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Methods for Knowledge based Controlling
of Distributed Systems

Saddek Bensalem!, Marius Bozga!, Susanne Graf!,
Doron Peled?, and Sophie Quinton®

!Centre Equation - VERIMAG, 2 Avenue de Vignate, Gieres, France
?Department of Computer Science, Bar Ilan University, Ramat Gan 52900, Israel

Abstract. Controlling concurrent systems to impose some global invari-
ant, is an undecidable problem. One can gain decidability at the expense
of reducing concurrency. Even under this flexible design assumption, the
synthesis problem remains highly intractable. One practical method for
designing controllers is based on checking knowledge properties upon
which the processes can make their decisions whether to allow or block
transitions. A major deficiency of this synthesis method is in calculating
the knowledge based on the given system that we want to control, and
not on the resulted system. The original system has less knowledge, and
as a result, we may introduce far more synchronization than needed. In
this paper we show techniques to reduce this overhead.

1 Introduction

Model checking has provided algorithms for the automatic analysis of systems.
Techniques for automating the process of system design, in order to obtain
correct-by-construction systems, have been recently studied as well. The syn-
thesis problem from LTL specification was shown by Pnueli and Rosner [12] to
be 2EXPTIME hard for sequential reactive systems and undecidable for concur-
rent systems. A related problem is to control an already given system in order
to force it to satisfy some additional property [14]. For distributed systems, this
has also been shown to be undecidable [18,17]. Under the assumption that a
system is flexible to the addition of further synchronization, the control problem
becomes decidable. A solution based on model checking of knowledge properties
was suggested [1,7].

In this paper, we look at the problem of reducing the need for additional
synchronization in order to control distributed systems. We identify the main
problem of the knowledge approach in using the controlled (source) system to
calculate the knowledge. In fact, this is merely an approximation, as the actual
knowledge needs to be satisfied by the (target) system after it is being controlled.
After the control is applied, there are fewer executions, and fewer reachable
states, hence the knowledge cannot decrease.

Our first observation is somewhat surprising: we prove that it is safe to calcu-
late the knowledge based on the source system when considering for the analysis



only the executions of the source system that satisfy the desired constraint. This
provides a smaller set of executions and reachable states, hence, also potentially
more knowledge.

A second observation is that once we control a system according to its knowl-
edge properties, we obtain again a system with fewer executions and reachable
states: even if in the original system there are states where the system lacks the
knowledge to continue, these states may, in fact, already be unreachable. Thus,
one needs to make another round of checks on the obtained controlled system;
this version may, in fact, have enough knowledge to implement the desired con-
straints.

These two observations can be used in conjunction with other methods for
constructing distributed controllers based on knowledge:

— Using knowledge of perfect recall (proposed in [1]).
— Adding coordinations to combine knowledge (proposed in [7]).

We show here that all these techniques are independent of each other, hence can
be combined.

2 Preliminaries

The model used in this paper is Petri Nets. The method and algorithms de-
veloped here can equally apply to other models, e.g., transition systems and
communicating automata.

Definition 1. A Petri Net N is a tuple (P, T, E, sq) where

— P is a finite set of places. The set of states (markings) is defined as S = 27

— T is a finite set of transitions.

— EC(PxT)U(T x P) is a bipartite relation between the places and the
transitions.

— 50 C 2F is the initial state (initial marking).

For a transition t € T, we define the set of input places *t as {p € P|(p, t) €
E}, and output places t* as {p € P|(t, p) € E}.

Definition 2. A transition t is enabled in a state s if *t C s and t*Ns = 0. We
denote the fact that t is enabled from s by s[t).

A state s is in deadlock if there is no enabled transition from it.

Definition 3. A transition t can be fired (executed) from state s to state s,
which is denoted by s[t)s’, when t is enabled at s. Then, s’ = (s\*t)Ut®. We extend
this notation to s[tity .. .1g)s', when there is a sequence s[t1)s1[ta)ss ... sp_1[tk)s’,
i.e., the system moves from s to s’ by firing the sequence of transitions tits . . . t.

The prefixes on the executions in a set X are denoted by pref (X).

Definition 4. Two transitions t; and to are independent if (*t; Ut1®) N (*ty U
to®) = 0. Let I C T X T be the independence relation. Two transitions are
dependent if they are not independent.



