
ar
X

iv
:1

00
4.

25
50

v1
 [

cs
.F

L
]

 1
5

A
pr

 2
01

0

The Complexity of Codiagnosability

for Discrete Event and Timed Systems

Franck Cassez⋆

National ICT Australia & CNRS
The University of New South Wales

Sydney, Australia

Abstract. In this paper we study the fault codiagnosis problem for dis-
crete event systems given by finite automata (FA) and timed systems
given by timed automata (TA). We provide a uniform characterization
of codiagnosability for FA and TA which extends the necessary and suffi-
cient condition that characterizes diagnosability. We also settle the com-
plexity of the codiagnosability problems both for FA and TA and show
that codiagnosability is PSPACE-complete in both cases. For FA this
improves on the previously known bound (EXPTIME) and for TA it is
a new result. Finally we address the codiagnosis problem for TA under
bounded resources and show it is 2EXPTIME-complete.

1 Introduction

Discrete-event systems [16,17] (DES) can be modelled by finite automata (FA)
over an alphabet of observable events Σ.

The fault diagnosis problem is a typical example of a problem under partial
observation. The aim of fault diagnosis is to detect faulty sequences of the DES.
The assumptions are that the behavior of the DES is known and a model of it
is available as a finite automaton over an alphabet Σ ∪ {τ, f}, where Σ is the
set of observable events, τ represents the unobservable events, and f is a special
unobservable event that corresponds to the faults: this is the original framework
introduced by M. Sampath et al. [18] and the reader is referred to this paper
for a clear and exhaustive introduction to the subject. A faulty sequence is a
sequence of the DES containing an occurrence of event f . An observer which
has to detect faults, knows the specification/model of the DES, and it is able
to observe sequences of observable events. Based on this knowledge, it has to
announce whether an observation it makes (in Σ∗) was produced by a faulty
sequence (in (Σ ∪ {τ, f})∗) of the DES or not. A diagnoser (for a DES) is an
observer which observes the sequences of observable events and is able to detect
whether a fault event has occurred, although it is not observable. If a diagnoser
can detect a fault at most ∆ steps1 after it has occurred, the DES is said to be

⋆ Author supported by a Marie Curie International Outgoing Fellowship within the
7th European Community Framework Programme.

1 Steps are measured by the number of transitions in the DES.

http://arxiv.org/abs/1004.2550v1

∆-diagnosable. It is diagnosable if it is ∆-diagnosable for some ∆ ∈ N. Checking
whether a DES is∆-diagnosable for a given∆ is called the bounded diagnosability
problem; checking whether a DES is diagnosable is the diagnosability problem.

Checking diagnosability for a given DES and a fixed set of observable events
can be done in polynomial time using the algorithms of [13,21]. If a diagnoser
exists there is a finite state one. Nevertheless the size of the diagnoser can be
exponential as it involves a determinization step. The extension of this DES
framework to timed automata (TA) has been proposed by S. Tripakis in [19],
and he proved that the problem of checking diagnosability of a timed automaton
is PSPACE-complete. In the timed case, the diagnoser may be a Turing machine.
The problem of checking whether a timed automaton is diagnosable by a diag-
noser which is a deterministic timed automaton was studied by P. Bouyer et
al. [5].

Codiagnosability generalizes diagnosability by considering decentralized ar-
chitectures. Such decentralized architectures have been introduced in [10] and
later refined in [20,15]. In these architectures, local diagnosers (with their own
partial view of the system) can send to a coordinator some information, sum-
marizing their observations. The coordinator then computes a result from the
partial results of the local diagnosers. The goal is to obtain a coordinator that
can detect the faults in the system. When local diagnosers do not communicate
with each other nor with a coordinator (protocol 3 in [10]), the decentralized
diagnosis problem is called codiagnosis [15,20]. In this case, codiagnosis means
that each fault can be detected by at least one local diagnoser. In the paper [15],
codiagnosability is considered and an algorithm to check codiagnosability is pre-
sented for discrete event systems (FA). An upper bound for the complexity of
the algorithm is EXPTIME. In [20], the authors consider a hierarchical frame-
work for decentralized diagnosis. In [3] a notion of robust codiagnosability is
introduced, which can be thought of as a fault tolerant (local diagnosers can
fail) version of codiagnosability.

None of the previous papers has addressed the codiagnosability problems for
timed automata. Moreover, the exact complexity of the codiagnosis problems is
left unsettled for discrete event systems (FA).

Our Contribution. In this paper, we study the codiagnosability problems for FA
and TA. We settle the complexity of the problems for FA (PSPACE-complete),
improving on the best known lower bound (EXPTIME). We also address the
codiagnosability problems for TA and provide new results: algorithms to check
codiagnosability and also codiagnosability under bounded resources. Our contri-
bution is both of theoretical and practical interests. The algorithms we provide
are optimal, and can also be implemented using standard model-checking tools
like SPIN [12] for FA, or UPPAAL [4] for TA. This means that very expressive
languages can be used to specify the systems to codiagnose and very efficient
implementations and data structures are readily available.

Organisation of the Paper. Section 2 recalls the definitions of finite automata
and timed automata. We also give some results on the Intersection Emptiness

2

Problems (section 2.6) that will be used in the next sections. Section 3 introduces
the fault codiagnosis problems we are interested in, and a necessary and sufficient
condition that characterizes codiagnosability for FA and TA. Section 4 contains
the first main results: optimal algorithms for the codiagnosability problems for
FA and TA. Section 5 describes how to synthesize the codiagnosers and the
limitations of this technique for TA. Section 6 is devoted to the codiagnosability
problem under bounded resources for TA and contains the second main result
of the paper.

2 Preliminaries

Σ denotes a finite alphabet and Στ = Σ ∪ {τ} where τ 6∈ Σ is the unobservable
action. B = {true, false} is the set of boolean values, N the set of natural
numbers, Z the set of integers and Q the set of rational numbers. R is the set
of real numbers and R≥0 (resp. R>0) is the set of non-negative (resp. positive)
real numbers. We denote tuples (or vectors) by d = (d1, · · · , dk) and write d[i]
for di.

