
HAL Id: inria-00509966
https://inria.hal.science/inria-00509966

Submitted on 17 Aug 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compositional Algorithms for LTL Synthesis
Emmanuel Filiot, Naiyong Jin, Jean-François Raskin

To cite this version:
Emmanuel Filiot, Naiyong Jin, Jean-François Raskin. Compositional Algorithms for LTL Synthesis.
8th International Symposium on Automated Technology for Verification and Analysis (ATVA), Sep
2010, Singapore, Singapore. �inria-00509966�

https://inria.hal.science/inria-00509966
https://hal.archives-ouvertes.fr

Compositional Algorithms for LTL Synthesis⋆

Emmanuel Filiot, Nayiong Jin, and Jean-François Raskin

CS, Université Libre de Bruxelles, Belgium

Abstract. In this paper, we provide two compositional algorithms to solve safety
games and apply them to provide compositional algorithms for theLTL synthe-
sis problem. We have implemented those new compositional algorithms, and we
demonstrate that they are able to handle fullLTL specifications that are orders of
magnitude larger than the specifications that can be treatedby the current state of
the art algorithms.

1 Introduction

Context and motivations The realizability problem is best seen as a game between
two players [14]. Given anLTL formulaφ and a partition of its atomic propositionsP
into I andO, Player1 starts by giving a subseto0 ⊆ O of propositions1, Player2
responds by giving a subset of propositionsi0 ⊆ I, then Player1 giveso1 and Player2
responds byi1, and so on. This game lasts forever and the outcome of the gameis the
infinite wordw = (i0∪o0)(i1∪o1)(i2∪o2) · · · ∈ (2P)ω. Player1 wins if the resulting
infinite wordw is a model ofφ. The synthesis problem asks to produce a winning
strategy for Player 1 when theLTL formula is realizable. TheLTL realizability problem
is central when reasoning about specifications for reactivesystems and has been studied
starting from the end of the eighties with the seminal works by Pnueli and Rosner [14],
and Abadi, Lamport and Wolper [1]. It has been shown 2EXPTIME-C in [15].2 Despite
their high worst-case computation complexity, we believe that it is possible to solveLTL
realizability and synthesis problems in practice. We proceed here along recent research
efforts that have brought new algorithmic ideas to attack this important problem.

Contributions In this paper, we propose two compositional algorithms to solve theLTL
realizability and synthesis problems. Those algorithms rely on previous works where
the LTL realizability problem for anLTL formulaΦ is reduced to the resolution of a

⋆ Work supported by the projects:(i) QUASIMODO (FP7- ICT-STREP-214755),
Quasimodo: “Quantitative System Properties in Model-Driven-Design of Embedded”,
http://www.quasimodo.aau.dk/, (ii) GASICS (ESF-EUROCORES LogiCCC),
Gasics: “Games for Analysis and Synthesis of Interactive Computational Systems”,
http://www.ulb.ac.be/di/gasics/, (iii) Moves: “Fundamental Issues in Mod-
elling, Verification and Evolution of Software”,http://moves.ulb.ac.be, a PAI
program funded by the Federal Belgian Gouvernment, and(iv) ECSPER (ANR-JC09-
472677) and SFINCS (ANR-07-SESU-012), two projects supported by the French National
Research Agency.

1 Technically, we could have started with Player2, for modelling reason it is conservative to
start with Player1.

2 Older pioneering works consider the realizability problembut for more expressive and com-
putationally intractable formalisms like MSO, see [19] forpointers.

safety gameG(Φ) [7] (a similar reduction was proposed independently in [17]and ap-
plied to synthesis of distributed controllers). We show here that if theLTL specification
has the formΦ = φ1 ∧ φ2 ∧ · · · ∧ φn i.e., a conjunction ofLTL sub-specifications, then
G(Φ) can be constructed and solved compositionally. The compositional algorithms are
able to handle formulas that are several pages long while previous non-compositional
algorithms were limited to toy examples.

The new algorithms rely on the following nice property of safety games: for any
safety gameG, there exists a function that maps each position of Player 1 to the set of
all actions that are safe to play. We call this function themaster plan of Player 1 inG.
It encompasses all the winning strategies of Player 1. IfΛ is the master plan ofG then
we denote byG[Λ] the gameG where the behavior of Player 1 is restricted byΛ.

To compute the winning positions of a safety gameG12 = G1 ⊗G2 defined as the
composition of two sub-games, we compute the master plans for the local components
G1 andG2 before composition. LetΛ1 (resp.Λ2) be the master plan forG1 (resp.G2),
then the winning positions inG12 are the same as the winning positions inG1[Λ1] ⊗
G2[Λ2]. We develop a backward and a forward algorithms that exploitthis property.

We have implemented the two compositional algorithms into our prototypeAcacia
and we provide an empirical evaluation of their performances on classical benchmarks
and on a realistic case study taken from the IBMRuleBase tutorial[9]. This implemen-
tation is rather used to test the new concepts and to see how they behave for scalability
test cases than to provide an advanced and deeply optimized prototype. In particular,
our implementation is in Perl (as Lily [10]) and does not use BDDs.

Related works The first solution [14] to theLTL realizability and synthesis problem
was based on Safra’s procedure for the determinization of B¨uchi automata [16].

Following [12], the method proposed in our paper can be coined ”Safraless” ap-
proach to the realizability and synthesis ofLTL as it avoids the determinization (based
on the Safra’s procedure) of the automaton obtained from theLTL formula. Our ap-
proach, as the one proposed in [7], relies on a reduction to safety games.

In [12], Kupferman and Vardi proposed the first Safraless approach that reduces the
LTL realizability problem to Büchi games, which has been implemented in the toolLily
[10]. In [13], a compositional approach toLTL realizability and synthesis is proposed.
Their algorithm is based on a Safraless approach that transforms the synthesis problem
into a Büchi and not a safety game as in our case. There is no notion like the mas-
ter plan for Büchi games. To the best of our knowledge, theiralgorithm has not been
implemented.

In [3], an algorithm for the realizability problem for a fragment ofLTL, known as
GR(1), is presented and evaluated on the case study of [9]. The specification into the
GR(1) fragment for this case study is not trivial to obtain and so the gain in term of
complexity3 comes with a cost in term of expressing the problem in the fragment. Our
approach is different as we want to consider the fullLTL logic. In our opinion, it is
important to target fullLTL as it often allows for writing more declarative and more
natural specifications.

In [18], the authors also considerLTL formulas of the formΦ = φ1 ∧ φ2 ∧ · · · ∧
φn. They propose an algorithm to construct compositionally a parity game from such
LTL specifications. Their algorithm uses a variant of Safra’s determinization procedure
and additionally tries to detect local parity games that areequivalent to safety games

3
GR(1) has a better worst-case complexity than fullLTL.

(because the associatedLTL subformula is a safety property). For efficiently solving the
entire game, they use BDDs.

