checking for Performance and Reliability Analysis. ACM SIGMETRICS Performance Eval-
uation Review, 36(4):40-45, 2009.

Alessandro Lapadula, Rosario Pugliese, and Francesco Tiezzi. Calculus for Orchestration of
Web Services. In Proc. ESOP 2007, volume 4421 of LNCS, pages 33—47, 2007. Full version
available at http://rap.dsi.unifi.it/cows/.

Davide Prandi and Paola Quaglia. Stochastic COWS. In B.J. Krimer, K.-J. Lin, and
P. Narasimhan, editors, Proc. 5th International Conference on Service Oriented Computing,
ICSOC 2007, volume 4749 of LNCS, pages 245-256. Springer, 2007.

PRISM homepage. http://www.prismmodelchecker.org/.

Stefano Schivo. Statistical model checking of Web Services. PhD thesis, Int. Doctorate
School in Information and Communication Technologies, University of Trento, 2010.
Abraham Wald. Sequential tests of statistical hypotheses. The Annals of Mathematical
Statistics, 16(2):117-186, 1945.