2.1 Clock Constraints

Let X be a finite set of variables called clocks. A clock valuation is a mapping
v : X → R≥0. We let RX

≥0 be the set of clock valuations over X . We let 0X
be the zero valuation where all the clocks in X are set to 0 (we use 0 when
X is clear from the context). Given δ ∈ R, v + δ is the valuation defined by
(v + δ)(x) = v(x) + δ. We let C(X) be the set of convex constraints on X ,
i.e., the set of conjunctions of constraints of the form x ⊲⊳ c with c ∈ Z and
⊲⊳∈ {≤, <,=, >,≥}. Given a constraint g ∈ C(X) and a valuation v, we write
v |= g if g is satisfied by the valuation v. We also write [[g]] for the set {v | v |= g}.
Given a set R ⊆ X and a valuation v of the clocks in X , v[R] is the valuation
defined by v[R](x) = v(x) if x 6∈ R and v[R](x) = 0 otherwise.

2.2 Timed Words

The set of finite (resp. infinite) words over Σ is Σ∗ (resp. Σω) and we let
Σ∞ = Σ∗ ∪ Σω. A language L is any subset of Σ∞. A finite (resp. infinite)
timed word over Σ is a word in (R≥0.Σ)∗.R≥0 (resp. (R≥0.Σ)ω). Duration(w)
is the duration of a timed word w which is defined to be the sum of the du-
rations (in R≥0) which appear in w; if this sum is infinite, the duration is ∞.
Note that the duration of an infinite word can be finite, and such words which
contain an infinite number of letters, are called Zeno words. We let Unt(w) be
the untimed version of w obtained by erasing all the durations in w. An example
of untiming is Unt(0.4 a 1.0 b 2.7 c) = abc. In this paper we write timed words
as 0.4 a 1.0 b 2.7 c · · · where the real values are the durations elapsed between
two letters: thus c occurs at global time 4.1.

3

TW ∗(Σ) is the set of finite timed words over Σ, TW ω(Σ), the set of infinite
timed words and TW (Σ) = TW ∗(Σ)∪TW ω(Σ). A timed language is any subset
of TW (Σ).

Let πΣ′ be the projection of timed words of TW (Σ) over timed words of
TW (Σ′). When projecting a timed word w on a sub-alphabet Σ′ ⊆ Σ, the
durations elapsed between two events are set accordingly: for instance for the
timed word 0.4 a 1.0 b 2.7 c, we have π{a,c}(0.4 a 1.0 b 2.7 c) = 0.4 a 3.7 c
(note that projection erases some letters but keep the time elapsed between two
letters). Given a timed language L, we let Unt(L) = {Unt(w) | w ∈ L}. Given
Σ′ ⊆ Σ, πΣ′(L) = {πΣ′(w) | w ∈ L}.

2.3 Timed Automata

Timed automata are finite automata extended with real-valued clocks to specify
timing constraints between occurrences of events. For a detailed presentation of
the fundamental results for timed automata, the reader is referred to the seminal
paper of R. Alur and D. Dill [2].

Definition 1 (Timed Automaton). A Timed Automaton A is a tuple (L, l0,
X,Στ , E, Inv, F,R) where:

– L is a finite set of locations;

– l0 is the initial location;

– X is a finite set of clocks;

– Σ is a finite set of actions;

– E ⊆ L × C(X)× Στ × 2X × L is a finite set of transitions; in a transition
(ℓ, g, a, r, ℓ′), g is the guard, a the action, and r the reset set; as usual we

often write a transition ℓ
g,a,r

−−−−→ ℓ′;

– Inv ∈ C(X)L associates with each location an invariant; as usual we require
the invariants to be conjunctions of constraints of the form x � c with �∈
{<,≤};

– F ⊆ L (resp. R ⊆ L) is the final (resp. repeated) set of locations. �

The size of a TA A is denoted |A| and is the size of the clock constraints i.e., the
size of the transition relation E. A state of A is a pair (ℓ, v) ∈ L × RX

≥0. A run
̺ of A from (ℓ0, v0) is a (finite or infinite) sequence of alternating delay and
discrete moves:

̺ = (ℓ0, v0)
δ0−→ (ℓ0, v0 + δ0)

a0−→ (ℓ1, v1) · · ·
an−1

−−−→ (ℓn, vn)
δn−→ (ℓn, vn + δn) · · ·

s.t. for every i ≥ 0:

– vi + δ |= Inv(ℓi) for 0 ≤ δ ≤ δi;

– there is some transition (ℓi, gi, ai, ri, ℓi+1) ∈ E s.t. : (i) vi + δi |= gi, (ii)
vi+1 = (vi + δi)[ri].

4

The set of finite (resp. infinite) runs in A from a state s is denoted Runs∗(s, A)
(resp. Runsω(s, A)). We let Runs∗(A) = Runs∗(s0, A), Runs

ω(A) = Runsω(s0, A)
with s0 = (l0, 0), and Runs(A) = Runs∗(A) ∪ Runsω(A). If ̺ is finite and ends
in sn, we let last(̺) = sn. Because of the denseness of the time domain, the
unfolding of A as a graph is infinite (uncountable number of states and delay
edges). The trace, tr(̺), of a run ̺ is the timed word πΣ(δ0a0δ1a1 · · · anδn · · ·).
The duration of the run ̺ is Duration(̺) = Duration(tr(̺)). For V ⊆ Runs(A),
we let Tr(V) = {tr(̺) | ̺ ∈ V }, which is the set of traces of the runs in V .

A finite (resp. infinite) timed word w is accepted by A if it is the trace of
a run of A that ends in an F -location (resp. a run that reaches infinitely often
an R-location). L∗(A) (resp. Lω(A)) is the set of traces of finite (resp. infinite)
timed words accepted by A, and L(A) = L∗(A)∪Lω(A) is the set of timed words
accepted by A.

In the sequel we often omit the sets R and F in TA and this implicitly means
F = L and R = ∅.

A timed automaton A is deterministic if there is no τ labelled transition in
A, and if, whenever (ℓ, g, a, r, ℓ′) and (ℓ, g′, a, r′, ℓ′′) are transitions of A, g∧ g′ ≡
false. A is complete if from each state (ℓ, v), and for each action a, there is a
transition (ℓ, g, a, r, ℓ′) such that v |= g. We note DTA the class of deterministic
timed automata.

A finite automaton is a particular TA with X = ∅. Consequently guards
and invariants are vacuously true and time elapsing transitions do not exist. We
write A = (Q, q0, Στ , E, F,R) for a finite automaton. A run is thus a sequence
of the form:

̺ = ℓ0
a0−→ ℓ1 · · · · · ·

an−1

−−−→ ℓn · · ·

where for each i ≥ 0, (ℓi, ai, ℓi+1) ∈ E. Definitions of traces and languages are
the same as for TA. For FA, the duration of a run ̺ is the number of steps
(including τ -steps) of ̺: if ̺ is finite and ends in ℓn, Duration(̺) = n and
otherwise Duration(̺) = ∞.