As usual, transitions are represented as lines, places as circles, and the re-
lation F is represented by arrows from transitions to places and from places to
transitions. We will use Petri Net N of Figure 1 as a running example. In N,
there are places pi1, po, ..., ps and transitions a, b, ¢, d. We depict a state by
putting full circles, called tokens, inside the places of that state. In the example
of Figure 1, the depicted initial state sg is {p1, ps}. If we fire transition a from
this initial state, the tokens from p; will be removed, and a token will be placed
in po. The transitions enabled in sg are a and c. In this example, a and b are
independent of ¢ and d.

b3
Fig. 1. A Petri Net N with priorities a < {c, d} < b

Definition 5. An execution is a mazimal (i.e. it cannot be extended) alternating
sequence of states Sot181t28s ... with sg the initial state of the Petri Net, such
that for each states s; in the sequence, S;[ti+1)Sit1-

We denote the executions of a Petri Net N by exec(N). A state is reachable in a
Petri Net if it appears on at least one of its executions. We denote the reachable
states of a Petri Net N by reach(N). The reachable states of our running example
N are {p1,pa}, {p1,p5}, {P2, P}, {P2,P5}, {p3,pa} and {ps,ps}.

We use places also as state predicates and denote s |= p; iff p; € s. This is
extended to Boolean combinations on such predicates in a standard way. For a
state s, we denote by ¢ the formula that is a conjunction of the places that
are in s and the negated places that are not in s. Thus, ¢ is satisfied by the
state s and by no other state. For the Petri Net in Figure 1, the initial state s is
characterized by @5 = p1 A—pa A—p3 Aps A—ps. For a set of states @ C S, we can
write a characteristic formula g = \/ ¢ O ¥s Or use any equivalent propositional
formula. We say that a formula ¢ is an invariant of a Petri Net N if s = ¢ for
each s € reach(N), i.e., if ¢ holds in every reachable state.

Definition 6. A process of a Petri Net N is a subset of the transitions # C T
satisfying that for each ti,to € T, such that (t1, ta) € I, there is no reachable
state s in which both t1 and t9 are enabled.

We assume a given set of processes II that covers all the transitions of the net,
ie., Upegm™ = T. A transition can belong to several processes, e.g., when it
models a synchronization between processes.



Definition 7. The neighborhood ngb(m) of a process 7 is the set of places
Use, (Pt UES).

We want to enforce global properties on Petri Nets in a distributed fashion.
For a Petri Net N, we consider a property of the form ¥ C S x T. That is,
V¥ defines the allowed states, and, furthermore, which transition may be fired
in each allowed global state. Note that as a private case ¥ can represent an
invariant (when the transitions are not constrained).

Definition 8. Let N be a Petri Net and ¥ C S x T. We denote (N,¥) the
pair made of N and the property ¥ that we want to enforce. A transition t of
N is enabled with respect to ¥ in a state s if s[t) and, furthermore, (s,t) € W.
r with sr) such that t < r. An execution of (N,¥) is a mazimal sequence
sot1s1tasats ... of N such that for each state s; in the sequence, it holds that
(8iytiy1) € W. We denote the executions of (N, W) by exec(N,¥), and the set of
states reachable these executions by reach(N,¥). We assume that those sets are
nonempty.

Clearly, reach(N,¥) C reach(N) and exec(N,¥) C pref (exec(N)); recall that
restricting N according to ¥ may introduce deadlocks.

In particular, we are interested in enforcing priority policies. Indeed, a priority
order < is a partial order relation among the transitions 7' of N and thus defines
a set ¥ in a straightforward manner. We use priorities as a running example. If
¥ is defined by a priority order <, then (s,t) € ¥ if s[t) is enabled in s and has
a maximal priority among the transitions enabled in s. That is there is no other
transition r with s[r) such that ¢ <« r. In the special case of a Petri Net with
priorities (N, <), we write ezec(N, <) and reach(N, <) instead of exec(N) and
reach(N ), respectively. Note that priority orders do not introduce new deadlocks,
and thus we have ezec(N, <) C exec(N).

Let us now consider the prioritized Petri Net N of Figure 1. The executions
of N, when the priorities are not taken into account, include those with finite
prefixes abed, acbd, bacd, badc. However, when taking the priorities into account,
the prioritized executions of N contain only alternations of ¢ and d.