In [11], a compositional algorithm is proposed for reasoning about network of com-
ponents to control under partial observability. The class of properties that they consider
is safety properties and notLTL properties. They propose a backward algorithm and no
forward algorithm.

The implementation supporting the approaches described in[18] and [3] uses BDDs
while our toolAcacia does not. While our algorithms could have been implemented
with BDDs, we deliberately decided not to use them for two reasons. First, to fairly
compare our Safraless approach with the one proposed in [12]and implemented inLily,
we needed to exclude BDDs asLily does not use them. Second, several recent works
on the efficient implementation of decision problems for automata shown that antichain
based algorithms may outperform by several order of magnitude BDD implementations,
see [5, 6] for more details.

2 Safety Games

In this section, we provide a definition of safety games that is well-suited to support our
compositional methods detailed in the following sections.Player 1 will play the role
of the system while Player 2 will play the role of the environment. This is why, as the
reader will see, our definition of games is asymmetric.

Turn-based gamesA turn-based game on a finite set of movesMoves = Moves1 ⊎
Moves2 such thatMoves2 6= ∅ is a tupleG = (S1, S2, Γ1, ∆1, ∆2) where:(i) S1

is the set of Player 1 positions,S2 is the set of Player 2 positions,S1 ∩ S2 = ∅, we
let S = S1 ⊎ S2. (ii) Γ1 : S1 → 2Moves1 is a function that assigns to each position
of Player 1 the subset of moves that are available in that position. For Player 2, we
assume that all the moves inMoves2 are available in all the positionss ∈ S2. (iii)∆1 :
S1×Moves1 → S2 is a partial function, defined on pairs(s,m) when Player1 chooses
m ∈ Γ1(s), that maps(s,m) to the position reached froms.∆2 : S2 × Moves2 → S1

is a function that maps(s,m) to the state reached froms when Player 2 choosesm.
We define the partial function∆ as the union of the partial function∆1 and the

function∆2. Unless stated otherwise, we fix for the sequel of this section a turn-based
gameG = (S1, S2, Γ1, ∆1, ∆2) on movesMoves = Moves1 ⊎ Moves2.

Given a functionΛ : S1 → 2Moves1 , therestriction of G by Λ is the gameG[Λ] =

(S1, S2, Γ̂1, ∆̂1, ∆2) where for alls ∈ S1, Γ̂1(s) = Γ1(s)∩Λ(s) and∆̂1 equals∆1 on
the domain restricted to the pairs{(s,m) | s ∈ S1 ∧m ∈ Γ̂1(s)} i.e.,G[Λ] is asG but
with the moves of Player 1 restricted byΛ.

Rules of the gameThe game onG is played in rounds and generates a finite or an
infinite sequence of positions that we call aplay. In the initial round, the game is in
some position, says0, and we assume that Player 1 owns that position. Then ifΓ1(s0)
is non-empty Player 1 chooses a movem0 ∈ Γ1(s0), and the game evolves to state
s1 = ∆1(s0,m0), otherwise the game stops. If the game does not stop then the next
round starts ins1. Player 2 chooses a movem1 ∈ Moves2 and the game proceeds to
positions2 = ∆2(s1,m1). The game proceeds accordingly either for an infinite number
of rounds or it stops when a positions ∈ S1 is reached such thatΓ1(s) = ∅. Player 1
wins if the game does not stop otherwise Player 2 wins (safetywinning condition). Our

variant of safety games are thus zero-sum games as usual. In particular, the positions
s ∈ S1 such thatΓ1(s) 6= ∅ are the safe positions of Player 1.

Plays and strategiesWe now define formally the notions of play, strategy, outcomeof
a strategy and winning strategies. Given a sequenceρ = s0s1 . . . sn . . . ∈ S∗ ∪ Sω, we
denote by|ρ| its length (which is equal toω if ρ is infinite). We denote byfirst(ρ) the
first element ofρ, and ifρ is finite, we denote bylast(ρ) its last element.

A play inG is a finite or infinite sequence of positionsρ = s0s1 . . . sn . . . ∈ S∗∪Sω

such that :(i) if ρ is finite thenlast(ρ) ∈ S1 andΓ1(last(ρ)) = ∅; (ii) ρ is consistent
with the moves and transitions ofG i.e., for all i, 0 ≤ i ≤ |ρ|, we have thatsi+1 =
∆(si,m) for somem ∈ Γ1(si) if s ∈ S1, orm ∈ Moves2 if s ∈ S2.We denote by
Plays(G) the set of plays inG.

Given a set of finite or infinite sequencesL ⊆ S∗ ∪ Sω, we writePrefj(L), j ∈
{1, 2}, for the set of prefixes of sequences inL that end up in a position of Player
j. Let ⊥ be such that⊥ 6∈ Moves. A strategy for Player 1 in G is a functionλ1 :
Pref1(Plays(G)) → Moves1∪{⊥} which is consistent with the set of available moves
i.e., for all ρ ∈ Prefi(Plays(G)), we have that:(i) λ1(ρ) ∈ Γ1(last(ρ)) ∪ {⊥}, and
(ii) λ1(ρ) = ⊥ only if Γ1(last(ρ)) = ∅. A strategy for Player 2 in G is a function
λ2 : Pref2(Plays(G)) → Moves2. Note that the codomain of a Player 2’s strategy
never contains⊥ as all the moves of Player 2 are allowed at any position, whereas the
moves of Player1 are restricted byΓ1.

A play ρ = s0s1 . . . sn . . . ∈ Plays(G) is compatible with a strategyλj of Playerj
(j ∈ {1, 2}), if for all i, 0 ≤ i < |ρ|, if si ∈ Sj thensi+1 = ∆j(si, λj(s0s1 . . . si)).We
denote byoutcome(G, s, λj) the subset of plays inPlays(G) that are compatible with
the strategyλj of Playerj, and that start ins. We denote byoutcome(G, λj) the set⋃

s∈S outcome(G, s, λj), and byoutcome(G, s, λ1, λ2) the unique play that is com-
patible with bothλ1 andλ2, and starts ins.

Thewinning plays for Player 1 are those that are infinite i.e.,Win1(G) = Plays(G)∩
Sω, or equivalently those that never reach an unsafe positions ∈ S1 of Player 1
whereΓ1(s) = ∅. A strategyλ1 is winning in G from sini iff outcome(G, sini, λ1) ⊆
Win1(G). A game with such a winning condition in mind is calledsafety game. We
denote byWinPos1(G) the subset of positionss ∈ S in G for which there existsλ1

such thatoutcome(G, s, λ1) ⊆ Win1(G).