2.4 Region Graph of a Timed Automaton

A region of RX
≥0 is a conjunction of atomic constraints of the form x ⊲⊳ c or

x − y ⊲⊳ c with c ∈ Z, ⊲⊳∈ {≤, <,=, >,≥} and x, y ∈ X . The region graph
RG(A) of a TA A is a finite quotient of the infinite graph of A which is time-
abstract bisimilar to A [2]. It is a finite automaton on the alphabet E′ = E∪{τ}.
The states of RG(A) are pairs (ℓ, r) where ℓ ∈ L is a location of A and r is a
region of RX

≥0. More generally, the edges of the graph are tuples (s, t, s′) where
s, s′ are states of RG(A) and t ∈ E′. Genuine unobservable moves of A labelled
τ are labelled by tuples of the form (s, (g, τ, r), s′) in RG(A). An edge (g, λ,R) in
the region graph corresponds to a discrete transition of A with guard g, action
λ and reset set R. A τ move in RG(A) stands for a delay move to the time-
successor region. The initial state of RG(A) is (l0, 0). A final (resp. repeated)

5

state of RG(A) is a state (ℓ, r) with ℓ ∈ F (resp. ℓ ∈ R). A fundamental property
of the region graph [2] is:

Theorem 1 (R. Alur and D. Dill, [2]). L(RG(A)) = Unt(L(A)).

In other words:

1. if w is accepted by RG(A), then there is a timed word v with Unt(v) = w
s.t. v is accepted by A.

2. if v is accepted by A, then Unt(w) is accepted RG(A).

The (maximum) size of the region graph is exponential in the number of clocks
and in the maximum constant of the automaton A (see [2]): |RG(A)| = |L| · |X |! ·
2|X| ·K |X| where K is the largest constant used in A.

2.5 Product of Timed Automata

Given a n locations ℓ1, · · · , ℓn, we write ℓ for the tuple (ℓ1, · · · , ℓn) and let
ℓ[i] = ℓi. Given a letter a ∈ Σ1 ∪ · · · ∪Σn, we let I(a) = {k | a ∈ Σk}.

Definition 2 (Product of TA). Let Ai = (Li, l
i
0, Xi, Σi

τ , Ei, Invi), i ∈
{1, · · · , n}, be n TA s.t. Xi ∩ Xj = ∅ for i 6= j. The product of the Ai is
the TA A = A1 × · · · ×An = (L, l0, X,Στ , E, Inv) given by:

– L = L1 × · · · × Ln;
– l0 = (l10, · · · , l

n
0);

– Σ = Σ1 ∪ · · · ∪Σn;
– X = X1 ∪ · · · ∪Xn;

– E ⊆ L× C(X)×Στ × 2X × L and (ℓ, g, a, r, ℓ
′
) ∈ E if:

• either a ∈ Σ \ {τ}, and

1. for each k ∈ I(a), (ℓ[k], gk, a, rk, ℓ
′
[k]) ∈ Ek,

2. g = ∧k∈I(a)gk and r = ∪k∈I(a)rk;

3. for k 6∈ I(a), ℓ
′
[k] = ℓ[k];

• or a = τ and ∃j s.t. (ℓ[j], gj, τ, rj , ℓ
′
[j]) ∈ Ej, g = gj, r = rj and for

k 6= j, ℓ
′
[k] = ℓ[k].

– Inv(ℓ) = ∧n
k=1Inv(ℓ[k]). �

This definition of product also applies to finite automata (no clock constraints).

If the automaton Ai has the set of final locations Fi then the set of final
locations for A is F1 × · · · × Fn. For Büchi acceptance, we add a counter c
to A which is incremented every time the product automaton A encounters
an Ri-location in Ai, following the standard construction for product of Büchi
automata. The automaton constructed with the counter c is A+. The repeated
set of states of A+ is L1 × · · · × Ln−1 × Ln × {n}. As the sets of clocks of the
Ai’s are disjoint2, the following holds:

Fact 1 L∗(A) = ∩n
i=1L

∗(Ai) and Lω(A+) = ∩n
i=1L

ω(Ai).

2 For finite automata, this is is vacuously true.

6

2.6 Intersection Emptiness Problem

In this section we give some complexity results for the emptiness problem on
products of FA and TA.
First consider the following problem on deterministic finite automata (DFA):

Problem 1 (Intersection Emptiness for DFA)
Inputs: n deterministic finite automata Ai, 1 ≤ i ≤ n, over the alphabet Σ.
Problem: Check whether ∩n

i=1L
∗(Ai) 6= ∅.

The size of the input for Problem 1 is
∑n

i=1 |Ai|.

Theorem 2 (D. Kozen, [14]). Problem 1 is PSPACE-complete.

D. Kozen’s Theorem also holds for Büchi languages:

Theorem 3. Checking whether ∩n
i=1L

ω(Ai) 6= ∅ is PSPACE-complete.

We establish a variant of Theorem 2 which will be used later in the paper: we
show that Problem 1 is PSPACE-hard even if A2, · · · , An are automata where
all the states are accepting and A1 is the only automaton with a proper set of
accepting states (actually one accepting state is enough).

Proposition 1. Let Ai, 1 ≤ i ≤ n be n DTA over the alphabet Σ. If for all
Ai, 2 ≤ i ≤ n, all states of Ai are accepting, Problem 1 is already PSPACE-hard.

Proof. Let A1, A2, · · · , An be n deterministic automata with accepting states
F1, F2, · · · , Fn on the alphabet Σ. Let λ be a fresh letter not in Σ. Define
automaton A′

i by: from any state q in Fi, add a transition (q, λ,⊥) where ⊥
is new state. Let F ′

1 = {⊥} and F ′
i be all the states of A′

i. It is clear that
L∗(A′

1) = L∗(A1).λ.
We can prove that ∩n

i=1L
∗(Ai) 6= ∅ ⇐⇒ ∩n

i=1L
∗(A′

i) 6= ∅. Indeed, assume
w ∈ ∩n

i=1L
∗(Ai) 6= ∅. Then A1 ×A2 × · · ·×An reaches the state (q1, q2, · · · , qn)

after reading w and ∀1 ≤ i ≤ n, qi ∈ Fi. Thus in A′
1×A′

2×· · ·×A′
n the same state

can be reached and then λ can be fired in the product leading to (⊥,⊥, · · · ,⊥).
Conversely, if a word w is accepted by the product A′

1 × · · · × A′
n, w must end

with λ. Let w = u.λ ∈ ∩n
i=1L

∗(A′
i) 6= ∅. After reading u the state of the product

must be (q1, q2, · · · , qn) with ∀1 ≤ i ≤ n, qi ∈ Fi, and the transitions fired when
reading u are also in A1 ×A2 × · · · ×An which implies u ∈ ∩n

i=1L
∗(Ai). ⊓⊔

The next results are counterparts of D. Kozen’s results for TA.

