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Compositional Algorithms for LTL Synthesis*

Emmanuel Filiot, Nayiong Jin, and Jean-Frangois Raskin

CS, Université Libre de Bruxelles, Belgium

Abstract. In this paper, we provide two compositional algorithms tivesafety
games and apply them to provide compositional algorithmshfeLTL synthe-
sis problem. We have implemented those new compositiogati#hms, and we
demonstrate that they are able to handlelf@ill specifications that are orders of
magnitude larger than the specifications that can be trégtéue current state of
the art algorithms.

1 Introduction

Context and motivations The realizability problem is best seen as a game between
two players [14]. Given ahTL formula¢ and a partition of its atomic propositiott3
into I and O, Player1 starts by giving a subsety, C O of propositions!, Player2
responds by giving a subset of propositiens 1, then Playei giveso, and Playeg
responds by, and so on. This game lasts forever and the outcome of the tine
infinite wordw = (igUog) (i1 Uo1)(i2Uos) - - - € (27)«. Playerl wins if the resulting
infinite word w is a model of¢. The synthesis problem asks to produce a winning
strategy for Player 1 when thdL formula is realizable. ThETL realizability problem

is central when reasoning about specifications for reastistems and has been studied
starting from the end of the eighties with the seminal work&®hueli and Rosner [14],
and Abadi, Lamport and Wolper [1]. It has been shownx2EIME-C in [15]2 Despite
their high worst-case computation complexity, we belidaa it is possible to solveTL
realizability and synthesis problems in practice. We peddeere along recent research
efforts that have brought new algorithmic ideas to attackithportant problem.

Contributions In this paper, we propose two compositional algorithms teestihnelL TL
realizability and synthesis problems. Those algorithnhs oa previous works where
the LTL realizability problem for arLTL formula @ is reduced to the resolution of a

*Work supported by the projects(i) QUASIMODO (FP7- ICT-STREP-214755),
Quasimodo: “Quantitative System Properties in Model-BnikDesign of Embedded”,
htt p: // ww. quasi nodo. aau. dk/, (i7) GASICS (ESF-EUROCORES LogiCCC),
Gasics: “Games for Analysis and Synthesis of Interactivem@atational Systems”,
http://ww. ul b. ac. be/ di/ gasi cs/, (iii) Moves: “Fundamental Issues in Mod-
elling, Verification and Evolution of Software™tt p:// noves. ul b. ac. be, a PAI
program funded by the Federal Belgian Gouvernment, @md ECSPER (ANR-JCO09-
472677) and SFINCS (ANR-07-SESU-012), two projects sugpoby the French National
Research Agency.

! Technically, we could have started with Playerfor modelling reason it is conservative to
start with Playen.

2 Older pioneering works consider the realizability probleut for more expressive and com-
putationally intractable formalisms like MSO, see [19] fminters.



safety gamé&(P) [7] (a similar reduction was proposed independently in [ATd ap-
plied to synthesis of distributed controllers). We showettbiat if theLTL specification
has the form® = ¢1 A p2 A - -+ A ¢, 1.€., @ conjunction oETL sub-specifications, then
G(®) can be constructed and solved compositionally. The cortipnal algorithms are
able to handle formulas that are several pages long whildqre non-compositional
algorithms were limited to toy examples.

The new algorithms rely on the following nice property ofetgfgames: for any
safety gamé?, there exists a function that maps each position of Playerthid set of
all actions that are safe to play. We call this function thester plan of Player 1 inG.

It encompasses all the winning strategies of Player 1.if the master plan af then
we denote by+[A] the game&Z where the behavior of Player 1 is restricted/Ay

To compute the winning positions of a safety gaté = G! ® G2 defined as the
composition of two sub-games, we compute the master plarteddocal components
G andG? before composition. Letl; (resp.A») be the master plan fai! (resp.G?),
then the winning positions it:'? are the same as the winning positiongih[A;] ®
G?[As]. We develop a backward and a forward algorithms that exiiitproperty.

We have implemented the two compositional algorithms intogyototypeAcacia
and we provide an empirical evaluation of their performarme classical benchmarks
and on a realistic case study taken from the IBMeBase tutorial[9]. This implemen-
tation is rather used to test the new concepts and to see legvibéihave for scalability
test cases than to provide an advanced and deeply optiminéatype. In particular,
our implementation is in Perl (as Lily [10]) and does not usd13.

Related works The first solution [14] to th&TL realizability and synthesis problem
was based on Safra’s procedure for the determinizatioruchBautomata [16].

Following [12], the method proposed in our paper can be abiiSafraless” ap-
proach to the realizability and synthesisldiL as it avoids the determinization (based
on the Safra’s procedure) of the automaton obtained fronLiheformula. Our ap-
proach, as the one proposed in [7], relies on a reductionfébysgames.

In [12], Kupferman and Vardi proposed the first Safralessaagh that reduces the
LTL realizability problem to Buichi games, which has been imm@ated in the todLily
[10]. In [13], a compositional approach k3 L realizability and synthesis is proposed.
Their algorithm is based on a Safraless approach that transfthe synthesis problem
into a Buchi and not a safety game as in our case. There is tinnike the mas-
ter plan for Blichi games. To the best of our knowledge, takgjorithm has not been
implemented.

In [3], an algorithm for the realizability problem for a fragnt of LTL, known as
GR(1), is presented and evaluated on the case study of [9]. Théfispgon into the
GR(1) fragment for this case study is not trivial to obtain and s® gfain in term of
complexity? comes with a cost in term of expressing the problem in thenfiag. Our
approach is different as we want to consider the EIL logic. In our opinion, it is
important to target fulLTL as it often allows for writing more declarative and more
natural specifications.