Definition 9. The local information of a process w of a Petri Net N in a state
$ 18 S| = sNnbg(m).

That is, the local information of a process m in a given state consists of the
restriction of the state to the neighborhood of the transitions of «. It plays the
role of a local state of m in s. Our definition of local information is only one
among possible definitions that can be used for modeling the part of the state
that the system is aware of at any given moment.

Definition 10. Define an equivalence relation =, C reach(N) X reach(N) such
that s =, s’ when s|, = §'|,.

It is easy to see that the enabledness of a transition depends only on the local
information of a process that contains it, i.e., if t € 7 and s =, s’ then s[t) if
and only if §'[t).



We cannot always make a local decision, based on the local information of
processes (and sometimes sets of processes) that would guarantee that the global
property ¥ is enforced. Indeed, in a Prioritized Petri Net (N, <), there may exist
different states s, s’ € reach(IN) such that s =, §', a transition ¢ € 7 is an enabled
transition in s with maximal priority, but in s’ this transition is not maximal
among the enabled transitions.

To reason about properties, we will use predicates. We can easily construct
the following formulas, representing state sets, using only propositions represent-
ing places of the Petri Net:

— ©Preach(n): all the reachable states of N. Similarly, @ eqch(n,w) are the reach-
able states of the executions of (N, V.

— Yen(t): the states where transition ¢ is enabled.

— () the set of states s in which transition ¢ is enabled and (s,t) € V.
Formally: pu () = Qen(t) AV (s, )ew ¥s

— wgf: the states in which at least one transition is enabled w.r.t. ¥, i.e.,
in which there is no deadlock in (N,¥). Formally: gogf = Qreach(N,w) N

Vier w)-
— g, : the states in which the local information of process 7 is s|.

For ¥ representing priority constraints, we denote @y ;) by @mas(s): the states
in which transition ¢ has a maximal priority among all the enabled transitions
of the system. That is, Yrmaz(t) = Pen(t) N Ny 7Pen(r)- We can perform model
checking in order to calculate these formulas, and store them in a compact way,
e.g., using BDDs.

3 Knowledge based Approach for Distributed Control

3.1 The support policy
The problem we want to solve is the following:

Given a Petri Net with a constraint (IV,¥), we want to obtain a Petri
Net N’ such that exec(N') C ezxec(N,W¥). Moreover, reach(N') must not
introduce new deadlock states that are not already in reach(N,¥) or be
empty. In this case, we say that N’ implements (N, ).

For simplicity of the transformation, we consider extended Petri Nets [5],
where processes may have local variables, and transitions have an enabling con-
dition and a data transformation.

Definition 11. An Extended Petri Net has, in addition to the Petri Net com-
ponents, also finite variables V. for each process w € II. These variables have
some initial value according to some initial assignment Z. The enabling con-
dition of each transition t is augmented to include also a predicate eny on the
variables Vi = Urcproc(t)Va- In order for t to fire, eny must hold in addition
to the usual Petri Net enabling condition on the input and output places of t.



When t is executed, in addition to the usual changes to the tokens, the variables
Vi are updated according to the transformation f; that is also associated with t.
A Petri Net N’ extends N, if N’ is obtained from N by adding only variables,
enabled conditions on the added variables and assignments to these variables by
the transitions and by Z.

In order to compare the execution of an original Petri Net and a Petri Net
extending it as above, the comparison will be based only on the places and
transitions of the original net. That is, we will ignore (or project out, for the
sake of comparison) the additional variables.

Lemma 1. For a Petri Net N’ extending N, exec(N') C pref (exec(N)).

Proof. The net N’ can only restrict the executions exec(N'), while adding values
to the variables added in N’. Some of these restrictions may result in an early
deadlock. |

As we saw in the previous section, it is not possible in general to decide,
based only on the local information of a process or a set of processes, whether
some enabled transition is maximal with respect to a priority order, meaning
that it is allowed by ¥. We may, however, exploit some model checking based
analysis of the system to identify the cases where such decision can be made.

Our approach for a local or semi-local decision on firing transitions is based
on the knowledge of processes [4]. Basically, the knowledge of a process in a
given (global) state is the set of reachable states that are consistent with the
local information of that process.

Definition 12. The process m knows a (Boolean) property ¢ in a state s, de-
noted s |= K o, exactly when for each s such that s =, s, we have that s’ = .

