
Probabilistic Contracts for Component-based

Design⋆

Dana N. Xu, Gregor Gössler, and Alain Girault

INRIA, France

Abstract. We define a probabilistic contract framework for the con-
struction of component-based embedded systems, based on the theory
of Interactive Markov Chains. A contract specifies the assumptions a
component makes on its context and the guarantees it provides. Proba-
bilistic transitions allow for uncertainty in the component behavior, e.g.
to model observed black-box behavior (internal choice) or reliability. An
interaction model specifies how components interact.

We provide the ingredients for a component-based design flow, in-
cluding (1) contract satisfaction and refinement, (2) parallel composition
of contracts over disjoint, interacting components, and (3) conjunction
of contracts describing different requirements over the same component.
Compositional design is enabled by congruence of refinement.

1 Introduction

Typical embedded and distributed systems often encompass unreliable software
or hardware components, as it may be technically or economically impossible
to make a system entirely reliable. As a result, system designers have to deal
with probabilistic specifications such as “the probability that this component
fails at this point of its behavior is less than or equal to 10−4”. More generally,
uncertainty in the observed behavior is introduced by abstraction of black-box
— or simply too complex — behavior of components, the environment, or the
execution platform. In this paper we introduce a framework for the design of
correct systems from probabilistic, interacting components.

Figure 1(a) shows a Link system that transmits data between a Client and
a Server. The Link receives a request from the Client and encodes the request
before sending it to the Server. The encoding process fails with probability 0.02.
After receiving a response from the Server, it decodes the data before delivering
it to the Client. To model components, we adopt the discrete time Interactive
Markov Chain (IMC) semantic model [8], which combines Labeled Transition
System (LTS) and Markov Chain. Figure 1(b) shows an IMC describing the
network Link of Figure 1(a). From its initial state l0, the Link goes to state l1 as
soon as it receives (rec) a request from a Client; the probability that it delivers
(del′) this request to the Server is 0.98 and the probability that it fails before
delivering to the Server is 0.02. The Link goes to state l4 immediately after

⋆ supported by the European project COMBEST no. 215543.

receiving a response (rec′) from the Server; the probability that it delivers (del)
the response to the Client is 0.95 and the probability of failing to do so is 0.05.
In state l8, the Link may still communicate with the Server regarding other
services, but will not deliver any response to the Client.

Client (C) Link (L)
req rec

res del
Server (S)

del’ req’

rec’ res’

(a) Client – Link – Server.

l2 l3

l0

l1

l6

l7

l4

l5

l9l8

del′
0.05 rec′

0.95

del′
fail1

0.98rec rec′

fail2

del

0.02

(b) The IMC Mℓ of the Link.

Fig. 1: An example of IMC: a Client-Link-Server.

Components communicate through interactions, that is, synchronized action
transitions. Interactions are essential in component frameworks, as they allow
the modeling of how components cooperate and communicate. We use the BIP
framework [7] to model interactions between components.

Since the deploying context of a component is not known at design time,
we use probabilistic contracts to specify and reason about correct behaviors of
a component. Contracts have first been introduced in [11]. They allow us to
specify what a component can expect from its context, what it must guarantee,
and explicitly limit the responsibilities of both.

The framework we propose here allows us to model components, their inter-
actions, and uncertainty in their observed behavior (§2). It supports different
steps in a design flow: refinement, satisfaction, and abstraction (§3), parallel
composition (§4.1), and conjunction (shared refinement) (§4.2). We prove that
these operations satisfy the desired properties of independent implementability
and congruence for parallel composition, and soundness for conjunction. Thus,

• refinement is compositional, that is, contracts over different components can
be refined and implemented independently;

• the parallel composition of two contracts is satisfied by the parallel compo-
sition of any two implementations of the contracts; and

• several contracts Ci over the same component may be used to independently
specify different requirements, possibly over different subsets of the compo-
nent interactions. The conjunction is a common refinement of all Ci.

As pointed out in [2], conjunction of probabilistic specifications is non trivial,
as a straight-forward approach would introduce spurious behaviors.

2 Components and Contracts

We give a formal definition to the discrete-time Interactive Markov Chains de-
scribed in [8], used to model the behavior of components.

Definition 1 (Probability distribution) A probability distribution over a
set X is a function f : X → [0, 1] such that

∑

x∈X f(x) = 1.

Definition 2 (Interactive Markov Chain (IMC)) An IMC is a tuple
(Q,A,→, π, s0) where:

• Q is a nonempty finite set of states, partitioned into Qp, the set of proba-
bilistic states, and Qa, the set of action states;

• A is a finite alphabet of actions;
• → ⊆ Qa ×A×Q is an action transition relation;
• π : Qp → (Q → [0, 1]) is a transition probability function such that, for each
s ∈ Qp, π(s) is a probability distribution over Q;

• s0 is the initial state.

IMC may interact with each other by synchronizing on action transitions
(details in §4). Each action state in Qa has outgoing action transitions like those
in an LTS. Each probabilistic state in Qp has outgoing probabilistic transitions
like those in a Markov Chain. Probability distributions on states are memory-
less, i.e., the future of an IMC depends only on the current state, but not on
past choices. For example, in Figure 1(b), the probabilistic choice that the Link
delivers the response to the Client (i.e., π(l4)(l5) = 0.95) is independent of the
probabilistic choice of delivering a request to the Server (i.e., π(l1)(l2) = 0.98).