In [18], the authors also considefL formulas of the form? = ¢1 A ¢a A -+ A
¢n. They propose an algorithm to construct compositionallyagty game from such
LTL specifications. Their algorithm uses a variant of Safrateiheinization procedure
and additionally tries to detect local parity games thateayeivalent to safety games

3 GR(1) has a better worst-case complexity than TIL.



(because the associatell. subformulais a safety property). For efficiently solving th
entire game, they use BDDs.

In [11], a compositional algorithm is proposed for reasgrabout network of com-
ponents to control under partial observability. The cldgzroperties that they consider
is safety properties and nbtL properties. They propose a backward algorithm and no
forward algorithm.

The implementation supporting the approaches descrijé8]and [3] uses BDDs
while our toolAcacia does not. While our algorithms could have been implemented
with BDDs, we deliberately decided not to use them for twosoee. First, to fairly
compare our Safraless approach with the one proposed iftimplemented ihily,
we needed to exclude BDDs &8y does not use them. Second, several recent works
on the efficient implementation of decision problems foloauéhta shown that antichain
based algorithms may outperform by several order of mageiBDD implementations,
see [5, 6] for more detalils.

2 Safety Games

In this section, we provide a definition of safety games thatell-suited to support our
compositional methods detailed in the following sectiddgyer 1 will play the role

of the system while Player 2 will play the role of the enviramh This is why, as the
reader will see, our definition of games is asymmetric.

Turn-based gamesA turn-based game on a finite set of movebloves = Moves; &
Moves, such thatMoves, # @ is a tupleG = (51, 52, [1, A1, As) where: (i) Sy
is the set of Player 1 positionS; is the set of Player 2 position§; N .S, = @, we
let S = Sy W Sy, (i) Ih : S; — 2MO¥esi js a function that assigns to each position
of Player 1 the subset of moves that are available in thatiposiFor Player 2, we
assume that all the moveslfoves, are available in all the positionse Ss. (iii) A; :
S; x Moves; — Ss is a partial function, defined on paifs, m) when Playeil chooses
m € I(s), that mapgs, m) to the position reached from A, : Sy x Moves, — S
is a function that mapés, m) to the state reached froemwhen Player 2 chooses.

We define the partial functiord\ as the union of the partial functiod; and the
function A,. Unless stated otherwise, we fix for the sequel of this seaiturn-based
gameG = (51, S, I, A1, As) on movesdMoves = Moves; W Movess;.

Given a functiond : S; — 2Moves1 therestriction of G by A is the gameZ/[A] =
(S1, Sy, T, Ay, As) where for alls € Sy, ﬁ(s) =T1(s)NA(s) andA; equalsA; on

the domain restricted to the paifés, m) | s € S; Am € ﬁ(s)} i.e.,G[A] is asG but
with the moves of Player 1 restricted by

Rules of the gameThe game orG is played in rounds and generates a finite or an
infinite sequence of positions that we calplay. In the initial round, the game is in
some position, say,, and we assume that Player 1 owns that position. Thé&n(if,)

is non-empty Player 1 chooses a moxg € I7(sg), and the game evolves to state
s1 = Ai(so, mo), otherwise the game stops. If the game does not stop thereitie n
round starts irs;. Player 2 chooses a mowe; € Moves, and the game proceeds to
positions, = As(s1,m1). The game proceeds accordingly either for an infinite number
of rounds or it stops when a positiane S; is reached such thdf; (s) = &. Player 1
wins if the game does not stop otherwise Player 2 wins (safetyging condition). Our



variant of safety games are thus zero-sum games as usuartioutar, the positions
s € 57 such thatl'y (s) # @ are the safe positions of Player 1.

Plays and strategiesNVe now define formally the notions of play, strategy, outcarhe
a strategy and winning strategies. Given a sequeneeps;y ... s, ... € S* U SY, we
denote byjp| its length (which is equal ta if p is infinite). We denote birst(p) the
first element ofy, and if p is finite, we denote blast(p) its last element.

A playin G is a finite or infinite sequence of positiops= sgsy ... S, ... € S*USY
such that (4) if p is finite thenlast(p) € S; andI’ (last(p)) = @; (ii) p is consistent
with the moves and transitions 6f i.e., for alli, 0 < i < |p|, we have that;;1 =
A(s;,m) for somem € I'(s;) if s € S1, orm € Moves; if s € S2.We denote by
Plays(G) the set of plays irt:.

Given a set of finite or infinite sequencésC S* U S*, we write Pref;(L), j €
{1,2}, for the set of prefixes of sequencesiinthat end up in a position of Player
j. Let L be such thatlL ¢ Moves. A strategy for Player 1 in G is a function); :
Pref; (Plays(G)) — Moves; U{_L} which is consistent with the set of available moves
i.e., for allp € Pref;(Plays(G)), we have that(i) \1(p) € I'(last(p)) U {L}, and
(1) M(p) = L onlyif I (last(p)) = @. A strategy for Player 2 in G is a function
X2 : Prefy(Plays(G)) — Moves,. Note that the codomain of a Player 2’s strategy
never containg_ as all the moves of Player 2 are allowed at any position, vassiiee
moves of Playet are restricted by? .

Aplay p = s¢si...s,... € Plays(G) is compatiblewith a strategy\; of Player;

(j S {1, 2}), ifforall i,0 <i < |p|, if s; € Sj thensi+1 = Aj(si, )\j(SOSl .. 57))We
denote byoutcome(G, s, \;) the subset of plays iRlays(G) that are compatible with
the strategy\; of Playerj, and that start irs. We denote byutcome(G, \;) the set
U,cg 0utcome(G, s, A;), and byoutcome(G, s, A1, A2) the unique play that is com-
patible with both\; and )., and starts irs.