We obtain immediately from the definitions that if s E Krp and s =, ¢/,
then s’ = K p. Furthermore, the process m knows ¢ in state s exactly when
(Preach(N) N s), ) — ¢ is a tautology. Given a Petri Net and a Boolean property
¢, one can perform model checking in order to decide whether s = K, p. We
have the following monotonicity property:

Theorem 1. Let N be a Petri Net and N' an extension of N. If s |E Krp in
N, then s |E K¢ also in N'.

Proof. The extended Petri Net N’ restricts the executions, and possibly the set
of reachable states, of N. Each local state s| is part of fewer global states, and
thus the knowledge in s|, can only increase. |

Monotonicity is important to ensure ¥ in N’. The knowledge allowing to
enforce ¥ by the imposed transformation is calculated based on N, but is used
to control the execution of the transitions of N’. Monotonicity thus ensures the
correctness of N'.

The transformation for the support policy will represent a disjunctive archi-
tecture for decentralized controller [19]. In control theory, one transforms the
system to block some transitions in order to satisfy the given constraint. This



is done by adding a supervisor process [14], which is usually an automaton that
runs synchronously with the controlled system. The supervisors are often (finite
state) automata observing the controlled system, progressing according to the
transitions they observe, and blocking some of the enabled transitions, depend-
ing on its current state. A distributed controller sets up a supervisor per each
process. Some of the transitions may be defined as uncontrollable, meaning that
the controller cannot block them.

The construction of a decentralized controller is based on a support table as
introduced in [1,7]. We do not formalize the details of the construction here, but
the intuition provided here should be sufficient.

At a state s, a transition ¢ is supported by a process w containing t only if
7 knows in s (and thus in all s’ which 7 cannot distinguish from s ) about
(s,t) respecting ¥'s |= K py(s); a transition can be fired (is enabled) in
a state only if, in addition to its original enabledness condition, at least
one of the processes containing it supports it.

To implement the support policy, we first create a support table A as follows:
we check for each process 7, reachable state s € reach(NN) and transition ¢ € ,
whether s = Krpyq). If it holds, we put in the support table at the entry
s|x the transitions ¢ that are responsible for satisfying this property. In fact, as
s | Krp and s =; s’ implies that s’ E K¢, it is sufficient to check this for a
single representative state containing s|, out of each equivalence class of ‘=’

We construct for a Petri Net N a support table A and use it to control
(restrict) the executions of N to satisfy the property ¥. Each process 7 in N is
equipped with the entries of this table of the form s|, for s a reachable state.
Before firing a transition, a process 7 of N consults the entry s|, that corresponds
to its current local information, and supports only the transitions that appear
in that entry. This can be represented as an extended Petri Net N4.

The construction of the support table is simple and its size is limited to the
number of different local informations of the process and not to the (sometimes
exponentially larger) size of the state space.

3.2 Solutions when the support policy fails

Sometimes the knowledge based analysis does not provide an indication for a
controller. Consider the Prioritized Petri Net (IV, <) of Figure 1. The right
process 7., upon having a token in p,, does not support c; the priorities dictate
that ¢ can be executed if b is not enabled, since ¢ has a lower priority than b.
But this information is not locally available to the right process, which cannot
distinguish between the cases where the right process has a token in pi, ps or
ps. To tackle this issue, several suggestions have been made:

1. Use knowledge of perfect recall [11,1]. This means that the knowledge is not
based only on the local information, but also on the limited history that
each process can observe. Although the history is not finitely bounded, it
is enough to calculate the set of states where the rest of the system can



reside at each point. A subset construction can be used to supply for each
process an automaton that is updated according to the local history. This
construction is very expensive: the size of this automaton can be exponential
in the number of global states. Although in this way we extend our knowledge
(by separating local informations according with different histories), this still
does not guarantee that a distributed controller can be found.

2. Combine the knowledge of certain processes together by synchronizing them.
The definition of knowledge can be based on equivalence classes of states
that share the same local information of several processes. With the com-
bined knowledge, one can achieve more situations where the maximal priority
transition is known. However, to use this knowledge at run time, these sets of
processes need to be able to access their joint local information. This means
synchronizing between them, at the cost of losing concurrency. At the limit,
all processes can be combined, and no actual concurrency remains.