Problem 2 (Intersection Emptiness for TA)
Inputs: n TA Ai = (Li, l

i
0, Xi, Σ

i
τ , Ei, Invi, Fi), 1 ≤ i ≤ n with Xk ∩ Xj = ∅

for k 6= j.
Problem: Check whether ∩n

i=1L
∗(Ai) 6= ∅.

Theorem 4. Problem 2 is PSPACE-complete.

7

Proof. PSPACE-hardness follows from the fact that checking ∩n
i=1L

∗(Ai) 6= ∅

on finite automata is already PSPACE-hard [14] or alternatively because reach-
ability for timed automata is PSPACE-hard [2].

PSPACE-easiness can be established as Theorem 31 (section 4.1) of [1]: the
regions of the product of TA Ai can be encoded in polynomial space in the
size of the clock constraints of the product automaton. An algorithm to check
emptiness is obtained by: 1) guessing a sequence of pairs (location,region) in the
product automaton and 2) checking whether it is accepted. This can be done in
NPSPACE and by Savitch’s Theorem in PSPACE. ⊓⊔

The previous theorem extends to Büchi languages:

Problem 3 (Büchi Intersection Emptiness for TA)
Inputs: n TA Ai = (Li, l

i
0, Xi, Σ

i
τ , Ei, Invi, Ri), 1 ≤ i ≤ n with Xk ∩ Xj = ∅

for k 6= j.
Problem: Check whether ∩n

i=1L
ω(Ai) 6= ∅.

Theorem 5. Problem 3 is PSPACE-complete.

Proof. PSPACE-hardness follows from the reduction of Problem 2 to Problem 3
or again because checking Büchi emptiness for timed automata is PSPACE-
hard [2].

Consider the product automaton A+ the construction of which is described
at the end of section 2.5. PSPACE-easiness is established by: 1) guessing a state
of RG(A+) of the form ((ℓ, n), r) and 2) checking it is reachable from the initial
state (PSPACE) and reachable from itself (PSPACE). As n is represented in
binary the result follows. ⊓⊔

3 Fault Codiagnosis Problems

We first recall the basics of fault diagnosis. The purpose of fault diagnosis [18]
is to detect a fault in a system as soon as possible. The assumption is that
the model of the system is known, but only a subset Σo of the set of events Σ
generated by the system are observable. Faults are also unobservable.

Whenever the system generates a timed word w ∈ TW ∗(Σ), an external
observer can only see πΣo

(w). If an observer can detect faults under this partial
observation of the outputs of A, it is called a diagnoser. We require a diagnoser
to detect a fault within a given delay ∆ ∈ N.

To model timed systems with faults, we use timed automata on the alphabet
Στ,f = Στ∪{f} where f is the faulty (and unobservable) event. We only consider
one type of fault, but the results we give are valid for many-types of faults
{f1, f2, · · · , fn}: indeed solving the many-types diagnosability problem amounts
to solving n one-type diagnosability problems [21]. The observable events are
given by Σo ⊆ Σ and τ is always unobservable.

The idea of decentralized or distributed diagnosis was introduced in [10]. It
is based on decentralized architectures: local diagnosers and a communication

8

protocol. In these architectures, local diagnosers (with their own partial view of
the system) can send to a coordinator some information, using a given communi-
cation protocol. The coordinator then computes a result from the partial results
of the local diagnosers. The goal is to obtain a coordinator that can detect the
faults in the system. When local diagnosers do not communicate with each other
nor with a coordinator (protocol 3 in [10]), the decentralized diagnosis problem
is called codiagnosis [15,20]. In this section we formalize the notion of codiag-
nosability introduced in [15] in a style similar to [8]. This allows us to obtain a
necessary and sufficient condition for codiagnosability of FA but also to extend
the definition of codiagnosability to timed automata.

In the sequel we assume that the model of the system is a TA A = (L, l0, X,
Στ,f , E, Inv) and is fixed.

3.1 Faulty Runs

Let ∆ ∈ N. A run ̺ of A of the form

(ℓ0, v0)
δ0−→ (ℓ0, v0 + δ0)

a0−→ (ℓ1, v1) · · ·
an−1

−−−→ (ℓn, vn)
δn−→ (ℓn, vn + δ) · · ·

is ∆-faulty if: (1) there is an index i s.t. ai = f and (2) the duration of ̺′ =

(ℓi, vi)
δi−→ · · ·

δn−→ (ℓn, vn + δn) · · · is larger than ∆. We let Faulty≥∆(A) be the
set of∆-faulty runs of A. Note that by definition, if∆′ ≥ ∆ then Faulty≥∆′(A) ⊆
Faulty≥∆(A). We let Faulty(A) = ∪∆≥0Faulty≥∆(A) = Faulty≥0(A) be the set
of faulty runs of A, and NonFaulty(A) = Runs(A) \ Faulty(A) be the set of
non-faulty runs of A. Finally, we let

Faultytr≥∆(A) = Tr(Faulty≥∆(A))

and

NonFaultytr(A) = Tr(NonFaulty(A))

which are the traces3 of ∆-faulty and non-faulty runs of A.

We also make the assumption that the TA A cannot prevent time from
elapsing. For FA, this assumption is that from any state, a discrete transition
can be taken. If it is not case, τ loop actions can be added with no impact on
the (co)diagnosability status of the system. This is a standard assumption in
diagnosability and is required to avoid taking into account these cases that are
not interesting in practice.

For discrete event systems (FA), the notion of time is the number of transi-
tions (discrete steps) in the system. A ∆-faulty run is thus a run with a fault
action f followed by at least ∆ discrete steps (some of them can be τ or even f
actions). When we consider codiagnosability problems for discrete event systems,
this definition of ∆-faulty runs apply. The other definitions are unchanged.