Thewinning plays for Player 1 are those that are infinite Mgin, (G) = Plays(G)N
S« or equivalently those that never reach an unsafe positian S; of Player 1
wherel| (s) = @. A strategy); is winning in G from s;y; iff outcome(G, sini, A1) C
Win;(G). A game with such a winning condition in mind is calleafety game. We
denote byWinPos; (G) the subset of positions € S in G for which there exists\;
such thabutcome(G, s, A1) € Winy(G).

Games with initial positionA safety game with initial positionis a pair(G, si,) where
sini € S1 U Sy is a position of the game structu€écalled theinitial position. The set
of plays in(G, sin) are the plays of7 starting insiy;, i.e. Plays(G, sini) = Plays(G) N
sini - (S* U S¥). All the previous notions carry over to games with initiakgimns.

Solving safety gamed'he classical fixpoint algorithm to solve safety games setie
iterating the following monotone operator over sets of gaostions. LetX C S;W.S55:

CPre(X)={s€S1|ImeT1(s), A1(s,m)eX }U{s€Ss |Vm € Movesy, As(s,m)eX }

i.e.,CPre;(X) contains all the positions € S; from which Player 1 can forc& in
one step, and all the positiosse So where Player 2 cannot avoid in one step. Now,
we define the following sequence of subsets of positions:

Wo = {S €5 | Fl(s) 75 @} U Ss W, =W;_1 N CPre(Wi_l) forallz > 1
Denote byiV? the fixpoint of this sequence. It is well known tHat* = WinPos; (G).



Master plan Let A; : S; — 2Moves: pe defined as follows: for all € Sy, A;(s) =
{m € I'(s) | Ai(s,m) € W} ie., A;(s) contains all the moves that Playkican
play in s in order to win the safety game. We call| the master plan of Player 1 and
we write it MP(G). The following lemma states thddP(G) can be interpreted as a
compact representation of all the winning strategies ofétla in the gamé:

Lemma 1. For all strategies \; of Player 1 in G, for all s € S, A iswinning in G
from s iff \; isastrategy in (G[MP(G)], s) and A1 (s) #.L.

Now that we have defined and characterized the notion of mpkta, we show
that we can compute directly the master plan associatedangtime using a variant of
the CPre operator and sequengE. The variant ofCPre considers the effect of some

Player 1's move followed by some Player 2's move. Gétre - (S — 2Movesi) _,
(81 — 2Movesi) he defined as follows. For adl€ S5, let:

CPre(A)(s) = {m € A(s) | Vm' € Moves, : A(Ay(Ay(s,m),m’)) £ &}

Consider the following sequence of functionk; = Iy, andA; = CPre(A;_1), i >

1. This sequence stabilizes after at mox{S|) iterations and we denote hy* the
function on which the sequence stabilizes. Clearly, theezaln which the sequence
stabilizes corresponds exactly to the master pla@:of

Theorem 1. A% = MP(G).

3 From LTL realizability to safety games

In this section, after recalling the formal definition of thEL realizability problem, we
recall the essential results of [17, 7] where it is shown hovetluce th&TL realizabil-
ity problem to a safety game problem.

Linear Temporal Logic (TL) The formulas ofLTL are defined over a set of atomic
propositionsP. The syntax is givenby) = p| oV | ¢ | X¢ | pUP withp € P.
The notationgrue, false, ¢1 A ¢, 0@ andl¢ are defined as usualTL formulase are
interpreted on infinite words = ogoy05 ... € (2F)“ via a satisfaction relatiom = ¢
inductively defined as follows(i) w |= pif p € oo, (ii) w = ¢1 V @2 if w = ¢y OF
w = ¢, (1i1) w = ¢ if w lE ¢, (v) w = Xoif o102... = ¢, and(v) w = @1 Ups

if there isn > 0 such thav,,0,,41 ... = ¢ andforall0 < i < n, c;0:41... F ¢1.

LTL Realizability and SynthesisLet P be a finite set of propositions. Unless other-
wise stated, we partitiof into I the set ofinput signals controlled by Player 2 (the
environment), and the set ofoutput signals controlled by Player 1 (the controller).
We let X = 2°, ¥; = 2/ and ¥, = 2°. The realizability problem is best seen
as a game. The players play according to strategies. A gyrdébe Player 1 is a (to-
tal) mapping\; : (Yo X1)* — Xo while a strategy for Player 2 is a (total) mapping
Ao Yo (X1 X0)* — Xr. The outcome of\; and )\, is the wordoutcome(Ay, o) =
(00 @] io)(Ol @] il) ... such that for allj > 0, 0j = A1 (Ooio .. .Ojflijfl) andij =

X2 (00t0 . .. 0j—1ij-105). In particular,og = X\ (e) andip = A2(0p). Given anLTL
formula ¢, therealizability problem is to decide whether there exists a strategyof
Player 1 such that for all strategigs of Player 2,outcome(A1, \2) = ¢. If such a
strategy exists, we say that the specificatfois realizable. If an LTL specification is
realizable, there exists a finite-state strategy thatzesiit [14]. Thesynthesis problem

is to find a finite-state strategy that realizes tfie& specification.
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Fig. 1. UCW and safety game for the formula= O(r — X {g)