Notation: For convenience, we sometimes write the transition probability
function π as a transition relation 99K ⊆ Qp × [0, 1]×Q such that

99K = {(s, p, s′) | s ∈ Qp ∧ s′ ∈ Q ∧ p = π(s)(s′)}

We introduce contracts as a finite specification for a possibly infinite number
of IMCs. In contrast to IMCs, the probabilistic transitions of a contract are
labeled with probability intervals, similar to [9,15]. Moreover, a distinct⊤ state is
used to distinguish assumptions on the use of the component from the guarantees
it provides.

Definition 3 (Contract) A contract is a tuple (Q,A,→, σ, t0) where:

• Q is a nonempty finite set of states, partitioned into Q = Qp ∪ Qa ∪ {⊤},
where Qp is the set of probabilistic states, Qa is the set of action states, and
⊤ is a distinct state without any outgoing transitions;

• A is a finite alphabet of actions;
• → ⊆ Qa ×A×Q is the action transition relation;
• σ : Qp → (Q → 2[0,1]) is a transition probability predicate, associating with
each pair of states (s, s′) ∈ Qp ×Q an interval of probabilities;

• t0 is the initial state.

Notations: We also write σ as a transition relation 99K ⊆ Qp × 2[0,1] × Q

such that 99K = {(s, P, s′) | s ∈ Qp ∧ s′ ∈ Q ∧ P = σ(s)(s′)}. We write q
>0
99K q′

if ∃p > 0 : p ∈ σ(q, q′), and
>0
99K

+

for the transitive closure of
>0
99K. We extend

arithmetic operations to intervals: [ℓ1, u1] + [ℓ2, u2] = [ℓ1 + ℓ2, u1 + u2].
The meaning of a contract over a component C is the following:

• a transition s
a
→ ⊤ specifies the assumption of the component C that an

interaction involving action a does not occur in state s;
• in an action state s, an action a labeling a transition not leading to⊤ specifies
the guarantee of the component C that a is enabled in s; conversely, the
absence of any outgoing transition labeled with a specifies the guarantee
that an interaction involving a will not occur;

• the ⊤ state represents the fact that the assumption has been violated, and
henceforth, the component C can show arbitrary, uncontrollable behavior;

• a transition s
[a,b]
99K t specifies an interval of allowed transition probabilities.

s1

s0

s3

s2

s4

er2

res′

0.7

res′

0.2

handleres′

0.1
req′

req′ ⊤

t2

t3

t0

t1

req′

req′ [0.9, 1]

[0, 0.1]

res′

(a) IMC Ms for Server (b) Contract Cs for Server

Fig. 2: Contract examples.

Example 1. The contract Cs in Figure 2(b) specifies that, after the Server re-
ceives a request req′, the probability that it reaches state t3 is within [0, 0.1]; in
state t3, it assumes that the environment does not give req ′ again; if this occurs,
its implementation is not bound by Cs any more; the probability that it reaches
t2 from t1 is within [0.9, 1]; in state t2, it guarantees to send a response (res′).
In §3, we show how to check that Ms (in Figure 2(a)) satisfies Cs.

From the definitions of IMC and contract, we can see that an IMC can be
trivially converted to a contract. For this, we define a lifting operator ⌊.⌋ (Fig-
ure 3 (c)). For the sake of simplicity, we use the same notation 99K to represent
both kinds of probabilistic transitions (i.e., those in an IMC and in a contract).

Definition 4 (Delimited contract) A contract C = (Q,A,→, σ, t0) is delim-
ited [5] iff ∀s ∈ Qp ∀s′ ∈ Q ∀p ∈ σ(s)(s′) : 1− p ∈

∑

s′′∈Q\{s′} σ(s)(s
′′).

Example 2. Figure 3 (a) shows a delimited contract: for all p ∈ [0, 2, 0.3], we
can find p′ ∈ [0.7, 0.8] such that p+ p′ = 1 and vice versa. Figure 3 (b) shows a
contract that is not delimited. However, we can cut [5] the redundant sub-interval
[0.8,0.9] from the interval [0.7,0.9] to obtain a delimited contract.

t2

t1

t0 [0.7, 0.8] b

[0.2, 0.3]

a

t2

t1

t0 [0.7, 0.9] b

[0.2, 0.3]

a

⌊s1
α
−→ s2⌋ = s1

α
−→ s2

⌊s1
p

99K s2⌋ = s1
[p,p]
99K s2

(a) Delimited. (b) Non-delimited. (c) Lifting rules.

Fig. 3: Delimited contract and rules for lifting IMC to contract.

3 Contract Refinement

System synthesis involves refining a contract several times until an implementa-
tion is obtained. We therefore define formally the notion of contract refinement.

3.1 Refinement and Satisfaction

We first define contract refinement, and give thereafter some explanations.