3 Notice that tr(̺) erases τ and f .

9

Remark 1. Using a timed automaton where discrete actions are separated by one
time unit is not equivalent to using a finite automaton when solving a fault di-
agnosis problem. For instance, a timed automaton can generate the timed words
1.f.1.a and 1.τ.1.τ.1.a. In this case, it is 1-diagnosable: after reading the timed
word 2.a we announce a fault. If we do not see the 1-time unit durations, the
timed words f.a and τ2.a give the same observation. And thus it is not diagnos-
able if we cannot measure time. Using a timed automaton where discrete actions
are separated by one time unit gives to the diagnoser the ability to count/measure
time and this is not equivalent to the fault diagnosis problem for FA (discrete
event systems).

3.2 Codiagnosers and Codiagnosability Problems

A codiagnoser is a tuple of diagnosers, each of which has its own set of observable
events Σi, and whenever a fault occurs, at least one diagnoser is able to detect it.
In the sequel we write πi in place of πΣi

for readability reasons. A codiagnoser
can be formally defined as follows:

Definition 3 ((∆, E)-Codiagnoser). Let A be a timed automaton over the
alphabet Στ,f , ∆ ∈ N and E = (Σi)1≤i≤n be a family of subsets of Σ. A (∆, E)-
codiagnoser for A is a mapping D = (D1, · · · , Dn) with Di : TW

∗(Σi) → {0, 1}
such that:

– for each ̺ ∈ NonFaulty(A),
∑n

i=1 D[i](πi(tr(̺))) = 0,

– for each ̺ ∈ Faulty≥∆(A),
∑n

i=1 D[i](πi(tr(̺))) ≥ 1. �

As for diagnosability, the intuition of this definition is that (i) the codiagnoser
will raise an alarm (D outputs a value different from 0) when a ∆-faulty run has
been identified, and that (ii) it can identify those ∆-faulty runs unambiguously.
The codiagnoser is not required to do anything special for ∆′-faulty runs with
∆′ < ∆ (although it is usually required that once it has announced a fault, it
does not change its mind and keep outputting 1).

A is (∆, E)-codiagnosable if there exists a (∆, E)-codiagnoser for A. A is
E-codiagnosable if there is some ∆ ∈ N s.t. A is (∆, E)-codiagnosable.

The standard notions [18] of ∆-diagnosability and ∆-diagnoser are obtained
when the family E is the singleton E = {Σ}. The fundamental codiagnosability
problems for timed automata are the following:

Problem 4 ((∆, E)-Codiagnosability)
Inputs: A TA A = (L, l0, X,Στ,f , E, Inv), ∆ ∈ N and E = (Σi)1≤i≤n.
Problem: Is A (∆, E)-codiagnosable?

Problem 5 (Codiagnosability)
Inputs: A TA A = (L, l0, X,Στ,f , E, Inv) and E = (Σi)1≤i≤n.
Problem: Is A E-codiagnosable?

10

Problem 6 (Optimal delay)
Inputs: A TA A = (L, l0, X,Στ,f , E, Inv) and E = (Σi)1≤i≤n.
Problem: If A is E-codiagnosable, what is the minimum ∆ s.t. A is (∆, E)-
codiagnosable?

The size of the input for Problem 4 is |A|+ log∆+ n · |Σ|, and for Problems 5
and 6 it is |A|+ n · |Σ|.

In addition to the previous problems, we will consider the construction of a
(∆, E)-codiagnoser when A is (∆, E)-codiagnosable in section 5.

3.3 Necessary and Sufficient Condition for Codiagnosability

In this section we generalize the necessary and sufficient condition for diagnos-
ability [19,8] to codiagnosability.

Lemma 1. A is not (∆, E)-codiagnosable if and only if ∃̺ ∈ Faulty≥∆(A) and

∀1 ≤ i ≤ n, ∃̺i ∈ NonFaulty(A) s.t. πi(tr(̺)) = πi(tr(̺i)). (1)

Proof.

– Only if part. Assume equation (1) holds and A is (∆, E)-codiagnosable. Then
there is a codiagnoser D = (D1, · · · , Dn) satisfying Definition 3. For each
̺i we must have Di(πi(tr(̺i))) = 0 because each ̺i is non faulty. But we
must also have for at least one index i, Di(πi(tr(̺i))) = Di(πi(tr(̺))) = 1
because ̺ is ∆-faulty, which is impossible.

– If part. Assume A is not (∆, E)-codiagnosable and ∀̺ ∈ Faulty≥∆(A), equa-
tion (1) does not hold. In this case, there is an index 1 ≤ i ≤ n s.t. :

∀̺′ ∈ NonFaulty(A), πi(tr(̺)) 6= πi(tr(̺
′)).

Define Di(w) = 1 when w ∈ πi(Faulty
tr

≥∆(A)) \ πi(NonFaulty
tr(A)) and 0

otherwise. Then D = (D1, · · · , Dn) is a ∆-codiagnoser for A. Indeed, let
̺ ∈ NonFaulty(A). Then πi(tr(̺)) ∈ πi(NonFaulty

tr(A)) and this implies
that Di(πi(tr(̺))) = 0. Let ̺ ∈ Faulty≥∆(A) and assume Di(πi(tr(̺))) =
0 for each 1 ≤ i ≤ n. By definition of Di we must have πi(tr(̺)) ∈
πi(NonFaulty

tr(A)). In this case, there is some run ̺i ∈ NonFaulty(A)
s.t. πi(tr(̺)) = πi(tr(̺i)) and thus equation (1) holds which contradicts
the initial assumption. ⊓⊔

Using Lemma 1, we obtain a language based characterisation of codiagnosability
extending the one given in [19,8]. Let π−1

i (X) = {w ∈ TW ∗(Σ) | πi(w) ∈ X}.

Lemma 2. A is (∆, E)-codiagnosable if and only if

Faultytr≥∆(A) ∩

(n
⋂

i=1

π−1
i

(

πi(NonFaulty
tr(A))

)

)

= ∅. (2)

11

Proof. Assume equation 2 does not hold and let w ∈ Faultytr≥∆(A), and for each

1 ≤ i ≤ n, w ∈ π−1
i

(

πi(NonFaulty
tr(A))

)

. This implies that:

– ∃̺ ∈ Faulty≥∆(A) s.t. tr(̺) = w;

– for each i, w ∈ π−1
i

(

πi(NonFaulty
tr(A))

)

and πi(w) ∈ πi(NonFaulty
tr(A)).

Thus, there is a run ̺i ∈ NonFaulty(A), s.t. πi(w) = πi(tr(̺)) = πi(tr(̺i))
and as equation (1) of Lemma 1 is satisfied, A is not (∆, E)-codiagnosable.