Games with initial positionA safety game with initial position is a pair(G, sini) where
sini ∈ S1 ∪ S2 is a position of the game structureG called theinitial position. The set
of plays in(G, sini) are the plays ofG starting insini, i.e.Plays(G, sini) = Plays(G) ∩
sini · (S

∗ ∪ Sω). All the previous notions carry over to games with initial positions.

Solving safety gamesThe classical fixpoint algorithm to solve safety games relies on
iterating the following monotone operator over sets of gamepositions. LetX ⊆ S1⊎S2:

CPre1(X)={s∈S1 |∃m∈Γ1(s), ∆1(s,m)∈X}∪{s∈S2 |∀m∈Moves2, ∆2(s,m)∈X}

i.e., CPre1(X) contains all the positionss ∈ S1 from which Player 1 can forceX in
one step, and all the positionss ∈ S2 where Player 2 cannot avoidX in one step. Now,
we define the following sequence of subsets of positions:

W0 = {s ∈ S1 | Γ1(s) 6= ∅} ∪ S2 Wi = Wi−1 ∩ CPre(Wi−1) for all i ≥ 1

Denote byW ♮ the fixpoint of this sequence. It is well known thatW ♮ = WinPos1(G).

Master plan Let Λ1 : S1 → 2Moves1 be defined as follows: for alls ∈ S1, Λ1(s) =
{m ∈ Γ1(s) | ∆1(s,m) ∈ W ♮} i.e.,Λ1(s) contains all the moves that Player1 can
play in s in order to win the safety game. We callΛ1 themaster plan of Player 1 and
we write it MP(G). The following lemma states thatMP(G) can be interpreted as a
compact representation of all the winning strategies of Player 1 in the gameG:

Lemma 1. For all strategies λ1 of Player 1 in G, for all s ∈ S, λ1 is winning in G
from s iff λ1 is a strategy in (G[MP(G)], s) and λ1(s) 6=⊥.

Now that we have defined and characterized the notion of master plan, we show
that we can compute directly the master plan associated witha game using a variant of
theCPre operator and sequenceW . The variant ofCPre considers the effect of some

Player 1’s move followed by some Player 2’s move. Let̂CPre : (S1 → 2Moves1) →
(S1 → 2Moves1) be defined as follows. For alls ∈ S1, let:

ĈPre(Λ)(s) = {m ∈ Λ(s) | ∀m′ ∈ Moves2 : Λ(∆2(∆1(s,m),m′)) 6= ∅}

Consider the following sequence of functions:Λ0 = Γ1, andΛi = ĈPre(Λi−1), i ≥
1. This sequence stabilizes after at mostO(|S|) iterations and we denote byΛ♮ the
function on which the sequence stabilizes. Clearly, the value on which the sequence
stabilizes corresponds exactly to the master plan ofG:

Theorem 1. Λ♮ = MP(G).

3 From LTL realizability to safety games
In this section, after recalling the formal definition of theLTL realizability problem, we
recall the essential results of [17, 7] where it is shown how to reduce theLTL realizabil-
ity problem to a safety game problem.

Linear Temporal Logic (LTL) The formulas ofLTL are defined over a set of atomic
propositionsP . The syntax is given by:φ ::= p | φ ∨ φ | ¬φ | Xφ | φUφ with p ∈ P .
The notationstrue, false, φ1∧φ2, ♦φ and�φ are defined as usual.LTL formulasφ are
interpreted on infinite wordsw = σ0σ1σ2 . . . ∈ (2P)ω via a satisfaction relationw |= φ
inductively defined as follows:(i) w |= p if p ∈ σ0, (ii) w |= φ1 ∨ φ2 if w |= φ1 or
w |= φ2, (iii) w |= ¬φ if w 6|= φ, (iv) w |= Xφ if σ1σ2 . . . |= φ, and(v) w |= φ1 Uφ2

if there isn ≥ 0 such thatσnσn+1 . . . |= φ2 and for all0 ≤ i < n, σiσi+1 . . . |= φ1.

LTL Realizability and SynthesisLet P be a finite set of propositions. Unless other-
wise stated, we partitionP into I the set ofinput signals controlled by Player 2 (the
environment), andO the set ofoutput signals controlled by Player 1 (the controller).
We letΣ = 2P , ΣI = 2I , andΣO = 2O. The realizability problem is best seen
as a game. The players play according to strategies. A strategy for Player 1 is a (to-
tal) mappingλ1 : (ΣOΣI)

∗ → ΣO while a strategy for Player 2 is a (total) mapping
λ2 : ΣO(ΣIΣO)∗ → ΣI . The outcome ofλ1 andλ2 is the wordoutcome(λ1, λ2) =
(o0 ∪ i0)(o1 ∪ i1) . . . such that for allj ≥ 0, oj = λ1(o0i0 . . . oj−1ij−1) andij =
λ2(o0i0 . . . oj−1ij−1oj). In particular,o0 = λ1(ǫ) and i0 = λ2(o0). Given anLTL
formulaφ, the realizability problem is to decide whether there exists a strategyλ1 of
Player 1 such that for all strategiesλ2 of Player 2,outcome(λ1, λ2) |= φ. If such a
strategy exists, we say that the specificationφ is realizable. If an LTL specification is
realizable, there exists a finite-state strategy that realizes it [14]. Thesynthesis problem
is to find a finite-state strategy that realizes theLTL specification.

q1 q2

q3q4

r

g,¬g

r,¬r

¬g

r,¬r

(a) UCW

(q1, 0) (q2, 0)

(q1, 0), (q3, 0)

(q2, 0), (q4, 1)

(q1, 0), (q3, 1)

(q2, 0), (q4, 2)

g,¬g

¬r
r

g

¬gr,¬r

¬g

g

(b) Safety gameG(φ, 1)

Fig. 1.UCW and safety game for the formulaφ ≡ �(r → X♦g)

Universal CoB̈uchi automata LTL formulas are associated withturn-based automaton
A overΣI andΣO. A turn-based automaton is a tupleA = (ΣI , ΣO, QI , QO, Qini, α,
δI , δO) whereQI , QO are finite sets of input and output states respectively,Qini ⊆ QO

is the set of initial states,α ⊆ QI∪QO is the set of final states, andδI ⊆ QI×ΣI×QO,
δO ⊆ QO×ΣO×QI are the input and output transition relations respectively. Wlog we
assume that the automata arecomplete, i.e. for allt ∈ {I,O}, all q ∈ Qt and allσ ∈ Σt,
δt(q, σ) 6= ∅. Turn-based automataA run on wordsw = (o0 ∪ i0)(o1 ∪ i1) · · · ∈ Σω

as follows: arun onw is a wordρ = ρ0ρ1 · · · ∈ (QOQI)
ω such thatρ0 ∈ Qini and for

all j ≥ 0, (ρ2j , oj , ρ2j+1) ∈ δO and(ρ2j+1, ij, ρ2j+2) ∈ δI . LetK ∈ N. We consider
the universal co-Büchi (resp.K-co-Büchi) accepting condition, for which a wordw is
accepted iff any run onw visits finitely many (resp. at mostK) accepting states. With
theK-co-Büchi interpretation in mind, we say that(A,K) is a universalK-co-Büchi
turn-based automaton. We denote byLuc(A) andLuc,K(A) the languages accepted by
A with these two accepting conditions resp. Turn-based automata with universal co-
Büchi andK-co-Büchi acceptance conditions are denoted byUCW andUK CW. As
they define set of infinite words, they can be taken as input to the realizability problem.