3. Instead of the fixed synchronization between processes, one may use tempo-
rary synchronization [7]. Processes interact to achieve common knowledge.
This does not reduce the concurrency as much as the previous method, but
requires a lot of overhead in sending messages to achieve the temporary
synchronization.

4 Support policy Based on the Controlled System

We propose here two additional techniques, which are orthogonal to the previous
ones, to handle the case where the support policy fails, i.e. where A does not
allow establishing that N4 implements a live controller. The first one is based
on the following observation:

Instead of calculating the knowledge with respect to all the executions
of the original system, we may calculate it based on the executions of
the original system that invariantly satisfy .

The set of global states on these executions are a subset of the reachable states,
and, furthermore, for each local information, the set of global states containing
it is contained in the corresponding set of the original Petri Net. Thus, our
knowledge in each global configuration may not decrease but possibly grow.
Still, we need to show that calculating knowledge using this set of executions
produces a correct controller.

Theorem 2. Let N be a Petri Net and ¥ a property to be enforced. Let A be
the support table calculated for reach(N,¥), and let N be the extended Petri
Net constructed for A. Then exec(N?) C pref(exec(N,¥)) and reach(N4) C
reach(N,W).

Proof. When a transition of N4 is supported in some state s according to
the support table A, then for some supporting process = € II, s = K,¥. By
definition of the knowledge operator, this implies that s = . Thus, each firing



of a transition of N4 preserves ¥. However, it is possible that at some point,
there is not enough knowledge to support any transition. |
The above proof does not guarantee that N4 implements (N, ¥), because in
some states not enough knowledge is available to support transitions.
Let @support () denote the disjunction of the formulas ¢, such that the entry
5| is nonempty in the support table. A sufficient condition for N4 to correctly
implement (N,¥) is

ngf - \/ P support () (1)
well

This condition requires that for each state reach(N,¥), that is not a deadlock in
(N, W), at least one transition is supported. When this condition does not hold,
we say that the support table is incomplete.

For the Prioritized Petri Net of Figure 1, the calculation of the knowledge
based on the reduced number of executions provides a controller, whereas the
original calculation did not. If we analyze the knowledge based on the constrained
executions, then ¢ and d are fired alternately, and ps is never reached, hence b is
never enabled. In this case, our knowledge in p4 and in ps allows us to execute
c or d, respectively, and avoid the deadlock.

Let us look now at a more elaborate example. Consider Petri Net N; of Fig-
ure 2 with the given priority rules. The separation of transitions of N7 according

Vi€ [1,3], b < {rj e}z
Vi€ [L,3], 1 < e

593 < {b1,71,€1}

1)2 < bg

Fig. 2. A Petri Net N; with three processes 71, w2 and w3

to processes is represented using dashed lines.



The example shows three processes m; (left), mo (in the middle), 73 (right)
that use binary synchronizations and priorities to enforce mutual exclusion for
the execution of critical sections (b;r;e;);=1,3. Intuitively, priority rules b; <
{rj,e;} and r; < e; give higher priority to transitions close to the end of the
critical sections over the others. This enforces the mutual exclusion. Moreover,
priority rules so3 < {b1,71, €1} and by < bz enforce a particular execution order
of critical sections: repeatedly 7 followed by 73 and then by ma.

Using the method of [1] described in section 3, no controller is found. Indeed,
as all states are reachable, no process has enough knowledge to enter or progress
in its critical section.

Now, if we calculate the support table on the prioritized executions, then we
are able to construct a controller for N;. Indeed, in the prioritized executions,
there is always at most one process in its critical section. Thus, process m; always
supports all its transitions as it can only enter the critical section in global states
in which the other processes are blocked in front of a synchronization. Process 3
supports all its transitions except so3. Process my supports transition ssg when
71 is in py, transition by when 73 is in pyg, and transitions 7o and es in all cases.

5 Controllers based on an incomplete support table

In this section we show that even an incomplete support table A for (N, %) may
still define a controller N that correctly implements (N, ¥). The reason is that
states that are reachable in the executions of (N,¥) may be unreachable when
applying the calculated support. The executions according to the support table
may be a subset of the executions of (N, ¥), and the problematic states may not
occur.