For the converse, assume A is not (∆, E)-codiagnosable. By Lemma 1, equa-
tion (1) is satisfied and:

– there is a run ̺ with tr(̺) ∈ Faultytr≥∆(A);
– for each i, there is some ̺i ∈ NonFaulty(A) s.t. πi(tr(̺)) = πi(tr(̺i)). Hence

tr(̺) ∈ π−1
i (πi(NonFaulty

tr(A))) for each i,

and this implies that equation 2 does not hold. ⊓⊔

4 Algorithms for Codiagnosability Problems

4.1 (∆, E)-Codiagnosability (Problem 4)

Deciding Problem 4 amounts to checking whether equation 2 holds or not. Recall
that A = (L, l0, X,Στ,f , E, Inv). Let t be a fresh clock not in X . Let Af (∆) =
((L × {0, 1})∪ {Bad}, (l0, 0), X ∪ {t}, Στ , Ef , Invf) with:

– ((ℓ, n), g, λ, r, (ℓ′, n)) ∈ Ef if (ℓ, g, λ, r, ℓ′) ∈ E, λ ∈ Σ ∪ {τ};
– ((ℓ, 0), g, τ, r ∪ {t}, (ℓ′, 1)) ∈ Ef if (ℓ, g, f, r, ℓ′) ∈ E;
– for ℓ ∈ L, ((ℓ, 1), t ≥ ∆, τ,∅, Bad) ∈ Ef ;
– Invf ((ℓ, n)) = Inv(ℓ).

Af (∆) is similar to A but when a fault occurs it switches to a copy of A (encoded
by n = 1). When sufficient time has elapsed in the copy (more than∆ time units),
location Bad can be reached.

The language accepted by Af (∆) with the set of final states {Bad} is thus
L∗(Af (∆)) = Faultytr≥∆(A). Define Ai = (L, l0, Xi, Στ , Ei, Invi) with:

– Xi = {xi | x ∈ X} (create copies of clocks of A);
– (ℓ, gi, λ, ri, ℓ

′) ∈ Ei if (ℓ, g, λ, r, ℓ
′) ∈ E, λ ∈ Σi ∪ {τ} with: gi is g where the

clocks x in X are replaced by their counterparts xi in Xi; ri is r with the
same renaming;

– (ℓ, gi, τ, ri, ℓ
′) ∈ Ei if (ℓ, g, λ, r, ℓ

′) ∈ E, λ ∈ Σ \Σi

– Invi(ℓ) = Inv(ℓ) with clock renaming (xi in place of x).

Each Ai accepts only non-faulty traces as the f -transitions are not in Ai. If the
set of final locations is L for each Ai, L

∗(Ai) = πi(NonFaulty
tr(A)). To accept

π−1
i

(

πi(NonFaulty
tr(A)) we add transitions (ℓ,true, λ,∅, ℓ) for each location

ℓ of Ei and for each λ ∈ Σ \ Σi. Let A∗
i be the automaton on the alphabet Σ

constructed this way. By definition of A∗
i , L

∗(A∗
i) = π−1

i

(

πi(NonFaulty
tr(A))

)

.
Define B = Af (∆) × A∗

1 × A∗
2 × · · · × A∗

n with the set of final locations
FB = {Bad} × L× · · · × L. We let RB = ∅. Using equation 2 we obtain:

12

Lemma 3. A is (∆, E)-codiagnosable iff L∗(B) = ∅.

Proof. The sets of clocks of the Ai’s and Af (∆) are disjoint: for each 1 ≤ i <
j ≤ n, Xi ∩ Xj = ∅ and Xi ∩ X = ∅. It follows from Fact 1 that L∗(B) =
L∗(Af (∆)) ∩

(
⋂n

i=1 L
∗(A∗

i)
)

. By Lemma 2 and the construction of Af (∆) and
the Ai’s, the result follows. ⊓⊔

The size of the input for problem 4 is |A|+ log∆+n · |Σ|. The size of Af (∆)
is (linear in) the size of A and log∆, i.e., O(|A| + log∆). The size of A∗

i is also
bounded by the size of A. If follows that |Af (∆)| +

∑n
i=1 |A

∗
i | is bounded by

(n+1)|A| and is polynomial in the size of the input of problem 4. We thus have
a polynomial reduction from Problem 4 to the intersection emptiness problem
for TA. We can now establish the following result:

Theorem 6. Problem 4 is PSPACE-complete for Timed Automata. It is already
PSPACE-hard for Deterministic Finite Automata.

Proof. PSPACE-easiness follows from the polynomial reduction described above
and Lemma 3. PSPACE-hardness is obtained by reducing the variant of the
intersection emptiness problem for DTA to the (∆, E)-codiagnosability problem.
This problem is PSPACE-hard (Proposition 1).

Let Ai, 1 ≤ i ≤ n, be n deterministic finite automata over the alphabet Σ.
Assume A1 has one accepting state and for A2, · · · , An all states are accepting.

We construct B as shown on Figure 1: a2, · · · , an are fresh letters not in Σ;
the target state of ai is the initial state of Ai. The initial state of B is ι. Let
Σi = Σ \ {ai} for each 2 ≤ i ≤ n. From the final state of A1 there is a transition
labeled f to a new state e.

We can prove that B is (1, E)-diagnosable if and only if ∩n
i=1L

∗(Ai) = ∅ with
E = (Σi)1≤i≤n. Assume w ∈ ∩n

i=1L
∗(Ai) 6= ∅. Take the run of trace τ.w.f.τ in

B. This run is 1-faulty. For each 2 ≤ i ≤ n, there is a run of trace ai.w which is
non faulty. Moreover, πi(ai.w) = w and thus B is not (1, E)-codiagnosable.

Now, assume B is not (1, E)-codiagnosable. There is a 1-faulty run, and this
must be a run of trace τ.w.f.τ with w ∈ L∗(A1), and for each 2 ≤ i ≤ n, there
is a non-faulty run ̺i the trace of which is ui, with πi(ui) = w. It must be the
case that ui = ai.wi as otherwise πi(ui) would start with ak, k 6= i and thus it
would be impossible to have πi(ui) = w. As ui = ai.wi, πi(ui) = wi = w, and
w ∈ L∗(Ai), it follows that w ∈ ∩n

i=1L
∗(Ai) and thus ∩n

i=1L
∗(Ai) is not empty.

Finally ∩n
i=1L

∗(Ai) 6= ∅ if and only if B is not (1, E)-codiagnosable.