It is known that for anyLTL formula one can construct an equivalentUCWAφ (pos-
sibly exponentially larger) [20]. Fig. 1(a) represents aUCW equivalent to the formula
�(r → X (♦g)), wherer is an input signal andg is an output signal. States ofQO are
denoted by circles while states ofQI are denoted by squares. The transitions on missing
letters are going to an additional sink non-accepting statethat we do not represent for
the sake of readability. If a requestr is never granted, then a run will visit the accepting
stateq4 infinitely often.

The realizability problem can be reduced from aUCW to aUK CW specification:

Theorem 2 ([17, 7]).LetA be a UCW overΣI , ΣO with n states andK = 2n(n2n+2+
1). Then A is realizable iff (A,K) is realizable.

Let us recall the intuition behind the correctness of this result. First, if the specification
(A,K) is realizable then clearly the specificationA is also realizable asLuc,K(A) ⊆

Luc(A). Second, if the specificationA is realizable then we know that there exists a
finite memory strategyλ1 that realizes it [14]. Any run on any outcome ofλ1 visits
accepting states only a number of time equal toK, which is bounded by the size of the
strategy. Soλ1 not only realizes the specificationA but a stronger specification(A,K).

Reduction to safety gameClearlyUK CW specifications are safety properties. The re-
duction to a safety game relies on the fact thatUK CW can easily be made deterministic.
Given aUK CWA, the gameG(A,K) is constructed via a subset construction extended
with counters for each stateq, that count (up toK + 1) the maximal number of accept-
ing states which have been visited by runs ending up inq. We set the counter of a state
q to −1 when no run on the prefix read so far ends up inq. The set of game positions
S1 for Player1 is therefore the set of functionsF : QO to {−1, . . . ,K + 1}. The set
S2 is similarly defined as the functionsF : QI to {−1, . . . ,K + 1}. The set of moves
of both players are the letters they can choose, i.e.Moves1 = ΣO andMoves2 = ΣI .
The set of available moves in a position are defined via a successor functionsucc such
that for allF ∈ Si andσ ∈ Movesi,

succ(F, σ) = q 7→ max{min(K + 1, F (p) + (q ∈ α)) | q ∈ δ(p, σ), F (p) 6= −1}

wheremax ∅ = −1, and (q ∈ α) = 1 if q is in α, and0 otherwise. An action
σ1 ∈ Moves1 is available for Player1 in a positionF ∈ S1 if the counters ofF and
succ(F, σ) do not exceedK. More formally,σ ∈ Γ1(F) iff for all p ∈ Q0 and all
q ∈ QI , F (p) ≤ K andsucc(F, σ)(q) ≤ K. The transition function∆1 is defined by
∆1(F, σ) = succ(F, σ) for all F ∈ S1 and allσ ∈ Γ1(s). The function∆2 is defined
by ∆2(F, σ) = succ(F, σ) for all F ∈ S2 and allσ ∈ Moves2. Finally, we start the
game in the initial positionF0 ∈ S1 such that for allq ∈ QO, F (q) = −1 if q is not
initial, and0 if q is initial but not final, and1 if q is initial and final.

Associating a safety game with anLTL formulaφ is done as follows:(1) construct a
UCW Aφ equivalent toφ, (2) constructG(Aφ,K), denoted asG(ψ,K) in the sequel,
whereK = 2n(n2n+2 + 1) andn is the number of states ofAφ.

Incremental algorithm In practice, for checking the existence of a winning strategy for
Player 1 in the safety game, we rely on an incremental approach. For allK1,K2 · 0 ≤
K1 ≤ K2, if Player1 can winG(A,K1), then she can winG(A,K2). This is because
Luc,K1

(A) ⊆ Luc,K2
(A) ⊆ Luc(A). Therefore we can test the existence of strategies

for increasing values ofK. In all our examples (see Section 6), the smallestK for which
Player 1 can win is very small (less than 5).

Example Fig. 1(b) represents the safety game (forK = 1) associated with the formula
�(r → X♦g). Positions are pairs of states of theUCW with their counter values.
Player 1’s positions are denoted by circles while Player 2’spositions are denoted by
squares. The unavailable move of Player 1 from position(q2, 0) is denoted by a dashed
arrow. It goes to a position where a counter exceeds the valueK. The master plan of
the game corresponds in this case to all the moves attached toplain arrows for Player
1’s positions. Indeed Player 1 wins the game iff she never follows the dashed arrow.

Antichain-based symbolic algorithmIn practice, we do not construct the gameG(A,K)
explicitly, as it may be too large. However it has a nice structure that can be exploited
for defining an efficient symbolic implementation for the computation of the sequence
of Wi’s defined in Section 2. The main idea is to consider an ordering on the posi-
tions inG(A,K). Define the relation�⊆ FI × FI ∪ FO × FO by F � F ′ iff ∀q,
F (q) ≤ F ′(q). It is clear that� is a partial order. Intuitively, if Player 1 can win from

F ′ then she can also win from allF � F ′, since she has seen less accepting states in
F than inF ′. The consequence of this observation is that all the setsWi are downward
closed for the relation�. It is shown in [7] that consequently all the computations can
be done efficiently by manipulating only�-maximal elements.

4 Compositional safety games
In this section, we define compositional safety games and develop two abstract compo-
sitional algorithms to solve such games.

Composition of safety gamesWe now consider products of safety games. LetGi,
i ∈ {1, . . . , n}, ben safety gamesGi = (Si

1, S
i
2, Γ

i
1, ∆

i
1, ∆

i
2) defined on the same

sets of movesMoves = Moves1 ⊎ Moves2. Their product, denoted by⊗i=n
i=1G

i, is the
safety gameG⊗ = (S⊗

1 , S
⊗

2 , Γ
⊗

1 , ∆
⊗

1 , ∆
⊗

2)4 defined as follows:

– S⊗

j = S1
j × S2

j × · · · × Sn
j , j = 1, 2;

– for s = (s1, s2, . . . , sn) ∈ S⊗

1 , Γ⊗

1 (s) = Γ 1
1 (s1) ∩ Γ 2

1 (s2) ∩ · · · ∩ Γn
1 (sn);

– for j ∈ {1, 2} and s = (s1, s2, . . . , sn) ∈ S⊗

j , let m ∈ Γ⊗

1 (s) if j = 1 or
m ∈ Moves2 if j = 2. Then∆⊗

j (s) = (t1, t2, . . . , tn), whereti = ∆i
j(s

i,m) for
all i ∈ {1, 2, . . . , n};

Backward compositional reasoningWe now define a backward compositional algo-
rithm to solve the safety gameG⊗. The correctness of this algorithm is justified by the
following lemmas. For readability, we express the properties for composed games de-
fined from two components. All the properties generalize to any number of components.
The first part of the lemma states that to compute the master plan of a composition, we
can first reduce each component to itslocal master plan. The second part of the lemma
states that the master plan of a component is the master plan of the component where

the choices of Player 1 has been restricted by one application of theĈPre operator.