Definition 5 (Contract refinement) Let C1 = (Q1,A,→1, σ1, s0) and C2 =
(Q2,A,→2, σ2, t0) be two contracts. C1 refines C2 (written C1 ≤ C2) iff s0 ≤ t0,
where ≤ ⊆ Q1 ×Q2 is the greatest relation s.t. for all s ≤ t we have:

1. s = ⊤ =⇒ t = ⊤;

2. If (s, t) ∈ Qa

1 × (Qa

2 ∪ {⊤}) then

(a) ∀t′ 6= ⊤ ∈ Q2, (t
α
→2 t′) =⇒ (∃s′ ∈ Q1, s

α
→1 s′ ∧ s′ ≤ t′);

(b) ∀s′ ∈ Q1, (s
α
→1 s′) =⇒ (t = ⊤ ∨ ∃t′ ∈ Q2, t

α
→2 t′ ∧ s′ ≤ t′).

3. If (s, t) ∈ Qp

1 ×Qp

2 then there exists a function δ : Q1 ×Q2 → [0, 1], which,
for each s′ ∈ Q1, gives a probability distribution δ(s′) over Q2, such that for
every probability distribution f over Q1 with f(s′) ∈ σ1(s)(s

′) and ∀t′ ∈ Q2,

∑

s′∈Q1

f(s′)∗δ(s′)(t′) ∈ σ2(t)(t
′) and ∀s′ ∈ Q1 :

(

δ(s′)(t′) > 0 =⇒ s′ ≤ t′
)

4. If (s, t) ∈ Qa

1 ×Qp

2 then ∃ta ∈ Qa

2 : t
>0
99K

+

2 ta ∧ s ≤ ta and ∀t′ ∈ Q2,
(

t
>0
99K2 t′ =⇒ s ≤ t′

)

.

5. If (s, t) ∈ Qp

1 ×Qa

2 then ∃sa ∈ Qa

1 : s
>0
99K

+

1 sa ∧ sa ≤ t and ∀s′ ∈ Q1,
(

s
>0
99K1 s′ =⇒ s′ ≤ t

)

.

In Definition 5, condition (1) ensures that C1 makes no stronger assumptions
on the context than C2. Condition (2a) says that any transition accepted by C2

must also be accepted by C1. Similarly, condition (2b) says that each action

transition of C1 must also be enabled in C2, unless C2 is in the ⊤ state. Con-
dition (3), adapted from [9], deals with refinement among probabilistic states.
Intuitively, s ≤ t if there exists a function δ which distributes the probabilities of
transitions from s to s′ onto the transitions from t to t′, such that the sum of the
fractions is in the range σ(t)(t′), as illustrated in Example 3 below. Condition (4)
says that an action state s refines a probabilistic state t if it refines all action
states reachable with a path of positive probability from t. Finally, condition (5)
is symmetrical to condition (4).

Before giving an example of refinement, we define the satisfaction of a con-
tract by an implementation (an IMC) as the refinement of the contract by the
lifted IMC (i.e., written in the form of a contract).

Definition 6 (Contract satisfaction) An IMC M satisfies a contract C (writ-
ten M |= C) iff ⌊M⌋ ≤ C.

Example 3. We illustrate how to check ⌊Ms⌋ ≤ Cs, in particular, s1 ≤ t1. It is
easy to check s3 ≤ t2, s4 ≤ t2, and s2 ≤ t3. Dashed lines stand for non-negative
distributions δ. Condition (3) in Definition 5 states that s1 ≤ t1 if for each
successor state of s1 there is a function δ (i.e., d1, d2, d3) such that, for each tuple
(p2, p3, p4) satisfying constraints (1) to (4) in Figure 4, the constraints (5) and (6)
are implied. Condition (3) can be checked efficiently by requiring the set inclusion
to hold for the bounds of interval σ(s)(s′), using a linear programming solver. As
δ(s′) is a probability distribution, we obtain for our example d1 = d2 = d3 = 1.
(Note that if we had s2 ≤ t2 as well, say, we had d4 from s2 to t2, we would have
another constraint d3 + d4 = 1.)

s1

s3

s2

s4 t2

t3

t1
d3

[0.9, 1]d2

[0, 0.1]

[0.2, 0.2]

d1

[0.1, 0.1]

[0.7, 0.7] (1) p2 ∈ [0.1, 0.1]
(2) p3 ∈ [0.7, 0.7]
(3) p4 ∈ [0.2, 0.2]
(4) p2 + p3 + p4 = 1
(5) p3 ∗ d1 + p4 ∗ d2 ∈ [0.9, 1]
(6) p2 ∗ d3 ∈ [0, 0.1]

Fig. 4: Left: Contract refinement s1 ≤ t1. Right: Constraints to be checked.

Definition 7 (Models of contracts) The set of models of a contract C (writ-
ten M(C)) is the set of IMCs that satisfy C: M(C) = {M | M |= C}.

Definition 8 (Semantical equivalence) Contracts C1 and C2 are semanti-
cally equivalent (written C1 ≡ C2) iff M(C1) = M(C2).

Lemma 1 (Monotonicity of satisfaction) For all IMC M and contracts C1

and C2, if M |= C1 and C1 ≤ C2, then M |= C2.

Lemma 2 (Refinement and model inclusion) For all contracts C1 and C2,
C1 ≤ C2 =⇒ M(C1) ⊆ M(C2).