Universal CoBichi automata LTL formulas are associated witlr n-based automaton
A overX; andXo. A turn-based automaton is a tupde= (X7, Yo, Qr1, Qo, Qini, @,
0r,90) whereQ, Qo are finite sets of input and output states respectivgly,C Qo
is the set of initial statesy C Q;UQo is the set of final states, and C Q; x X1 xQo,
0o C Qo x Yo x Q are the input and output transition relations respectivlpg we
assume that the automata aoenplete, i.e. forallt € {I,0},allq € Q; and allo € X},
0t(q,0) # @. Turn-based automaté run on wordsw = (0p U ip)(01 Uiy)--- € K¢
as follows: arun onw is awordp = pop1 - -+ € (QoQ1)“ such thapy € Qini and for
aII] >0, (/)2j,0j,/)2j+1) S 50 and(p2j+1,ij,p2j+2) € 0r. Let K € N. We consider
the universal co-Biichi (resp(-co-Biichi) accepting condition, for which a woudis
accepted iff any run ow visits finitely many (resp. at mogt’) accepting states. With
the K'-co-Buchi interpretation in mind, we say th@, K) is a universal’-co-Blchi
turn-based automaton. We denote/y(A) and L, x (A) the languages accepted by
A with these two accepting conditions resp. Turn-based aat@mwith universal co-
Buchi andK-co-Buchi acceptance conditions are denotedJBW and UK CW. As
they define set of infinite words, they can be taken as inputdaealizability problem.
Itis known that for any. TL formula one can construct an equival&i@w A, (pos-
sibly exponentially larger) [20]. Fig. 1(a) representd@W equivalent to the formula
O(r — X(0g)), wherer is an input signal ang is an output signal. States ¢fo are
denoted by circles while states@f are denoted by squares. The transitions on missing
letters are going to an additional sink non-accepting dtetewe do not represent for
the sake of readability. If a requesis never granted, then a run will visit the accepting
stateg, infinitely often.
The realizability problem can be reduced frord@W to aUK CW specification:

Theorem 2 ([17,7])Let AbeaUCW over X, Xo withn statesand K = 2n(n?"+2+
1). Then A isrealizableiff (A, K) isrealizable.

Let us recall the intuition behind the correctness of th&le First, if the specification
(A, K) is realizable then clearly the specificatidnis also realizable a ¢ x(A) C



Lyc(A). Second, if the specificatioA is realizable then we know that there exists a
finite memory strategy\; that realizes it [14]. Any run on any outcome »f Vvisits
accepting states only a number of time equaktowhich is bounded by the size of the
strategy. So\; not only realizes the specificatiohbut a stronger specificatiqal, K).

Reduction to safety gamé&learly UK CW specifications are safety properties. The re-
duction to a safety game relies on the fact tiKtCW can easily be made deterministic.
Given aUK CW A, the game~/( A, K) is constructed via a subset construction extended
with counters for each statg that count (up td< + 1) the maximal number of accept-
ing states which have been visited by runs ending up \We set the counter of a state
g to —1 when no run on the prefix read so far ends ug.iifhe set of game positions
S, for Playerl is therefore the set of functiofs : Qo to{—1,..., K + 1}. The set

Sy is similarly defined as the functiods : Q; to{—1,..., K + 1}. The set of moves
of both players are the letters they can chooseMaes; = Yo andMoves, = ;.
The set of available moves in a position are defined via a sgocdunctiorsucc such
that for all ' € S; ando € Moves;,

succ(F,o) = qg+— max{min(K + 1, F(p) + (g € «)) | ¢ € §(p,0), F(p) # —1}

wheremax @ = —1, and(q € «) = 1if ¢ is in «, and0 otherwise. An action
o1 € Moves; is available for Playet in a positionF’ € S; if the counters off” and
succ(F, o) do not exceeds. More formally,c € I'j(F) iff for all p € Qo and all
q € Qr, F(p) < K andsucc(F,o)(¢q) < K. The transition functiom; is defined by
Ay (F,0) = succ(F,o) forall F € Sy and allo € I'i(s). The functionA is defined
by As(F,0) = succ(F,o) forall F € S; and allo € Moves,. Finally, we start the
game in the initial positiorf, € S; such that for aly € Qo, F(q) = —1if ¢ is not
initial, andO if ¢ is initial but not final, and if ¢ is initial and final.

Associating a safety game with &ML formula¢ is done as follows(1) construct a
UCW A4, equivalent top, (2) constructG(A,, K), denoted a&/(vy, K) in the sequel,
whereK = 2n(n?"*2 + 1) andn is the number of states of;;.

Incremental algorithm In practice, for checking the existence of a winning strafeg
Player 1 in the safety game, we rely on an incremental apprda all K, K5 - 0 <

K; < Ko, if Player1 can winG(A, K;), then she can wid/(A, K»). This is because
Lye i, (A) C Lye k,(A) C L,(A). Therefore we can test the existence of strategies
forincreasing values ak . In all our examples (see Section 6), the smallé$br which
Player 1 can win is very small (less than 5).

Example Fig. 1(b) represents the safety game (for= 1) associated with the formula
O(r — XQg). Positions are pairs of states of thiCW with their counter values.

Player 1’s positions are denoted by circles while Playem®Ssitions are denoted by
squares. The unavailable move of Player 1 from positign0) is denoted by a dashed
arrow. It goes to a position where a counter exceeds the V&@luehe master plan of

the game corresponds in this case to all the moves attach@ditoarrows for Player

1's positions. Indeed Player 1 wins the game iff she nevéoda the dashed arrow.

Antichain-based symbolic algorithnin practice, we do not construct the gagieA, K)
explicitly, as it may be too large. However it has a nice dutethat can be exploited
for defining an efficient symbolic implementation for the qmutation of the sequence
of W;’s defined in Section 2. The main idea is to consider an ordesim the posi-
tions in G(A, K). Define the relationkC F; x F; U Fo x Fo by FF < F' iff Vg,
F(q) < F'(q). Itis clear that= is a partial order. Intuitively, if Player 1 can win from



I’ then she can also win from all < F”’, since she has seen less accepting states in
I thaninF’. The consequence of this observation is that all thel$gtare downward
closed for the relatiors. It is shown in [7] that consequently all the computations ca
be done efficiently by manipulating onty-maximal elements.