Lemma 2. (a) Let G12 = G1 ⊗G2, let Λ1 = MP(G1) and Λ2 = MP(G2) then

MP(G12) = MP(G1[Λ1] ⊗G2[Λ2])

(b) For any game G, MP(G)=MP(G[ĈPre(Γ1)]).

Let Λ : S1
1 × S2

1 × · · · × Sn
1 → 2Moves, we letπi(Λ) the function with domain

Si
1 and codomain2Moves1 such that for alls ∈ Si

1, πi(Λ)(s) is the set of moves al-
lowed byΛ in one tuple(s1, s2, . . . , sn) such thatsi = s. Formally,πi(Λ)(s) =⋃
{Λ(s1, s2, . . . , sn) | (s1, s2, . . . , sn) ∈ S⊗

1 , s
i = s}. Given two functionsΛ1 :

S1 → 2Moves1 andΛ2 : S1 → 2Moves1 , we defineΛ1 ∩ Λ2 as the function on do-
mainS1 such that for alls ∈ S1: Λ1 ∩ Λ2(s) = Λ1(s) ∩ Λ2(s). Given two functions
Λ1 : S1 → 2Moves1 andΛ2 : S2 → 2Moves1 , we define(Λ1 × Λ2) : S1 × S2 → 2Moves1

as(Λ1 × Λ2)(s1, s2) = Λ1(s1) ∩ Λ2(s2).
Based on Lemma 2, we propose the following compositional algorithm to compute

the master plan of a safety game defined as the composition of local safety games.
First, compute locally the master plans of the components. Then compose the local

master plans and apply one time thêCPre operator to this composition. This applica-

tion of ĈPre compute a new functionΛ that contains information about the one-step

4 Clearly, the product operation is associative up to isomorphism.

inconsistencies between local master plans. Project back on the local components the
information gained by the functionΛ, and iterate. This is formalized in Algorithm 1
whose correctness is asserted by Theorem 3.

Algorithm 1 : Backward composition

Data: G⊗ = G1 ⊗G2 ⊗ · · · ⊗Gn

Λ← Γ⊗

1
;

repeat
Λi := MP(Gi[πi(Λ)]), 1 ≤ i ≤ n;

Λ := ĈPre(Λ ∩ (Λ1 × · · · × Λn))
until Λ does not change;
return Λ

Algorithm 2 : Forward composition

Data: G⊗ = G1 ⊗G2 ⊗ · · · ⊗Gn

Λi := MPReach(G
i, si

ini), 1 ≤ i ≤ n;
Λ := MPReach(G

1[Λ1]⊗· · ·⊗Gn[Λn],
. (s1

ini, s
2

ini, . . . , s
n

ini))
return Λ

Theorem 3. The value Λ returned by Algorithm 1 is equal to MP(G⊗).

Forward compositional reasoningWhen solving safety games, we may be interested
only in computing winning strategies for a fixed starting position, saysini. In this case,
the value of the master plan is not useful for positions that are not reachable when
playing winning strategies fromsini. So, we are interested in computing a master plan
only for the winning andreachable positions. Given a gameG and a statesini, we denote
by Reach(G, sini) the subset of positions that are reachable fromsini inG i.e., the states
s′ such that there exists a finite sequences0s1 . . . sn with s0 = sini, sn = s′ and for
all i, 0 ≤ i < n, there existsm ∈ Γ1(si) ∪ Moves2 such thatsi+1 = ∆(si,m). The
master plan of reachable positions for (G, sini), denoted byMPReach(G, sini) is defined
for all s ∈ S as follows:

MPReach(G, sini)(s) =

{
MP(G)(s) if s ∈ Reach(G[Λ], sini)
∅ otherwise.

The following lemma shows that for a game defined compositionally, its master plan
can also be defined compositionally. For readability we express the lemma only for two
components but, as for the previous lemmas, it extends to anynumber of components:

Lemma 3. Let Λ1 = MPReach(G
1, s1ini) and Λ2 = MPReach(G

2, s2ini).

MPReach(G
1 ⊗G2, (s1ini, s

2
ini)) = MPReach(G

1[Λ1] ⊗G2[Λ2], (s
1
ini, s

2
ini))

As composition of safety games is an associative operator, we can use variants of
the algorithm above where we first compose some of the components and compute their
master plan of reachable positions before doing the global composition.

To efficiently compute the master plan of reachable positions of a gameG, we use
theOTFUR algorithm of [4]. We say that a positions ∈ S1 is unsafe if Γ1(s) = ∅,
or all its successors are unsafe. A positions ∈ S2 is unsafe if one of its successors is
unsafe. The algorithm explores the state space by starting from the initial state in a for-
ward fashion. When sufficient information is known about thesuccessors of a position
s, it back-propagates the unsafe information tos. At the end of the algorithm, the master
plan which allows all moves that lead to a safe position is exactly MPReach(G, sini). Fig.
2 illustrates the result of theOTFUR algorithms applied on the product of two safety
gamesG1, G2 over the possible moveso1, o2, o3 for Player1 andi1, i2 for Player2.
We assume thatG1, G2 contains only winning actions, i.e.Gi = Gi[MP(Gi)] for all
i = 1, 2. The master plan of reachable states forG1 ⊗G2 corresponds to plain arrows.

A, A′

B, B′

C, C′

D, D′ E, E′

o1

i1

o2

i1, i2

i2o2

(G1 ⊗G2)[MPReach(G1 ⊗G2)]

A

B

C

D E

o1

i1

o1 i2

o2

o2, o3

i1, i2

GameG1

A′

B′

C′

D′ E′

o1
o2

i1, i2

i1

o2 i2

o2

GameG2

Fig. 2.Two games and their common master plan of reachable states

Dashed arrows are those which have been traversed during theOTFUR algorithm but
have been removed due to backpropagation of unsafe information. From node〈A,A′〉
the moveo3 is not a common move, thereforeo3 is not available in the product as well.
Howevero2 is available in both games and leads toC andC′ respectively. Similarly,
o1 is available in both games and goes to〈B,B′〉. From〈B,B′〉 one can reach〈D,D′〉
by i1 but from〈D,D′〉 there is no common action. Therefore〈D,D′〉 is unsafe. Since
one of the successor of〈B,B′〉 is unsafe and〈B,B′〉 is owned by Player2, 〈B,B′〉 is
declared to be unsafe as well. All the remaining moves are winning in theG1 ⊗G2, as
they are winning both inG1 andG2.