The size of B is in O(
∑n

i=1 |Ai| + n) which is equal to O(
∑n

i=1 |Ai|) as
|Ai| ≥ 1. The size of the input for Problem 4 is thus O(

∑n
i=1 |Ai|)+n · (|Σ|+n))

which is quadratic and thus polynomial in
∑n

i=1 |Ai|.

The intersection emptiness problem for DTA is polynomially reducible to the
(∆, E)-codiagnosability Problem and Problem 4 is PSPACE-hard for DTA. ⊓⊔

13

ι

...

...

eτ

a2

ak

an

f

τ

A1

A2

Ak

An

Fig. 1. Reduction for Theorem 4: Automaton B

4.2 E-Codiagnosability (Problem 5)

In this section we show how to solve the E-codiagnosability problem. The algo-
rithm is a generalisation of the procedure for deciding diagnosability of discrete
event and timed systems (see [7] for a recent presentation).

First notice that A is not E-diagnosable if and only if for all ∆ ∈ N, A is not
(∆, E)-diagnosable. For standard fault diagnosis (one diagnoser and E = {Σ}),
A is not diagnosable if there is an infinite faulty run in A the projection of which
is the same as the projection of a non-faulty one [7].

The procedure for checking diagnosability of FA and TA slightly differ due
to specific features of timed systems. We recall here the algorithms to check
diagnosability of FA and TA [7,19] and extend them to codiagnosability.

Codiagnosability for Finite Automata. To check whether a FA A is diag-
nosable, we build a synchronized product Af ×A1, s.t. A

f behaves exactly like
A but records in its state whether a fault has occurred, and A1 behaves like A
without the faulty runs (transitions labelled f are cut off). This corresponds to
Af (∆) defined in section 4.1 without the clock ∆.

A faulty run in the product Af × A1 is a run for which Af reaches a faulty
state of the form (q, 1). To decide whether A is diagnosable we build an extended
version of Af ×A1 which is a Büchi automaton B [7]: B has a boolean variable
z which records whether Af participated in the last transition fired by Af ×A1.
A state of B is a pair (s, z) where s is a state of Af ×A1. B is given by the tuple
((Q × {0, 1} ×Q)× {0, 1}, ((q0, 0), q0, 0), Στ ,−→B,∅, RB) with:

– (s, z)
λ

−−→B (s′, z′) if (i) there exists a transition t : s
λ

−−→ s′ in Af ×A1, and
(ii) z′ = 1 if λ is a move of Af and z′ = 0 otherwise;

– RB = {(((q, 1), q′), 1) | ((q, 1), q′) ∈ Af ×A1}.

14

The important part of the previous construction relies on the fact that, for A to
be non Σ-diagnosable, Af should have an infinite faulty run (and take infinitely
many transitions) and A1 a corresponding non-faulty run (note that this one
can be finite) giving the same observation. With the previous construction, we
have [7]: A is diagnosable iff Lω(B) = ∅.

The construction for codiagnosability is an extension of the previous one
adding A2, · · · , An to the product. Let Bco = Af × A1 × · · · × An with Ai

defined in section 4.1. In Bco we again use the variable z to indicate whether
Af participated in the last move. Define the set of repeated states of Bco by:
RBco = {(((q, 1), q), 1) | ((q, 1), q) ∈ Af ×A1×· · ·×An}. By construction, a state
in RBco is: (1) faulty as it contains a component (q, 1) for the state of Af and
(2) Af participated in the last move as z = 1. It follows that:

Lemma 4. A is E-codiagnosable iff Lω(Bco) = ∅.

Theorem 7. Problem 5 is PSPACE-complete for DFA.

Proof. PSPACE-easiness follows form the fact that checking whether Lω(Bco) =
∅ can be done in PSPACE (Theorem 3). PSPACE-hardness follows from a re-
duction of Problem 1 to Problem 5 using the same encoding as the one given in
the proof of Theorem 6: the automaton B of Fig. 1 is not (∆, E)-codiagnosable
for any ∆ ∈ N. ⊓⊔

Codiagnosability for Timed Automata. Checking diagnosability for timed
automata requires an extra step in the construction of the equivalent of automa-
ton B defined above: indeed, for TA, a run having infinitely many discrete steps
could well be zeno, i.e., the duration of such a run can be finite. This extra step
in the construction was first presented in [19]. It can be carried out by adding
a special timed automaton Div(x) and synchronizing it with Af × A1. Let x
be a fresh clock not in X . Let Div(x) = ({0, 1}, 0, {x}, E, Inv) be the TA given
in Fig. 2. If we use F = ∅ and R = {1} for Div(x), any accepted run is time

0

[x ≤ 1]

1

[x ≤ 1]

x = 1; τ ; x := 0

x = 1; τ ; x := 0

Fig. 2. Timed Automaton Div(x)

divergent and thus cannot be zeno. Let D = Af ×Div(x) ×A1 and let FD = ∅

and RD be the set of states where Af is in a faulty location and Div(x) is in loca-
tion 1. For standard fault diagnosis, the following holds [19,7]: A is diagnosable
iff Lω(D) = ∅.

The construction to check codiagnosability is obtained by adding A2, · · · , An

in the product. Let Dco = Af ×Div(x)×A1 × · · · ×An.

15

Lemma 5. A is E-codiagnosable iff Lω(Dco) = ∅.

Theorem 8. Problem 5 is PSPACE-complete for TA.

Proof. The size of Dco is in O((n + 1) · |A|) and thus polynomial in the size
of the input of Problem 5 (|A| + n · |Σ|). PSPACE-easiness follows because the
intersection emptiness problem for Büchi automata can be solved in PSPACE.
PSPACE-hardness holds because it is already PSPACE-hard for FA. ⊓⊔

4.3 Optimal Delay (Problem 6)

Using the results for checking E-codiagnosability and (∆, E)-codiagnosability, we
obtain algorithms for computing the optimal delay.

Lemma 4 reduces codiagnosability of FA to Büchi emptiness on a product
automaton. The number of states of the automaton Bco is bounded by 4 · |A|n,
and the number of faulty states by 2 · |A|n. This implies that:

Proposition 2. Let A be a finite automaton. If A is E-codiagnosable, then A is
(2 · |A|n, E)-codiagnosable.

Proof. If L(Bco) = ∅ there cannot be a faulty run of length more than 2 · |A|n

otherwise at least one faulty state s will be encountered twice on this run, and
in this case we could construct an infinite faulty run which contradicts the fact
that L(Bco) = ∅. ⊓⊔

From Proposition 2, we can conclude that:

Theorem 9. Problem 6 can be solved in PSPACE for FA.