We illustrate this now on an example with priorities. Consider Petri Net N,
of Figure 3. It represents two processes m; (left) and 7, (right) with a single
joint transition, which means that m; can observe whether m,. is in one of the
places pg and pg. Similarly, m; can observe whether ;. is in py or in ps. The table
in Figure 3 shows the set of reachable states of Ny, including its termination
(deadlock) states, denoted m. Non-reachable states are in grey.

Suppose that the following set of priority rules must be enforced for the Petri
Net No: k< jand c < b < 1.

The support table is calculated based on the knowledge of the original system.
Table 1 presents a view of the global states of the Petri Net.

— non-reachable (grey), or
— in termination or deadlock (m) or
— reachable and non-deadlock.

In the latter case, the cell contains the transitions which are supported in this
state by any of the processes (i.e., we have accumulated all the transitions sup-
ported by the local states that constitute together the global state). The blanks
in this incomplete table represent states in which no process supports any tran-
sition. There are two such states, namely {p4,p10} and {ps, p1o}. The situation



ﬂ-l :{a7b7e’f7g7j}

ngb(mi) = {p1,...,Pe,Ps, Po}
m = {c,d, e, h,i,k}

ngb(ﬂ-T‘) = {p27p3ap77 seey ap13}

reach(Nz2) =

P7 | P8 | P9 |P1o|P11|P12|P13
P1
p2 u
P3
P4 u ] n
Ps
Y4 L ] n

Fig. 3. A Petri Net Ny with two processes 7, and 7,

in both states is the following: 7; has terminated and m, could take transition k,
but without an additional synchronization, there is no way for 7, to know that
it may safely execute k.

b7 ps | DP9 Pio |P11| P12 |P13
p1| a,d a,i | a
p2| c¢d e 7 n
p3|f,g.¢.d|f.g9|f 9. h|f,9,k|f. 9f 9.t f 9
P4 d [ ] h [ ) [
ps| god | J|gh | G | J |4t ]
Pe d [ ] h | ) [ ]

Table 1. Support policy for Ny with priorities k < j and ¢ K b < @

Note that in state {pi1,pr}, process m supports a and process m, supports
d; it is impossible for m; to know whether 7, is in pi2 or not, and therefore
b (which has lower priority than ¢) is not supported by ;. Similarly, m, does
not support ¢ (which has lower priority than b). While ¢ is supported, e.g., in
{p2, pr}, transition b is never supported, hence never fired in N3, although it is
allowed according to the priority rules in some states.

As a consequence, the set of states reachable in Ni* may be smaller than
reach(Na, <). Indeed, reach(N§') does not contain any state including the places
p2 together with pg, p1g or p11. This means in particular that the blanks in Table 1
are in fact not reachable, and thus N§* correctly implements (Nz, <).



6 Comparison with history-based controllers

We show now that the use of perfect recall is independent of the methods pro-
posed in this paper, meaning that in some cases only history is able to provide
a controller, while in others it is still relevant to check whether an incomplete
table provides a controller.

Consider the Petri Net Ns of Figure 3, this time with the priorities g < k
and f < i. In this case, the set of reachable states is the same, regardless of the
use or not of priorities. Consequently, there is no difference between the support
policy based on the unrestricted system and the prioritized executions. Moreover,
this support policy fails because there are two reachable global states where no
process is supporting a transition, appearing as blanks in table 2: {p3,p11} and
{ps,p13}. Furthermore, these global states are also reachable in the controlled
system, meaning that the heuristics applied in the previous example does not
help either.

Nevertheless, this example may be controlled if perfect recall is used. If the
left-process can remember the path it takes to reach ps, it can distinguish be-
tween reaching ps directly after p; (by firing a) or respectively by passing through
place ps. Now, the set of reachable states contains enough information for the
support policy to succeed.

p7 ps | P9 |Pio|pPi1| P12 |P13

p1|a,b,c,dla,b a,b,ila,b
p2| ¢ d e i [ ]
ps| ¢d |f.g|fig.h|k {

pa| ¢, d [ ] h k| m % [

DPs jvcvd ] .77h .77k .7 .77Z ]
pe| cd ] h kK|{m| i | m

Table 2. Support policy for No with priorities g < k and f < ¢ without history

Our last example illustrates the combined use of perfect recall and an incom-
plete table to build a controller. Consider again Petri Net N» of Figure 3, now
with priorities g < k, f < {i,k} and ¢ < b < i. On one hand, building the sup-
port table using the prioritized executions does not provide enough knowledge
to control the system, and the incomplete support table does not provide a con-
troller. On the other hand, the use of history as shown previously does not help
either. Table 3 reflects the incomplete support table constructed using jointly
the prioritized executions and perfect recall. Additional information related to
the total recall is presented in the rows and columns of the table only when it
is relevant for the support table. We can observe that in {p3 after ps, p11}, no
transition is supported by any process. However, the system can be controlled
according to this table. Indeed, no extra-deadlock (blank) is actually reachable
within the controlled system for a reason similar to the example in Section 5.
This means that only the combination of several techniques leads to a controller.