4 Compositional safety games

In this section, we define compositional safety games andldptwo abstract compo-
sitional algorithms to solve such games.

Composition of safety gamesNe now consider products of safety games. GEt

i € {1,...,n}, ben safety game&:® = (Si,Si, I}, A}, AL) defined on the same
sets of move#oves = Moves; & Moves,. Their product, denoted byi=7G", is the
safety game&r® = (S, S, I'?, AP, AS)* defined as follows:

- 8P =51 xS8Fx- xSy, j=1,2

—fors=(s',8%,...,8") € ¥, I'P(s) = [M(s")NT2(s?)N---NIP(s™);

—forj e {1,2} ands = (s',s%,...,s") € 57, letm e I'P(s)if j = 1 or
m € Moves, if j = 2. ThenA?(s) = (t',¢%,...,t"), wheret’ = Ai(s’,m) for
alli e {1,2,...,n};

Backward compositional reasoning/Me now define a backward compositional algo-
rithm to solve the safety gan@®. The correctness of this algorithm is justified by the
following lemmas. For readability, we express the propsrfor composed games de-
fined from two components. All the properties generalizentpraumber of components.
The first part of the lemma states that to compute the mastargila composition, we
can first reduce each component toldsal master plan. The second part of the lemma
states that the master plan of a component is the master ptae ocomponent where

the choices of Player 1 has been restricted by one appiicatitheC/PFa operator.

Lemma 2. (a) Let G2 = G' @ G2, let A; = MP(G*) and Ay = MP(G?) then
MP(G'?) = MP(G'[A1] ® G?[A3))

(b) For any game G, MP(G)=MP(G[CPre(I71)]).

LetA : S x 2 x ... x SP — 2Moves e |etr;(A) the function with domain
S¢ and codomairgMoves: such that for alls € Si, m;(A)(s) is the set of moves al-
lowed by A in one tuple(s!,s?,...,s") such thats’ = s. Formally, 7;(A)(s) =
U{A(sY, 82, ..,8™) | (sh,82,...,8") € SP, s° = s}. Given two functionsA; :
S, — 2Movest gnd A, ¢ S; — 2Movess we defined; N Ay as the function on do-
main S; such that for alls € S1: A3 N As(s) = A1(s) N Az(s). Given two functions
Ay S — gMoves, andA; : Sy — 2Move51' we define(/h X /12) 051 X Sy — gMoves,
as(/ll X /12)(81, 82) = Al(sl) N AQ(SQ).

Based on Lemma 2, we propose the following compositionarélym to compute
the master plan of a safety game defined as the compositioocaf $afety games.
First, compute locally the master plans of the componertienTcompose the local

master plans and apply one time {GEre operator to this composition. This applica-
tion of CPre compute a new functiorl that contains information about the one-step

— =

4 Clearly, the product operation is associative up to isomisrp.



inconsistencies between local master plans. Project batkenlocal components the
information gained by the functior, and iterate. This is formalized in Algorithm 1
whose correctness is asserted by Theorem 3.

Algorithm 1: Backward composition Algorithm 2 : Forward composition
Data G¥ =G' @ G* @ - ® G" Data G® =G'®G*®--- @ G"
AT, A" = MPReach(G", si), 1 < i < m;
repeat A A = MPgreach (G [A']®- - - @G™[A™],
A= MP(G i (A)), 1 < i < m; (inis Sinis - - - » Sini))
A:=CPre(An (A x --- x A™)) return A

until A does not change;

return A

Theorem 3. The value A returned by Algorithm 1 is equal to MP(G®).

Forward compositional reasoningWhen solving safety games, we may be interested
only in computing winning strategies for a fixed startingigos, saysi,;. In this case,
the value of the master plan is not useful for positions thatreot reachable when
playing winning strategies fromy;. So, we are interested in computing a master plan
only for the winning andeachablepositions. Given a gam& and a state;,;, we denote
by Reach(G, sin) the subset of positions that are reachable fegpin G i.e., the states
s’ such that there exists a finite sequenge, . .. s, with s = sini, s, = s’ and for
all 7,0 < i < n, there existsn € I (s;) UMoves, such thats; ;1 = A(s;, m). The
master plan of reachable positionsfor (G, sini), denoted byMPreach (G, sini) is defined
forall s € S as follows:

MPReach(G7 Sini)(S) = { gP(G)(S) gtﬁeivl\:;g:(:h(G[A]’ S|n|)

The following lemma shows that for a game defined compositigrits master plan
can also be defined compositionally. For readability we espthe lemma only for two
components but, as for the previous lemmas, it extends toamper of components:
Lemma 3. Let A; = MPRreach(G*, i) and Ay = MPRreach (G?, 52.).

> 2ini »2ini

MPReaCh(Gl ® GQ? (Silniv Sﬁu)) = MPReaCh(Gl [Al] ® G2 [AQ]’ (Silni’ S%‘li))

As composition of safety games is an associative operamcam use variants of
the algorithm above where we first compose some of the cormi@aad compute their
master plan of reachable positions before doing the glatraposition.

To efficiently compute the master plan of reachable positimirea game~, we use
the OTFUR algorithm of [4]. We say that a position € S is unsafeif I1(s) = &,
or all its successors are unsafe. A positioa S, is unsafe if one of its successors is
unsafe. The algorithm explores the state space by startingthe initial state in a for-
ward fashion. When sufficient information is known aboutshecessors of a position
s, it back-propagates the unsafe information.tét the end of the algorithm, the master
plan which allows all moves that lead to a safe position IS8XMPreach (G, sini). Fig.