The proofs for all lemmas and theorems in this paper can be found in [14].

3.2 Bisimulation

We adapt the usual notion of bisimulation to contracts, and define reduction of
a contract with respect to bisimulation.

Definition 9 (Bisimulation ≃) Given a contract C = (Q,A,→, 99K, s0), let
≃ ⊆ Q×Q be the greatest relation such that if s ≃ t then:

1. s = ⊤ ⇐⇒ t = ⊤;
2. If (s, t) ∈ Qa ×Qa then

(a) ∀α ∈ A ∀s′ ∈ Q, (s
α
→ s′ =⇒ ∃t′ ∈ Q, (t

α
→ t′ ∧ s′ ≃ t′))

(b) ∀α ∈ A ∀t′ ∈ Q, (t
α
→ t′ =⇒ ∃s′ ∈ Q, (s

α
→ s′ ∧ s′ ≃ t′))

3. If (s, t) ∈ Qp ×Qp then
(a) there is a function δ : Q × Q → [0, 1], which for each s′ ∈ Q gives a

probability distribution δ(s′) on Q, s.t. for every probability distribution
f over Q with f(s′) ∈ σ(s)(s′) and ∀t′ ∈ Q

∑

s′∈Q

f(s′)∗δ(s′, t′) ∈ σ(t)(t′) and ∀s′ ∈ Q :
(

δ(s′, t′) > 0 =⇒ s′ ≃ t′
)

(b) symmetric to (3a);

4. If (s, t) ∈ Qa × Qp then ∃ta ∈ Qa : t
>0
99K

+

ta ∧ s ≃ ta and ∀t′ ∈ Q, t
>0
99K

t′ =⇒ s ≃ t′;

5. If (s, t) ∈ Qp × Qa then ∃sa ∈ Qa : s
>0
99K

+

sa ∧ sa ≃ t and ∀s′ ∈ Q,

s
>0
99K s′ =⇒ s′ ≃ t.

In Definition 9, condition (2) is the standard definition for bisimulation.
Conditions (3a) and (3b) deal with the probabilistic transitions. Finally, con-
ditions (4) and (5) say that an action state is bisimilar with a probabilistic state
if it is bisimilar with all its successors with non-zero probability, and some action
state is reachable from this probabilistic state.

Definition 10 (Reduction modulo ≃) Let C = (Q,A,→, σ, s0) be a con-
tract. For all s ∈ Q, let Cs = {q ∈ Q | s ≃ q} be the equivalence class of s.
Let C = {Cs | s ∈ Q}. The reduced contract, written C, is (C,A,→≃, σ≃, Cs0)

such that, ∀s = {s1, . . . , sm}, t = {t1, . . . , tn} ∈ C, we have: (1) s
a
→≃ t iff

∃i, j : si
a
→ tj, and (2) σ≃(s, t) =

∑

1≤j≤n σ(s1, tj)).

Notice that an equivalence class may contain both action and probabilis-
tic states. By Definition 9, except for probabilistic transitions with probability
interval [0, 0], either all transitions leaving an equivalence class are action tran-
sition and Definition 9 (2) applies, or they are all probabilistic transitions and
Definition 9 (3) applies as follows. For each probabilistic state si ∈ s, the prob-
abilities of transitions to states tj ∈ t are summed up (it does not matter which
of the transitions is taken since all successors tj are equivalent). This sum is the
transition probability from si to some state in t. By definition of ≃, the sum is

the same for all si ∈ s, thus we pick σ(s1, tj). For example, we can reduce the
contract C2 of Figure 7 (right) by combining the bisimilar states t2 and t3 into

one: t1
[0.2,0.6]
99K {t2, t3}.

Lemma 3 (Model equivalence) For all delimited contracts C, C ≡ C.

3.3 Contract Abstraction

The need of abstraction arises naturally in contract frameworks. We abstract
actions in A \ B that we do not care about by renaming them into internal τ
actions. The contract over the alphabet B ∪ {τ} is then projected on the sub-
alphabet B by using the standard determinization algorithm (see e.g. [1]).

Definition 11 (Projection) Let C = (Q,A,→1, σ, s0) be a contract and B ⊆ A.
Let C ′ = (Q,B∪{τ},→1, σ, s0) be the contract where all transition labels in A\B
are replaced with τ . The projection of C on B (written πB(C)) is obtained by
τ -elimination (determinization) of C ′.

Example 4. In Figure 2, if we do not care how the implementation handles failure
cases, we can check that πAs\{handle}(Ms) |= Cs.

4 Contract Composition

We introduce two composition operations for contracts: parallel composition ||,
parametrized with an interaction set I, and conjunction ∧ (shared refinement).

4.1 Parallel Composition of Contracts

Parallel composition allows us to build complex models from simpler compo-
nents in a stepwise and hierarchical manner. In order to reason about the com-
position of components at the contract level, we introduce parallel composition
of contracts. As in the BIP component framework [7], parallel composition is
parametrized with a set of interactions, where each interaction is a set of compo-
nent actions occurring simultaneously. For instance, an interaction set {a, a|b, c}
says that action a can interleave or synchronize with b; action b must synchronize
with a; action c is a singleton interaction that always interleaves. The symbol “|”
is commutative, which means that a|b is identical to b|a. In Figure 5, the inter-
actions α and β are of the form c, a|b, or a|b|d, and so on.