p7 | pr after ps | ps | po |p1o|pi1|p12|p13

p1 a,d a,t| a

D2 c,d e i | m

ps after p1 c,d,g |f,g g,t g
ps after po f,9,h| k

P4 c,d ] h k| |m|i|m

Ps j>C7d ] .]7h .77k .7 ]7Z .]

Pe c,d ] h k| |m|i|m

Table 3. Support policy for N2 with g < k, f < {i,k}, ¢ < b < i and history
7 Implementation and Experimental Results

In [7], we implemented a prototype for experimenting with knowledge based
controlling of distributed systems. We integrated now the two results of this
paper. More precisely, the support table is now built directly from the set of
reachable states in the prioritized executions. Then, if the table contains empty
entries, we check the reachability of the states in which no transition can be
supported before adding synchronization.

We present here some results illustrating the improvements thus obtained.
Let us go back to the Petri Net of Figure 2. Using the approach of [7], several
additional synchronizations were added in order to check maximality of transi-
tions in the critical section. Out of 80 reachable states, 26 are global states in
which no process can support an interaction. More precisely, 4 transitions out of
11 always require a synchronization to be fired: these transitions are by, 71, b3, 3.
As a result, an execution of 10,000 steps contains exactly 3636 (= 10000 x 4/11)
synchronizations. Using the prioritized executions to build the support table, we
do not need any synchronization to build a controller.

Consider now a simplification of this example with two processes instead of
three. In this case, interestingly, the method of [7] would not result in the exe-
cution of any additional synchronization. The reason for this is that the states
requiring additional synchronizations are exactly the states in which no transi-
tion can be supported, meaning that synchronizations are added only when they
are necessary. As these states are unreachable in the prioritized executions, no
synchronization ever takes place. This emphasizes the fact that both approaches
can be combined efficiently.

8 Conclusion

Calculating knowledge properties can be used for constructing a distributed
controller that imposes some state property ¥ on a system. A transformation
is used to impose a global property ¥ invariantly. To maintain the concurrent
nature of the system, the decision on which transitions to permit needs to be
made locally. Checking whether one can impose such a transformation without
adding interaction is undecidable [18,17,7]. Knowledge can be used to help in
constructing such a controller. When a process locally knows that executing a



transition will satisfy ¥, then it is safe to support it. By combining the knowledge
of different processes [7], if we are allowed to add synchronization, the synthesis
becomes decidable, since at the limit, we may obtain a fully synchronized, i.e.,
a global system. Now, adding extensive synchronizations is undesirable.

We observe here that the knowledge approach for constructing a distributed
controller is based on analyzing the original system in order to achieve the in-
variance of ¥ after the transformation. Thus, the use of knowledge calculated
on the original version may be pessimistic in concluding when transitions can be
supported. This brings us to two useful observations that can remove the need
for some of the additional interactions used to control the system:

1. Although the analysis of the knowledge of the system is done with the original
system, it is safe to use only its executions that enforce ¥. This gives fewer
executions and fewer reachable states and enhances the knowledge.

2. Blocking transitions (not supporting them) because of lack of knowledge
has a propagating effect that can prevent reaching other states. Thus, even
when the result of the knowledge analysis may seem to lack the ability of
supporting a way to continue from some states, this may not be the case.
Analyzing the system after imposing the restriction forced by the analysis
may result in a system that does not introduce new deadlock: the deadlocks
appearing in states where no enabled transition is supported are in fact
unreachable.

In this paper, we showed that using these two observations is orthogonal
to other tools used to force knowledge based control such as using knowledge
of perfect recall and adding temporary interactions or fixed synchronizations
between processes. We propose to use these knowledge based techniques as a
practical way of synthesizing distributed controllers.
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