2 illustrates the result of th@TFUR algorithms applied on the product of two safety
games(, G over the possible moves, o,, 03 for Playerl andiy, io for Player2.
We assume that, , G» contains only winning actions, i.&; = G;[MP(G,)] for all

1 = 1,2. The master plan of reachable statesd@ar® G2 corresponds to plain arrows.



11,12

il,ig il,iQ
c A o A c.c @
02,03 1o, 02 01 o 101
Y
B B’ B, B’
. . 1 N
01 22 02 12 //I \\ .
i1 .’ ' V22
. 02 |
il 02 & 02 // \\ !
7 /
@
GameG, GameG., (G1 ® G2)[MPReach (G1 @ G2)]

Fig. 2. Two games and their common master plan of reachable states

Dashed arrows are those which have been traversed durir@nihReR algorithm but
have been removed due to backpropagation of unsafe infamm&rom nodg A, A’)
the moveos is not a common move, therefasg is not available in the product as well.
Howevero, is available in both games and leadstaand C’ respectively. Similarly,
o1 is available in both games and goes i B’). From(B, B’) one can reachD, D')

by i; but from (D, D’) there is no common action. Therefgi®@, D’) is unsafe. Since
one of the successor 0B, B’) is unsafe andB, B’) is owned by Playe?, (B, B’) is
declared to be unsafe as well. All the remaining moves arawgnin theG; ® G,, as
they are winning both id7; andGs.

Remark 1. It should be noted that eactt in Alg. 2 can be replaced by the futiaster
plan without changing the output of the forward algorithm. Indei is easy to see
thatReach(G[MPreach (G, sini)], sini) = Reach(G[MP(G)], sini). S0, we can mix the
backward and forward algorithms. For instance, we can coelpually the master plan
of eachG? using the backward algorithm of [7], and then check globalizability
using theOTFUR algorithm.

5 Compositional LTL Synthesis and Dropping Assumptions

In this section, we show how to define compositionally thesadjame associated with
anLTL formula when this formula is given as a conjunction of subfolas i.e.;)) =
o1 N pa A -+ A ¢, Assume from now on that we have fixed soiiec N. We first
construct for each subformuja the correspondingK CW A, on the alphabet af°,
and their associated safety gand&®;, K'). The game&Z (), K') for the conjunction)
is isomorphic to the gamei=1G(¢;, K).
To establish this result, we rely on a notion of product atlédwel of turn-based
automata. Letd;, = (X, Xo,Q%, Q4. ¢, o', 8%, 0) for i € {1,2} be two turn-
based automata, then their produtt ® A, is the turn-based automaton defined as
(1,20, Q1uQ%2,Q5WR%, QLiwQE, a1 Was, 61 W7, 64 Wé2). As we use univer-
sal interpretation i.e., we require all runs to respect teepting condition, it is clear
5 Itis necessary to keep the entire alphabet when considéringubformulas to ensure proper
definition of the product of games that asks for componerigelon the same set of moves.



that executing thel; ® A, on a wordw is equivalent to execute boty, and A, on this
word. Sow is accepted by the product iff it is accepted by each of theraata.

Proposition 1. Let A; and A, betwo UCW on the alphabet Xy W X5, and K € N: (4)
Luc(Al ®A2) - Lu,c(Al)mLuc(AQ)y (”) Luc,K(Al ®A2) - Luc,K(Al)mLuc,K(AQ)

As the state space and transition relationdaf® A is the disjunct union of the
space spaces and transition relationslpfand A,, the determinization ofl; ® A, for
a fixed K € N is equivalent to the synchronized product of the determions ofA,
and A, for that K, and so we get the following theorem.

Theorem 4. Let) = ¢1AgaA- - -Agn, K € N, G(3, K) isisomorphicto @ =7 G(¢;, K).

Even if it is natural to write largeTL specifications as conjunctions of subfor-
mulas, it is also sometimes convenient to write specificatithat are of the form
(NiZ] ¥i) — ( ;Z" ;) Wherey,;’s formalize a set of assumptions made on the en-
vironment (Player 2) and;'s formalize a set of guarantees that the system (Player
1) must enforce. In this case, we rewrite the formula intoltdgecal equivalent for-

mula A7ZT" ((AiZ} ©i) — ¢;) which is a conjunction ofTL formulas as needed for
the compositional construction described above. As ldgigaivalence is maintained,
realizability is maintained as well.

Unfortunately, this formula is larger than the originalrfarla as all the: assump-
tions are duplicated for all the guarantees. But, the subformulg§._} ©;) — ¢;,j €
{1,...,m} are usually such that to guarantgg Player 1 does not need all the assump-
tions on the left of the implication. It is thus tempting tarreve those assumptions that
arelocally unnecessary in order to get smaller local formulas. In practve apply
the following rule. Lety; A v — ¢ be a local formula such that, and¢ do not
share common propositions then we replagen vy — ¢ by ¢; — ¢. This simpli-
fication is correct in the following sense: if the formula aiped after dropping some
assumptions in local formulas is realizable then the oaliormula is also realizable.
Further, a Player 1's strategy to win the game defined by thelgied formula is also
a Player 1’s strategy to win the game defined by the originahéga. This is justified
by the fact that the new formula logically implies the origiiformulai.e; — ¢ log-
ically impliesi; A 12 — ¢. However, this heuristic is not complete because the local
master plans may be more restrictive than necessary as aiyléarget about global
assumptions that exist in the original formula. We illutgrthis on two examples.

LetI = {req}, O = {grant} and¢ = (d0req) — OOgrant. In this formula, the
assumptiofiJOreq is not relevant to the guaranteg>grant. Realizinge is thus equiv-
alent to realizingJ¢grant. However, the set of strategies realizings not preserved
when dropping the assumption. Indeed, the strategy thptitaiagrant after eachreq
realizesp but it does not realizel{grant, as this strategy relies on the behavior of the
environment. Thus dropping assumption is weaker than tiemof open implication
of [8], which requires that the strategies realizihbave to realizélOgrant.