Definition 12 (Parallel composition of contracts) Let C1 = (Q1,A1,→1,

99K1, s0) and C2 = (Q2,A2,→2, 99K2, t0) be two contracts. The parallel com-
position of C1 and C2 on interaction set I (written C1||IC2) is the contract
(

Q, I,→, 99K, (s0, t0)
)

where:

1. Q = Q1 ×Q2 with ⊤ = (Q1 ×{⊤2})∪ ({⊤1}×Q2) — that is, ⊤ of C1||IC2

is an aggregate state reached as soon as C1 or C2 reaches its ⊤i state —,
Qa = Qa

1 ×Qa

2, and Qp = Q \ (Qa ∪ ⊤);

q1
α
→1 q′1 α ∈ I q2 ∈ Qa

2

(q1, q2)
α
−→ (q′1, q2)

[R1]
q2

α
→2 q′2 α ∈ I q1 ∈ Qa

1

(q1, q2)
α
−→ (q1, q

′
2)

[R2]

q1
α
→1 q′1 q2

β
→2 q′2 α|β ∈ I

(q1, q2)
α|β
−−→ (q′1, q

′
2)

[R3]
q1

[p1,p2]
99K 1 q′1 q2

[p3,p4]
99K 2 q′2

(q1, q2)
[p1∗p3,p2∗p4]

99K (q′1, q
′
2)

[R4]

q1
P
99K1 q′1 q2 ∈ Qa

2

(q1, q2)
P
99K (q′1, q2)

[R5]
q2

P
99K2 q′2 q1 ∈ Qa

1

(q1, q2)
P
99K (q1, q

′
2)

[R6]

Fig. 5: Rules for the parallel composition of contracts.

2. → is the least relation satisfying the rules [R1]–[R3] in Figure 5; and
3. 99K is the least relation satisfying the rules [R4]–[R6] in Figure 5.

Rules [R1] to [R3] are the usual parallel composition rules for interactive
processes, while the rule [R4] is similar to the typical parallel composition for
Markov chains but on probability intervals. Finally, rules [R5] and [R6] state
that probabilistic transition, usually modeling hidden internal behavior, have
priority over action transitions.

Example 5. Figure 6 illustrates the parallel composition of contracts Cs (from
Figure 2(b)) and Cℓ = ⌊Mℓ⌋ (where Mℓ is given in Figure 1(b)), with I =
{rec, del, req′|del′, res′|rec′, fail1 , fail2}. The composed contract Cs ||I Cℓ states
that a failure in the Link component does not prevent it from continuing to
deliver the request req′ to the Server and receiving response from the Server,
but the failure prevents it from delivering the response res′ back to the Client.

(t2, u9)

(t1, u9)

(t2, u3)

(t1, u3)

(t0, u6)

(t0, u8)

(t3, u9)

(t0, u1)

(t0, u0)

(t0, u2)

(t0, u5)

(t0, u4)

(t0, u7)

(t3, u3)

[0.02, 0.02]

[0.9, 1]

[0, 0.1]

req′|del′

rec

[0, 0.05]

[0.95, 1]

fail2

[0, 0.1]

fail1

[0.9, 1]

res′|rec′

res′|rec′

req′|del′

del

[0.98, 0.98]

Fig. 6: Parallel composition of Cs and Cℓ.

We end the section on parallel composition with two essential properties.

Theorem 1 (Independent implementability) For all IMCs M,N , contracts
C1, C2, and interaction set I, if M |= C1 and N |= C2, then M ||IN |= C1||IC2.

Theorem 2 (Congruence of refinement) For all contracts C1, C2, C3, and
interaction set I, if C1 ≤ C2, then C1||IC3 ≤ C2||IC3.

4.2 Conjunction of contracts

A single component may have to satisfy several contracts that are specified
independently, each of them specifying different requirements on the component,
such as safety, reliability, and quality of service aspects. Therefore, the contracts
may use different, possibly overlapping, sub-alphabets of the component. The
conjunction of contracts computes a common refinement of all contracts. Prior
to conjunction, we define similarity of contracts as a test whether a common
refinement exists.

Definition 13 (Similarity (∼)) Let C1 = (Q1,A1,→1, 99K1, s0) and C2 =
(Q2, A2,→2, 99K2, t0) be two contracts. ∼ ⊆ Q1 × Q2 is the largest relation
such that ∀(s, t) ∈ Q1 × Q2, s ∼ t iff (s = ⊤ ∨ t = ⊤) or conditions (1) to (4)
below hold:

1. If (s, t) ∈ Qa

1 ×Qa

2 then

(a) for all s′ ∈ Q1, if s
a
→ s′, then either t

a
→ t′ for some t′ ∈ Q2 and s′ ∼ t′,

or a 6∈ A2 and s′ ∼ t; and
(b) for all t′ ∈ Q2, if t

a
→ t′, then either s

a
→ s′ for some s′ ∈ Q1 and s′ ∼ t′,

or a 6∈ A1 and s ∼ t′;
2. If (s, t) ∈ Qp

1 ×Qp

2 then

(a) for all s′ ∈ Q1, if s
P1

99K s′, then t
P2

99K t′ for some t′ ∈ Q2 with P1∩P2 6= ∅
and (s′ ∼ t′ ∨ 0 ∈ P1 ∩ P2);