Remark 1. It should be noted that eachΛi in Alg. 2 can be replaced by the fullmaster
plan without changing the output of the forward algorithm. Indeed, it is easy to see
thatReach(G[MPReach(G, sini)], sini) = Reach(G[MP(G)], sini). So, we can mix the
backward and forward algorithms. For instance, we can compute locally the master plan
of eachGi using the backward algorithm of [7], and then check global realizability
using theOTFUR algorithm.

5 Compositional LTL Synthesis and Dropping Assumptions
In this section, we show how to define compositionally the safety game associated with
anLTL formula when this formula is given as a conjunction of subformulas i.e.,ψ =
φ1 ∧ φ2 ∧ · · · ∧ φn. Assume from now on that we have fixed someK ∈ N. We first
construct for each subformulaφi the correspondingUK CW Aφi

on the alphabet ofψ5,
and their associated safety gamesG(φi,K). The gameG(ψ,K) for the conjunctionψ
is isomorphic to the game⊗i=n

i=1G(φi,K).
To establish this result, we rely on a notion of product at thelevel of turn-based

automata. LetAi = (ΣI , ΣO, Q
i
I , Q

i
O, q

i
0, α

i, δi
I , δ

i
O) for i ∈ {1, 2} be two turn-

based automata, then their productA1 ⊗ A2 is the turn-based automaton defined as
(ΣI , ΣO, Q

1
I ⊎Q

2
I , Q

1
O ⊎Q2

O, Q
1
ini ⊎Q

2
ini, α1⊎α2, δ

1
I ⊎ δ

2
I , δ

1
O ⊎ δ2O). As we use univer-

sal interpretation i.e., we require all runs to respect the accepting condition, it is clear

5 It is necessary to keep the entire alphabet when consideringthe subformulas to ensure proper
definition of the product of games that asks for components defined on the same set of moves.

that executing theA1⊗A2 on a wordw is equivalent to execute bothA1 andA2 on this
word. Sow is accepted by the product iff it is accepted by each of the automata.

Proposition 1. Let A1 and A2 be two UCW on the alphabetΣ1 ⊎Σ2, and K ∈ N: (i)
Luc(A1⊗A2) = Luc(A1)∩Luc(A2), (ii)Luc,K(A1⊗A2) = Luc,K(A1)∩Luc,K(A2)

As the state space and transition relation ofA1 ⊗ A2 is the disjunct union of the
space spaces and transition relations ofA1 andA2, the determinization ofA1 ⊗A2 for
a fixedK ∈ N is equivalent to the synchronized product of the determinizations ofA1

andA2 for thatK, and so we get the following theorem.

Theorem 4. Letψ = φ1∧φ2∧· · ·∧φn,K ∈ N,G(ψ,K) is isomorphic to⊗i=n
i=1G(φi,K).

Even if it is natural to write largeLTL specifications as conjunctions of subfor-
mulas, it is also sometimes convenient to write specifications that are of the form
(
∧i=n

i=1
ψi) → (

∧j=m
j=1

φj) whereψi’s formalize a set of assumptions made on the en-
vironment (Player 2) andφj ’s formalize a set of guarantees that the system (Player
1) must enforce. In this case, we rewrite the formula into thelogical equivalent for-
mula

∧j=m
j=1

((
∧i=n

i=1
ψi) → φj) which is a conjunction ofLTL formulas as needed for

the compositional construction described above. As logical equivalence is maintained,
realizability is maintained as well.

Unfortunately, this formula is larger than the original formula as all then assump-
tions are duplicated for all them guarantees. But, the subformulas(

∧i=n
i=1

ψi) → φj , j ∈
{1, . . . ,m} are usually such that to guaranteeφj , Player 1 does not need all the assump-
tions on the left of the implication. It is thus tempting to remove those assumptions that
are locally unnecessary in order to get smaller local formulas. In practice, we apply
the following rule. Letψ1 ∧ ψ2 → φ be a local formula such thatψ2 andφ do not
share common propositions then we replaceψ1 ∧ ψ2 → φ by ψ1 → φ. This simpli-
fication is correct in the following sense: if the formula obtained after dropping some
assumptions in local formulas is realizable then the original formula is also realizable.
Further, a Player 1’s strategy to win the game defined by the simplified formula is also
a Player 1’s strategy to win the game defined by the original formula. This is justified
by the fact that the new formula logically implies the original formula i.e.ψ1 → φ log-
ically impliesψ1 ∧ ψ2 → φ. However, this heuristic is not complete because the local
master plans may be more restrictive than necessary as we locally forget about global
assumptions that exist in the original formula. We illustrate this on two examples.

Let I = {req}, O = {grant} andφ = (�♦req) → �♦grant. In this formula, the
assumption�♦req is not relevant to the guarantee�♦grant. Realizingφ is thus equiv-
alent to realizing�♦grant. However, the set of strategies realizingφ is not preserved
when dropping the assumption. Indeed, the strategy that outputs agrant after eachreq
realizesφ but it does not realize�♦grant, as this strategy relies on the behavior of the
environment. Thus dropping assumption is weaker than the notion of open implication
of [8], which requires that the strategies realizingφ have to realize�♦grant.

As illustrated by the previous example, dropping assumption does not preserve the
set of strategies that realize the formula. Therefore, it can be the case that a realiz-
able formula cannot be shown realizable with our compositional algorithm after lo-
cally dropping assumptions. In addition, it can be the case that a formula becomes
unrealizable after dropping local assumptions. Consider for instance the formulaφ =

�♦req → (�♦grant ∧ �(X (¬grant) U req)). This formula is realizable, for in-
stance by the strategy which outputs agrant iff the environment signal at the previ-
ous tick was areq. Other strategies realize this formula, like those which grant a re-
quest everyn req signal (n is fixed), but all the strategies that realizeφ have to exploit
the behavior of the environment. Thus there is no strategy realizing the conjunction of
�♦grant andφ. Consequently, when we decomposeφ into �♦req → �♦grant and
�♦req → �(X (¬grant) U req), we must keep�♦req in the two formulas.

Nevertheless, in our experiments, the dropping assumptionheuristic is very effective
and except for one example, it always maintainscompositional realizability.