As illustrated by the previous example, dropping assumpdimes not preserve the
set of strategies that realize the formula. Therefore, iit loa the case that a realiz-
able formula cannot be shown realizable with our compasifi@lgorithm after lo-
cally dropping assumptions. In addition, it can be the case & formula becomes
unrealizable after dropping local assumptions. Consideinfstance the formula =



O0req — (O0grant A O(X(—grant) U req)). This formula is realizable, for in-
stance by the strategy which outputgrant iff the environment signal at the previ-
ous tick was aeq. Other strategies realize this formula, like those whicangr re-
quest every: req signal @ is fixed), but all the strategies that realizdave to exploit
the behavior of the environment. Thus there is no strateglyzirg the conjunction of
Odgrant and ¢. Consequently, when we decompaeséto (IOreq — [I{grant and
O0req — O(X (—grant) U req), we must keeflOreq in the two formulas.

Nevertheless, in our experiments, the dropping assumbéaristic is very effective
and except for one example, it always maintaiosipositional realizability.

Symbolic compositional synthesis with antichainrs mentioned in Sec. 3, we do not
construct the games explicitely, but solve them on-theflgdmpactly representing by
antichains the set of positions manipulated during the fixpaomputation. In partic-
ular, suppose that we are given a conjunction of formglas ¢-, and somex € N.
Forall: € {1,2}, we first solve the subgant®(¢;, K') by using the backward fixpoint
computation of [7] and get the downward closed set of winmpngitions (for Player
1), represented by antichains. Some winning positions wreed by Player 1 (resp.
Player 2), let this set bgl; (resp.|W5), the downward closure of an antichdiry
(resp.W,). ThenW; andWW, also provide a compact representatioM (G (¢;, K)).
Indeed, letF” be a Playet’s position inG(¢;, K), thenMP(G(¢;, K))(F) is empty if
F ¢|W; (the downward closure dfi’;), otherwise is the set of movese Yo such
thatsucc(F, o) €|Ws. This symbolic representation is used in practice for thevéod
and backward compositional algorithms (Algorithms 1 and Sexc. 4).

Moreover, the partial order on game positions can also beieg by the OTFUR
algorithm of Section 4 used in the forward compositionabatpm. Indeed letF" be
some Player 1's position of some ga@ép, k). Clearly, F is loosing (for Player 1 the
controller) iff all its minimal successors are loosing. Wet the dual of this property
when F' is a position owned by Player 2 (the environment). In thiseddss loosing
(for the controller) iff one of its maximal successors isdow. Therefore to decide
whether a position is loosing, depending on whether it isrdarotler or an environment
position, we have to visit its minimal or its maximal suca@ssonly. In the OFTUR
algorithm, this is done by adding to the waiting list only tadges(s’, s”) such that
s’ is a minimal (or maximal) successor gf In the case of a position owned by the
controller, we can do even better. Indeed, we can add onlyn@nanal successor in
the waiting list at a time. If it turns out that this successoloosing, we add another
minimal successor. Among the minimal successors, the ehisidone as follows: we
prefer to add an edgg’, s”) such thats” has already been visited. Indeed, this poten-
tially avoids unnecessary developments of new parts of #mey Note however that
this optimization cannot be used to compute the master glesachable positions, but
only some winning strategy, as some parts of the game mayenexored. In the ex-
periments, we use the backward algorithm to solve the loaaleg and the optimized
forward algorithm to solve the global game.

6 Experimental evaluation

The compositional algorithms have been implemented in ootop/pe ACACIA [7].
The performances are evaluated on the examples providadhetool LiLy and on a
larger specification of a buffer controller inspirated bg tBM rulebase tutorial [9].



Lily’s test cases and parametric examplé/e compare several methods on the real-
izable examples provided withily and on the parametric example of [7]. In those

j=m

benchmarks, the formulgs are of the fofC! v; — im0 where \'=" y; are a
set ofassumptions and /\jZ"‘ ¢; are a set ofuarantees. We decompose such formula

into several piece§\;_| ¥;) — ¢;, as described in the previous section.

We compare four synthesis methods (Table 1). The first is theotithic backward
method of [7]. The second is the monolithic forward methosdabon the OTFUR al-
gorithm optimized with antichains. The third method is a positional method where
the local games are solved with the backward algorithm céfid] the global game with
the forward algorithm OTFUR (optimized with antichainsidlly, the last method is
the third method where we use the dropping assumption hieufi®r each method,
we give the size of the automata (in the case of compositiowdhods it is the sum
of the sizes of every local automata), the time to consthet, the time to check for
realizability Check Time), and the total time. The values in bold face are the best tota
times among all methods.

On small examples, we can see that the benefit of the commuaitapproach is
not big (and in some cases the monolithic approach is eveerhdiowever for bigger
formulas (demo 3.2 to 3.7), decomposing the formulas deessthe time to construct
the automata, and the total realizability time is therefurter.

Now, we evaluate the benefit of dropping assumptions (lastgof columns). For
those experiments, we only consider the subset of formalastiich this heuristic can
be applied. Our dropping heuristic does not work for demoi9lascomes unrealizable
after the application of dropping assumptions. As we sedéntable, the benefit of
dropping assumptions is important and is growing with tize sif the formulas that
are considered. The compositional algorithms outperfdrenrhonolithic ones when
combined with dropping assumptions. They also show praifizebetter scalability.
This is confirmed by our next benchmark.