(b) for all t′ ∈ Q2, if t
P2

99K t′, then s
P1→ s′ for some s′ ∈ Q1 with P1∩P2 6= ∅

and (s′ ∼ t′ ∨ 0 ∈ P1 ∩ P2);

3. If (s, t) ∈ Qp

1 ×Qa

2 then for all s′ ∈ Q1 with s
P
99K1 s′, (s′ ∼ t ∨ 0 ∈ P);

4. If (s, t) ∈ Qa

1 ×Qp

2 then for all t′ ∈ Q2 with t
P
99K2 t′, (s ∼ t′ ∨ 0 ∈ P).

Finally, C1 and C2 are similar, written C1 ∼ C2, iff s0 ∼ t0.

The Pi in Definition 13 refers to a probabilistic interval in the form of [ℓi, ui].
Any state is similar with the top state (where the contract does not constrain the
implementation in any way). Two action states are similar if they agree on the
enabled actions in the common alphabet, and the successor states are similar
again. Two probabilistic states are similar if the probabilistic transitions can
be matched such that the intervals overlap, and the successor states are either
similar, or can be made unreachable by refining the probability interval to [0, 0].

Definition 14 (Unambiguous contract) A contract C = (Q,A,→, 99K, s0)

is unambiguous iff for all r, s, t ∈ Q, if r
>0
99K s ∧ r

>0
99K t ∧ s ∼ t, then s = t.

A contract is unambiguous if the reachable successor states of any proba-
bilistic state are pairwise non-similar. In Figure 7 (left), the contract Ca is not
unambiguous: s2 ∼ s3 (highlighted in gray) but s2 6= s3.

We are now ready to define the conjunction of contracts.

s1

s3

s2

s5

s4

s7

s6

[0, 0.4]

[0, 0.3]

b

[0.8, 1]

[0.7, 1]

b

[0.4, 1]

[0, 0.6]

a

a

s1

s3

s2

b

a

[0.5, 1]

[0, 0.5]

t2

t3

t4

t1

[0, 0.2]

[0.2, 0.4]

a

a

[0.4, 0.8]

b

Fig. 7: Left: ambiguous contract Ca. Middle: C1. Right: C2 where C1 6∼ C2.

Definition 15 (Conjunction of contracts (∧)) For unambiguous contracts
C1 = (Q1,A1,→1, 99K1, s0) and C2 = (Q2,A2,→2, 99K2, t0) such that C1 and
C2 are similar, let C1 ∧ C2 be the contract

(

Q1 × Q2,A1 ∪ A2,→, 99K, (s0, t0)
)

where ⊤ = (⊤1,⊤2) and

1. → is the least relation satisfying the rules [C1] – [LiftR] in Figure 8, and
2. 99K is the least relation satisfying the rules [C3] – [C4R] in Figure 8 (where

for all other probabilistic transitions (q1, q2)
P
99K (q′1, q

′
2), P = [0, 0]).

q1
α
→1 q′1 q2

α
→2 q′2

(q1, q2)
α
−→ (q′1, q

′
2)

[C1]
q1

α
→1 q′1

(q1,⊤)
α
−→ (q′1,⊤)

[C2L]
q2

α
→1 q′2

(⊤, q2)
α
−→ (⊤, q′2)

[C2R]

q1
α
→1 q′1 α 6∈ A2 q2 ∈ Qa

2

(q1, q2)
α
→ (q′1, q2)

[LiftL]
q2

α
→2 q′2 α 6∈ A1 q1 ∈ Qa

1

(q1, q2)
α
→ (q1, q

′
2)

[LiftR]

q1
P1

99K1 q′1 q2
P2

99K2 q′2 q′1 ∼ q′2

(q1, q2)
P1∩P2

99K (q′1, q
′
2)

[C3]

q1
P
99K1 q′1 q2 ∈ Qa

2 ∪ {⊤}
q′1 ∼ q2

(q1, q2)
P
99K (q′1, q2)

[C4L]
q2

P
99K2 q′2 q1 ∈ Qa

1 ∪ {⊤}
q1 ∼ q′2

(q1, q2)
P
99K (q1, q

′
2)

[C4R]

Fig. 8: Rules for conjunction of contracts.

Rule [C1] requires the contracts to agree on action transitions over the com-
mon alphabet. According to rule [C2L] (resp. [C2R]), the conjunction behaves
like the first (resp. second) contract as soon as the other contract is in ⊤. Rules
[LiftL] and [LiftR] allow the interleaving of action transitions that are not
in the common alphabet. Rules [C3] – [C4R] define the probabilistic transi-
tions whose successor states are similar. For non-similar successor states, the
probability interval is refined to [0, 0], according to Definition 15.