Symbolic compositional synthesis with antichainsAs mentioned in Sec. 3, we do not
construct the games explicitely, but solve them on-the-fly by compactly representing by
antichains the set of positions manipulated during the fixpoint computation. In partic-
ular, suppose that we are given a conjunction of formulasφ1 ∧ φ2, and someK ∈ N.
For all i ∈ {1, 2}, we first solve the subgameG(φi,K) by using the backward fixpoint
computation of [7] and get the downward closed set of winningpositions (for Player
1), represented by antichains. Some winning positions are owned by Player 1 (resp.
Player 2), let this set be↓W1 (resp.↓W2), the downward closure of an antichainW1

(resp.W2). ThenW1 andW2 also provide a compact representation ofMP(G(φi,K)).
Indeed, letF be a Player1’s position inG(φi,K), thenMP(G(φi,K))(F) is empty if
F 6∈↓W1 (the downward closure ofW1), otherwise is the set of movesσ ∈ ΣO such
thatsucc(F, σ) ∈↓W2. This symbolic representation is used in practice for the forward
and backward compositional algorithms (Algorithms 1 and 2 of Sec. 4).

Moreover, the partial order on game positions can also be exploited by the OTFUR
algorithm of Section 4 used in the forward compositional algorithm. Indeed letF be
some Player 1’s position of some gameG(φ, k). Clearly,F is loosing (for Player 1 the
controller) iff all its minimal successors are loosing. We get the dual of this property
whenF is a position owned by Player 2 (the environment). In this case F is loosing
(for the controller) iff one of its maximal successors is loosing. Therefore to decide
whether a position is loosing, depending on whether it is a controller or an environment
position, we have to visit its minimal or its maximal successors only. In the OFTUR
algorithm, this is done by adding to the waiting list only theedges(s′, s′′) such that
s′′ is a minimal (or maximal) successor ofs′. In the case of a position owned by the
controller, we can do even better. Indeed, we can add only oneminimal successor in
the waiting list at a time. If it turns out that this successoris loosing, we add another
minimal successor. Among the minimal successors, the choice is done as follows: we
prefer to add an edge(s′, s′′) such thats′′ has already been visited. Indeed, this poten-
tially avoids unnecessary developments of new parts of the game. Note however that
this optimization cannot be used to compute the master plan of reachable positions, but
only some winning strategy, as some parts of the game may not be explored. In the ex-
periments, we use the backward algorithm to solve the local games and the optimized
forward algorithm to solve the global game.

6 Experimental evaluation

The compositional algorithms have been implemented in our prototype ACACIA [7].
The performances are evaluated on the examples provided with the tool LILY and on a
larger specification of a buffer controller inspirated by the IBM rulebase tutorial [9].

Lily’s test cases and parametric exampleWe compare several methods on the real-
izable examples provided with LILY and on the parametric example of [7]. In those
benchmarks, the formulas are of the form

∧i=n
i=1

ψi →
∧j=m

j=1
φj where

∧i=n
i=1

ψi are a

set ofassumptions and
∧j=m

j=1
φj are a set ofguarantees. We decompose such formula

into several pieces(
∧i=n

i=1
ψi) → φj , as described in the previous section.

We compare four synthesis methods (Table 1). The first is the monolithic backward
method of [7]. The second is the monolithic forward method based on the OTFUR al-
gorithm optimized with antichains. The third method is a compositional method where
the local games are solved with the backward algorithm of [7]and the global game with
the forward algorithm OTFUR (optimized with antichains). Finally, the last method is
the third method where we use the dropping assumption heuristic. For each method,
we give the size of the automata (in the case of compositionalmethods it is the sum
of the sizes of every local automata), the time to construct them, the time to check for
realizability (Check Time), and the total time. The values in bold face are the best total
times among all methods.

On small examples, we can see that the benefit of the compositional approach is
not big (and in some cases the monolithic approach is even better). However for bigger
formulas (demo 3.2 to 3.7), decomposing the formulas decreases the time to construct
the automata, and the total realizability time is thereforebetter.

Now, we evaluate the benefit of dropping assumptions (last group of columns). For
those experiments, we only consider the subset of formulas for which this heuristic can
be applied. Our dropping heuristic does not work for demo 9 asit becomes unrealizable
after the application of dropping assumptions. As we see in the table, the benefit of
dropping assumptions is important and is growing with the size of the formulas that
are considered. The compositional algorithms outperform the monolithic ones when
combined with dropping assumptions. They also show promises for better scalability.
This is confirmed by our next benchmark.

A realistic case studyNow, we consider a set of realistic formulas (Table 2). All those
formulas are out of reach of the monolithic approach as even the Büchi automaton for
the formula cannot be constructed with state of the art tools. The generalized buffer
(GenBuf) originates from the IBM’s tutorial for herRuleBase verification tool. The
benchmark has also the nice property that it can be scaled up by increasing the number
of receivers in the protocol. In this case study, the formulas are of the form

∧i=n
i=1

ψi →
φj and so they are readily amenable to our compositional algorithms.

In this case study, formulas are large: for example, the sum of the number of states
in the UCW of the components is 96 forgb(s2, r2) , and 2399 states forgb(s2, r7).
Note that the tool Wring cannot handlegb(s2, r2) monolithically.

This case study allows us to illustrate the effect of different strategies for exploiting
associativity of the product operation. In particular, we use different ways of parenthe-
sizing the local games. In all those examples, the local games and intermediate com-
bination of local games are solved with the backward compositional algorithm, while
the last compositional step (at the top) is done with the forward method. In each strat-
egy we first compute the master plan of each sub-formula. Thenthe columnFlat refers
to the strategy that check global realizability directly. The columnBinary refers to
the strategy that computes global realizability incrementally using the binary tree of
sub-formulas. Finally, the columnHeuristic refers to the strategy that computes global
realizability incrementally using a specific tree of sub-formula defined by the user. The

column UCWOPT refers to the time to optimize the automata withLily’s optimizations
(this time was included in the UCW time in Table 1).

Monolothic Compositional Compositional + DA
BACKWARD FORWARD FORWARD(global) FORWARD(global)
(Acacia’09) BACKWARD(local) BACKWARD(local)

ex
am

pl
es

|t
b
U

C
W
|
(s

ta
te

s)

tb
U

C
W

T
im

e(
s)

C
he

ck
T

im
e(

s)

To
ta

lt
im

e(
s)

C
he

ck
T

im
e(

s)

To
ta

lt
im

e(
s)

Σ
i
|t
b
U

C
W

i
|

tb
U

C
W

T
im

e(
s)

C
he

ck
T

im
e(

s)

To
ta

lt
im

e(
s)

Σ
i
|t
b
U

C
W

i
|

tb
U

C
W

T
im

e(
s)

C
he

ck
T

im
e(

s)

To
ta

lt
im

e(
s)