A realistic case studyNow, we consider a set of realistic formulas (Table 2). Atish
formulas are out of reach of the monolithic approach as everBtichi automaton for
the formula cannot be constructed with state of the art todie generalized buffer
(GenBuf) originates from the IBM’s tutorial for helRRuleBase verification tool. The
benchmark has also the nice property that it can be scalegl iqzieasing the number
of receivers in the protocol. In this case study, the forrmaie of the form\;Z} ¢, —
¢; and so they are readily amenable to our compositional dlgos.

In this case study, formulas are large: for example, the suimeonumber of states
in the UCW of the components is 96 f@b(sz2,2) , and 2399 states fayb(ss, 7).
Note that the tool Wring cannot handib( sz, ) monolithically.

This case study allows us to illustrate the effect of diffgigtrategies for exploiting
associativity of the product operation. In particular, vee different ways of parenthe-
sizing the local games. In all those examples, the local gaame intermediate com-
bination of local games are solved with the backward contjposil algorithm, while
the last compositional step (at the top) is done with the &mdamethod. In each strat-
egy we first compute the master plan of each sub-formula. ThenolumnrFlat refers
to the strategy that check global realizability directiheTcolumnBinary refers to
the strategy that computes global realizability increraliytusing the binary tree of
sub-formulas. Finally, the colunideuristic refers to the strategy that computes global
realizability incrementally using a specific tree of sulbAfioila defined by the user. The



column UCWOPT refers to the time to optimize the automata Witk's optimizations
(this time was included in the UCW time in Table 1).

Monolothic Compositional |Compositional + DA
BACKWARD [FORWARD| FORWARD(global)| FORWARD(global)
(Acacia’09) BACKWARD(local) [ BACKWARD(local)

2l tbuCw Time(s)

(o]
Check Time(s)
Total time(s)
Check Time(s)
Total time(s)

o .

~| tbUCW Time(s)

o
Check Time(s)
Total time(s)
tbUCW Time(s)
Check Time(s)

g Total time(s)
(o)}

0.00 0.49 [0.01 0.5 |28 0.01 0.41{17{0.060.00
0.71(0.00 0.71 [0.01 0.72 [ 42|0.70]0.02 0.72| 34|0.400.02 0.42
1.22]0.02 1.24 |0.02 1.24 |57|1.14]0.03 1.17| 45|0.790.06 0.85
0.60{0.00 0.60 |0.01] 0.61|41]0.66|0.02 0.68| 33]0.400.02 0.42
0.13/0.01 0.14 |0.00 0.13|31]0.26/0.00 0.26| na| na| na| na
0.00{0.00 0.00 |0.014 0.01| 4 |0.01|0.00 0.01|na|j na|na| na
0.11(0.00 0.11 [0.01 0.12 |27(0.77]0.01 0.78| 15{0.030.00 0.03
0.06(0.02 0.08 [0.00 0.06 |22]0.11|0.03 0.14| na| na| na| na
0.22(0.31 0.53 [0.07 0.29 [ 45]0.20(0.14 0.34| na| na| na| na
0.16(0.04 0.20 |0.03 0.19|23]0.16/0.05§ 0.21| na| na| na| na
0.34|0.21 0.55 |0.19 0.53|45]0.35|0.1§ 0.51| naj na| na| na
0.31]0.01 0.32 |0.01] 0.32|27|0.25/0.03 0.28| 27(0.260.01] 0.27
201|105 2.67(0.01] 2.68 [0.01 2.68 {154 2.43]0.03 2.46|{101/1.520.02 1.54
21|27|7.38|0.220 7.60 |0.28 7.66 | 43| 1.40|0.52 1.92| 44 |0.550.51] 1.06
22|145]7.08(0.03 7.11 [0.02 7.1 |80(10.260.0510.31 49(1.51/0.13 1.64
3.2/ 36/ 0.94(0.020 0.96 [0.00 0.94 {40|0.79]0.020.81| na| na| na| na
3.3 56|1.80({0.15 1.95 |0.02 1.82 |60|1.21|0.06 1.27|na| na| na| nha
3.4 84|3.12(1.24 4.36 |0.04 3.16 {80 1.63]|0.10 1.73| na| na| na| na
3.5(128 3.52(9.94 13.46 |0.12] 3.64 |100 2.04|0.17 2.21|na| na| na| na
3.6204/110.22100| 110.22|0.46 10.68{120 2.40(0.39 2.79| na| na| na| na
3.7|34426.44 660| 686.48(2.35 28.82|140 2.96(1.02 3.98| na| na| na| na

Table 1. Performance comparison &ily’s benchmark and parametric example
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Conclusion We have provided compositional algorithms for fullL synthesis. Our
algorithm are able to handle formulas that are several paggssee [2]). We believe
that our compositional approach is an essential step to meizability check more
practical. As future works, we plan to improve our tool by siolering symbolic data-
structures. Currently, the alphabet of signals is handieareeratively and we believe
that substantial gain could be obtain by handling it syndadlly. This algorithmic im-
provement is orthogonal to the ones presented in this plsiiould be noted that the
compositional approach we propose is general and can beedpiolr example, if some
sub-games are not specified uslid. but constructed directly from another specifica-
tion language. This is important as in practice some modidedd be easily specified
directly by deterministic automata instead IfL. Exploring the use of such mixed
specification methodology is part of our future works.
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gb_s2.r2|2| 91 483 0.08§ 0.84 0.99 0.98 54
gb_s2_r3|2| 150 8.52 0.17 7.33 36.27 6.99 63
gb_s2_r4|2| 26515.64 0.53 36.8§ 125.60 24.19 86
gb_s2_r5|2| 531]26.48 2.11 154.02 266.36 70.41107
gb_s2_r6|2/111650.7Q0 14.38 889.12 1164.4. 335.44132
gb_s2_r7|2|239992.01148.462310.74 timeoult 1650.83149

Table 2. Performance comparison on a scalability test for the folvwaethods
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