Example 6. Figure 9 shows three contracts for the Link component: Cℓ1 specifies
that the implementation should receive a request from the Client and deliver it
to the Server; Cℓ2 specifies that the implementation should receive a response

s1

s0

s3

s2

⊤[0.02, 0.02]

del′

fail1

rec [0.98, 0.98]

⊤

t2

t3

t0

t1

fail2

rec′ [0.95, 1]

[0, 0.05]

del
u1u0

del′

rec′

Fig. 9: Left: Cℓ1. Middle: Cℓ2. Right: Cℓ3.

from the Server and deliver it to the Client; Cℓ3 requires the response (rec′)
received from the Server to occur after the request (del′) delivered to the Server.
We can verify that Mℓ |= (Cℓ1 ∧Cℓ3)∧ (Cℓ2 ∧Cℓ3) (where Mℓ is in Figure 1(b)).

⊤

t2

t3

t0

t1
[0, 0.5]

[0, 0.1]

a

a

a

[0, 0.4]
v2

v3

⊤

(t0, t0)

(t1, t1)
[0, 0.1]

a

[0, 1]

a
a

[0, 0.7]
s1

s0

s3

s2

s5s4 b

0.2 a

a a
0.8

(a) Ambiguous contract Cb (b) Cb ∧ Cb (c) A model Mb

Fig. 10: Example where Mb |= Cb ∧ Cb but Mb 6|= Cb.

Example 7. As a contract that is not in reduced form is not unambiguous, con-
tracts should be reduced before performing conjunction. In Figure 7 (left), con-
tract C2 is non unambiguous, but t2 ≃ t3. If we reduce C2 by applying Defi-

nition 10, we get t1
[0.2,0.6]
99K {t2, t3}

a
→ {t2, t3}. The reduced contract is unam-

biguous and s1 ∼ t1, such that conjunction yields a common refinement of C1

and C2.

Theorem 3 (Soundness of conjunction) For any IMC M and unambiguous
contracts Ci with alphabet Ai, i = 1, 2 such that C1 and C2 are similar, if
M |= C1 ∧ C2 then πAi

(M) |= Ci, i = 1, 2.

Example 8. Figure 10 motivates the requirement of conjunction (Definition 15)
for unambiguous contracts. The resulting contract Cb ∧ Cb is reduced such
that the model relation can be seen easily. The node v2 denotes the equiva-
lent class {(s1, s2), (s2, s1), (s2, s2)}; the node v3 denotes the equivalent class
{(s1, s3), (s2, s3), (s3, s1), (s3, s2), (s3, s3)}. As t1 ∼ t2 ∼ t3, duplicated intervals
lead to an unsound result.

It is interesting to note the similarity of conjunction with discrete controller
synthesis [13], in the sense that conjunction is a refinement of both contracts
making bad states (i.e., pairs of states where both contracts are contradictory)
unreachable. In this analogy, both action transitions and probabilistic transitions
with strictly positive intervals amount to uncontrollable transitions, whereas
transitions whose probability interval contains 0 amount to controllable transi-
tions that can be refined to [0, 0] so as to make bad states unreachable.

5 Case Study

We study a dependable computing system with time redundancy. The system
specification is expressed by the contract CS of Figure 11 (top left), which
specifies that the computation comp should have a success probability of at
least 0.999. If the computation fails, then nothing is specified (state ⊤).

The processor is specified by the contract CP of Figure 11 (top right). Follow-
ing an execution request exe, either the processor succeeds and replies with ok

(with a probability at least p), or fails and replies with nok (with a probability
at most 1− p). The failure rates for successive executions are independent. The
probability p is a parameter of the contract.

[0, 0.001]
s2

fail

⊤
CS

success

s0
comp

[0.999, 1]

s1

s3

p1

CP ok

p0

[p, 1]

[0, 1− p]

p2

p3
nok

exe

CT

q2 q4

q6

q0 q1 q3

q5

ok′

exe′ nok′ exe′

nok′

ok′

success

comp

fail

Fig. 11: Specification CS ; processor contract CP ; time redundancy contract CT .

We place ourselves in a setting where the reliability level guaranteed by CP

alone (as expressed by p) cannot fulfill the requirement of CS (that is, 0.999), and
hence some form of redundancy must be used. We propose to use time redun-
dancy, as expressed by the contract CT of Figure 11 (bottom). Each computation
comp is first launched on the processor (exe), either followed by a positive (ok)
or negative (nok) answer from the processor. In the latter case, the execution
is launched a second time, therefore implementing time redundancy. The con-
tract CT finally answers with success if either execution is followed by ok, or
with fail is both executions are followed by nok.

In terms of component-based design for reliability, we wonder what is the
minimum value of p to guarantee the reliability level of CS . To compute this
minimum value, we first compute the parallel composition CT ||ICP , with the
interaction set I = {comp, exe|exe′, ok|ok′, nok|nok′, success, fail}. The reduc-
tion modulo bisimulation of this parallel composition is shown in Figure 12 (top),
where the interactions exe|exe′, ok|ok′, and nok|nok′ have been replaced for con-
ciseness by exe, ok, and nok, respectively. We call this new contract CT ||P . We
then compute the projection of CT ||P onto the set B = {comp, success, fail}.
The result Cπ = πB(CT ||P) is shown in Figure 12 (bottom left).

q0
comp

q1 q2

[p, 1]

[0, 1− p]

q3

q5

q4

q6 q7

[0, 1− p]

[p, 1]

CT ||P = CT ||ICP

q8q9

exe

nok exe

nok

success

fail

ok

[0, 1− p]
q′
3

[p, 1]

q′
2

q′
0

comp
q′
1

q′
4

Cπ = πB(CT ||P)

[p, 1]

[0, 1− p]
fail

success

q′′
1

q′′
0

comp
[2p− p2, 1] q′′

2

q′′
3

C̃π

[0, (1− p)2]

success

fail

Fig. 12: Parallel composition CT ||P ; projection Cπ; transitive closure C̃π.