3 20 0.49 0.00 0.49 0.01 0.5 28 0.40 0.01 0.41 17 0.060.00 0.06
5 26 0.71 0.00 0.71 0.01 0.72 42 0.70 0.02 0.72 34 0.400.02 0.42
6 37 1.22 0.02 1.24 0.02 1.24 57 1.14 0.03 1.17 45 0.790.06 0.85
7 22 0.60 0.00 0.60 0.01 0.61 41 0.66 0.02 0.68 33 0.400.02 0.42
9 13 0.13 0.01 0.14 0.00 0.13 31 0.26 0.00 0.26 na na na na
13 7 0.00 0.00 0.00 0.01 0.01 4 0.01 0.00 0.01 na na na na
14 14 0.11 0.00 0.11 0.01 0.12 27 0.77 0.01 0.78 15 0.030.00 0.03
15 16 0.06 0.02 0.08 0.00 0.06 22 0.11 0.03 0.14 na na na na
16 21 0.22 0.31 0.53 0.07 0.29 45 0.20 0.14 0.34 na na na na
17 17 0.16 0.04 0.20 0.03 0.19 23 0.16 0.05 0.21 na na na na
18 22 0.34 0.21 0.55 0.19 0.53 45 0.35 0.16 0.51 na na na na
19 18 0.31 0.01 0.32 0.01 0.32 27 0.25 0.03 0.28 27 0.260.01 0.27
20 105 2.67 0.01 2.68 0.01 2.68 154 2.43 0.03 2.46 101 1.520.02 1.54
21 27 7.38 0.22 7.60 0.28 7.66 43 1.40 0.52 1.92 44 0.550.51 1.06
22 45 7.08 0.03 7.11 0.02 7.1 80 10.260.0510.31 49 1.510.13 1.64
3.2 36 0.94 0.02 0.96 0.00 0.94 40 0.79 0.02 0.81 na na na na
3.3 56 1.80 0.15 1.95 0.02 1.82 60 1.21 0.06 1.27 na na na na
3.4 84 3.12 1.24 4.36 0.04 3.16 80 1.63 0.10 1.73 na na na na
3.5 128 3.52 9.94 13.46 0.12 3.64 100 2.04 0.17 2.21 na na na na
3.6 204 10.22 100 110.22 0.46 10.68 120 2.40 0.39 2.79 na na na na
3.7 344 26.48 660 686.48 2.35 28.82 140 2.96 1.02 3.98 na na na na

Table 1.Performance comparison onLily’s benchmark and parametric example

Conclusion We have provided compositional algorithms for fullLTL synthesis. Our
algorithm are able to handle formulas that are several pageslong (see [2]). We believe
that our compositional approach is an essential step to makerealizability check more
practical. As future works, we plan to improve our tool by considering symbolic data-
structures. Currently, the alphabet of signals is handled enumeratively and we believe
that substantial gain could be obtain by handling it symbolically. This algorithmic im-
provement is orthogonal to the ones presented in this paper.It should be noted that the
compositional approach we propose is general and can be applied, for example, if some
sub-games are not specified usingLTL but constructed directly from another specifica-
tion language. This is important as in practice some modulescould be easily specified
directly by deterministic automata instead ofLTL. Exploring the use of such mixed
specification methodology is part of our future works.

FLAT BINARY HEURISTIC

k Σ
|t
b
U

C
W
|

tb
U

C
W

T
im

e(
s)

U
C

W
O

P
T

T
im

e(
s)

C
he

ck
T

im
e(

s)

C
he

ck
T

im
e(

s)

C
he

ck
T

im
e(

s)

|M
oo

re
m

ac
hi

ne|

gb s2 r2 2 91 4.83 0.08 0.84 0.99 0.98 54
gb s2 r3 2 150 8.52 0.17 7.33 36.27 6.99 63
gb s2 r4 2 265 15.64 0.53 36.88 125.60 24.19 86
gb s2 r5 2 531 26.48 2.11 154.02 266.36 70.41107
gb s2 r6 2 111650.70 14.38 889.12 1164.44 335.44132
gb s2 r7 2 239992.01148.462310.74 timeout 1650.83149

Table 2.Performance comparison on a scalability test for the forward methods

References
1. M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable specifications of reactive

systems. InICALP, LNCS 372:1–17, 1989.
2. Acacia. Available athttp://www.antichains.be/acacia, 2009.
3. R. Bloem, S. Galler, B. Jobstmann, N. Piterman, A. Pnueli,and M. Weiglhofer. Specify,

compile, run: Hardware from psl.Electr. Notes Theor. Comput. Sci., 190(4):3–16, 2007.
4. F. Cassez, A. David, E. Fleury, K.G. Larsen, and D. Lime. Efficient on-the-fly algorithms for

the analysis of timed games. InCONCUR, LNCS 3653:66–80, 2005.
5. De Wulf, M., Doyen, L., Henzinger, T.A., Raskin, J.F.: Antichains: A new algorithm for

checking universality of finite automata. InCAV, LNCS 4144:17–30, 2006.
6. Doyen, L., Raskin, J.F.: Improved algorithms for the automata-based approach to model-

checking. InTACAS, LNCS 4424:451–465, 2007.
7. E. Filiot, N. Jin, and J.-F. Raskin. An antichain algorithm for LTL realizability. In CAV,

LNCS 5643:263–277, 2009.
8. K. Greimel, R. Bloem, B. Jobstmann, and M. Y. Vardi. Open implication. In ICALP’08,

LNCS 5126:361–372, 2008.
9. www.research.ibm.com/haifa/projects/verification/RB Homepage/tutorial3/

10. B. Jobstmann and R. Bloem. Optimizations for LTL synthesis. In FMCAD, pp 117–124.
IEEE.

11. W. Kuijper and J. van de Pol. Compositional control synthesis for partially observable sys-
tems. InCONCUR, LNCS 5710:431–447, 2009.

12. O. Kupferman and M. Y. Vardi. Safraless decision procedures. InFOCS, pp 531–542, 2005,
IEEE.

13. O. Kupferman, N. Piterman, and M. Y. Vardi. Safraless compositional synthesis. InCAV,
LNCS 4144:31–44, 2006.

14. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL, pp 179–190,
1989, ACM.

15. R. Rosner.Modular synthesis of reactive systems. Ph.d. dissertation, Weizmann Institute of
Science, 1992.

16. S. Safra. On the complexity ofω automata. InFOCS, pp 319–327, 1988.
17. S. Schewe and B. Finkbeiner. Bounded synthesis. InATVA, LNCS 4762:474–488. 2007.
18. S. Sohail and F. Somenzi. Safety first: A two-stage algorithm for ltl games. InFMCAD, pp

77–84, 2009, IEEE.
19. W. Thomas. Church’s problem and a tour through automata theory. InPillars of Computer

Science, LNCS 4800:635–655, 2008.
20. M. Y. Vardi. An automata-theoretic approach to linear temporal logic. InBanff Higher Order

Workshop, LNCS 1043:238–266, 1995.