We are thus faced with a contract Cπ having sequences of probabilistic transi-
tions; more precisely, since some probabilistic states have several outgoing tran-
sitions, we have DAGs of probabilistic transitions. We therefore compute the
transitive closure for each such DAG, that is, the equivalent probabilistic transi-
tions from the initial state of the DAG (e.g., q′1 in Cπ) to its final states (e.g., q′2
and q′4 in Cπ). Without entering into the details of this computation, we show
the resulting contract C̃π in Figure 12 (bottom right).

The last step involves checking under which condition on p the contract C̃π

refines the specification CS . We have C̃π ≤ CS ⇔ (1− p)2 ≤ 0.001. This means
that, with time redundancy and a processor with a reliability level of at least
0.969, we are able to ensure an overall reliability level of 0.999.

6 Discussion

We have introduced a design framework based on probabilistic contracts, and
proved essential properties for the use in component-based design. Our definition
of contracts is based on the ideas from [9,15,5], although the frameworks in [9,5]
do not support interactions.

Shared refinement of interfaces, and conjunction of modal specifications over
possibly different alphabets have been defined in [4] and [12]. A framework over
modal assume/guarantee-contracts is introduced in [6], for which both paral-
lel composition and conjunction are defined. Probabilistic assume/guarantee-
contracts have been introduced in [3] in terms of traces. [10] introduces a com-
positional framework based on continuous time IMCs, adopting a similar inter-
action model as done in this paper. This framework supports abstraction, par-
allel and symmetric composition, but not conjunction. The recently introduced

Constraint Markov Chains (CMC) [2] generalize Markov Chains by introducing
constraints on state valuations and transition probability distributions, aiming
at a similar goal of providing a probabilistic component-based design frame-
work. Whereas CMCs do not support explicit interactions among components,
they allow one to expressively specify constraints on probability distributions.
Conjunction is shown to be sound and complete in this framework.

Future work will encompass implementing the framework and carrying out
case studies. A particularly interesting application would be the design of adap-
tive systems where the probabilistic behavior of components may change over
time, while the overall system must at any time satisfy a set of safety, reliability,
and quality of service contracts.

References

1. A.V. Aho, R. Sethi, and J.D. Ullman. Compilers – Principles, Techniques, and

Tools. Addison Wesley, 1986.
2. B. Caillaud, B. Delahaye, K.G. Larsen, A. Legay, M. Pedersen, and A. Wasowski.

Compositional design methodology with constraint markov chains. Research Re-
port 6993, INRIA, 2009.

3. B. Delahaye and B. Caillaud. A model for probabilistic reasoning on as-
sume/guarantee contracts. Research Report 6719, INRIA, 2008.

4. L. Doyen and T. Petrov T.A. Henzinger, B. Jobstmann. Interface theories with
component reuse. In Proc. EMSOFT’08, pages 79–88. ACM, 2008.

5. H. Fecher, M. Leucker, and V. Wolf. Don’t know in probabilistic systems. In Model

Checking Software, LNCS, pages 71–88. Springer, 2006.
6. G. Gössler and J.-B. Raclet. Modal contracts for component-based design. In Proc.

SEFM’09, pages 295–303. IEEE, 2009.
7. G. Gössler and J. Sifakis. Composition for component-based modeling. Science of

Computer Programming, 55(1-3):161–183, 3 2005.
8. H. Hermanns. Interactive Markov Chains: The Quest for Quantified Quality, vol-

ume 2428 of LNCS. Springer, 2002.
9. B. Jonsson and K.G. Larsen. Specification and refinement of probabilistic pro-

cesses. In LICS, pages 266–277. IEEE Computer Society, 1991.
10. J.-P. Katoen, D. Klink, and M.R. Neuhäußer. Compositional abstraction for

stochastic systems. In Proc. FORMATS’09, pages 195–211, 2009.
11. B. Meyer. Advances in Object-Oriented Software Engineering, chapter Design by

Contract, pages 1–50. Prentice Hall, 1991.
12. J.-B. Raclet, E. Badouel, A. Benveniste, B. Caillaud, and R. Passerone. Why

modalities are good for interface theories? In Proc. ACSD’09. IEEE, 2009.
13. P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete event

processes. SIAM J. Control and Optimization, 25(1), 1987.
14. D.N. Xu, G. Gössler, and A. Girault. Probabilistic contracts for component-based

design. Research Report 7328, INRIA, 2010.
15. W. Yi. Algebraic reasoning for real-time probabilistic processes with uncertain

information. In FTRTFT, volume 863 of LNCS, pages 680–693. Springer, 1994.

	Probabilistic Contracts for Component-based Design
	Dana N. Xu, Gregor Gössler, and Alain Girault