Proof. Checking whether A is E-codiagnosable can be done in PSPACE. If the
result is “yes”, we can do a binary search for the optimal delay: start with
∆ = 2 · |A|n, and check whether A is (∆, E)-codiagnosable. If “yes”, divide ∆ by
2 and so on. The encoding of 2 · |A|n has size O(n · log |A|) and thus is polynomial
in the size of the inputs of Problem 6. ⊓⊔

For timed automata, a similar reasoning can be done on the region graph of Dco.
If a TA A is E-codiagnosable, there cannot be any cycle with faulty locations
in RG(Dco). Otherwise there would be a non-zeno infinite word in L(Dco) and
thus an infinite time-diverging faulty run in A, with corresponding non-faulty
runs in each Ai, giving the same observation. Let K be the size of RG(Dco). If
A is E-codiagnosable, then a faulty state in RG(Dco) can be followed by at most
K states. Otherwise a cycle in the region graph would occur and thus Lω(Dco)
would not be empty. This also implies that all the states (s, r) in RG(Dco) that
can follow a faulty state must have a bounded region. As the amount of time
that can elapse in one region is at most 1 time unit4, the maximum duration of
a faulty run in Dco is bounded by K. This implies that:

4 The constants in the automata are integers.

16

Proposition 3. Let A be a timed automaton. If A is E-codiagnosable, then A
is (K, E)-codiagnosable with K = |RG(Dco)|.

The size of the region graph of Dco is bounded by |L|n+1 · ((n + 1)|X | + 1)! ·
2(n+1)|X|+1 ·M (n+1)|X|+1. Thus the encoding of constant K has size O(n · |A|).

Theorem 10. Problem 6 can be solved in PSPACE for Timed Automata.

Proof. Checking whether a TA A is E-codiagnosable can be done in PSPACE. If
the result is “yes”, we can do a binary search for the maximum delay: start with
∆ = K = |RG(Bco)|, and check whether A is (∆, E)-codiagnosable. If “yes”,
divide ∆ by 2 and so on. The encoding of K has size O(n · |A|) and thus is
polynomial in the size of the input of Problem 6. ⊓⊔

5 Synthesis of Codiagnosers

5.1 Synthesis for Finite Automata

The synthesis of a codiagnoser for a FA A can be achieved by determinizing n
versions of A. This is exactly the same procedure that is applied for standard
diagnosis: assume Σo ⊆ Σ is the set of observable events in A, and A is (∆,Σo)-
diagnosable. To build a ∆-diagnoser we proceed as follows [21,13]:

1. build Af as before and replace the events in Σ \ Σo by τ ; recall that f is
also replaced by τ in Af and a boolean value indicates whether a fault has
occurred;

2. determinize Af and obtain B;
3. define the set of final states FB of B by: S = {s1, s2, · · · , sl} is in FB iff for

each 1 ≤ i ≤ l, si is a faulty state of Af ;
4. a (∆,Σo)-diagnoser D for A can be constructed as follows:

(a) let ̺ be a run of A and w = πΣo
(tr(̺)).

(b) if when reading w, B reaches a state in FB , define D(w) = 1,
(c) otherwise D(w) = 0.

Applying this construction for each Σo = Σi, 1 ≤ i ≤ n, we obtain a tuple D =
(D1, D2, · · · , Dn) of diagnosers Di which is a (∆, E)-codiagnoser for A. Note
that the size of D is exponential in the size of A (this is already the case for the
diagnosis problem).

5.2 Synthesis for Timed Automata

The synthesis of a diagnoser for timed automata [19] is already more complicated
than for FA. Timed automata are not (always) determinizable [2] and thus we
cannot use the same procedure as for FA and determinize Af . Moreover, checking
whether a TA is determinizable is not decidable [11], and it is thus impossible
to check whether we can use the same procedure.

The construction of a diagnoser for timed automata [19] consists in computing
on-the-fly the current possible states of the timed automaton Af after reading a

17

timed word w. This procedure is effective but gives a diagnoser which is a Turing
machine. The machine computes a state estimate of A after each observable
event, and if it contains only faulty states, it announces a fault.

Obviously the same construction can be carried out for codiagnosis: we build
Mi, 1 ≤ i ≤ n Turing machines that estimate the state of A. When one Mi’s
estimate on an input Σi-trace w contains only faulty states, we set Di(w) = 1
and 0 otherwise. This tuple of Turing machines is a (∆, E)-codiagnoser.

Computing the estimates with Turing machines might be too expensive to
be implemented at runtime. More efficient and compact codiagnosers might be
needed with reasonable computation times. In the next section, we address the
problem of codiagnosis for TA under bounded resources.

6 Codiagnosis with Deterministic Timed Automata

The fault diagnosis problem using timed automata has been introduced and
solved by P. Bouyer et al. in [5]. The problem is to determine, given a TA
A, whether there exists a diagnoser D for A, that can be represented by a
deterministic timed automaton.

We recall the result of [5] and after we study the corresponding problem for
codiagnosis.

6.1 Fault Diagnosis with Deterministic Timed Automata

When synthesizing (deterministic) timed automata, an important issue is the
amount of resources the timed automaton can use: this can be formally de-
fined [6] by the (number of) clocks, Z, that the automaton can use, the max-
imal constant max, and a granularity 1

m
. As an example, a TA of resource

µ = ({c, d}, 2, 13) can use two clocks, c and d, and the clocks constraints using
the rationals −2 ≤ k/m ≤ 2 where k ∈ Z and m = 3. A resource µ is thus a
triple µ = (Z,max, 1

m
) where Z is finite set of clocks, max ∈ N and 1

m
∈ Q>0 is

the granularity. DTAµ is the class of DTA of resource µ.

Remark 2. Notice that the number of locations of the DTA in DTAµ is not
bounded and hence this family has an infinite (yet countable) number of ele-
ments.

If a TA A is ∆-diagnosable with a diagnoser that can be represented by a DTA
D with resource µ, we say that A is (∆,D)-diagnosable. P. Bouyer et al. in [5]
considered the problem of deciding whether there exists a diagnoser which is a
DTA with resource µ:

Problem 7 (∆-DTA-Diagnosability [5])
Inputs: A TA A = (L, l0, X,Στ,f , E, Inv), ∆ ∈ N, a resource µ = (Z,max, 1

m
).

Problem: Is there any D ∈ DTAµ s.t. A is (∆,D)-diagnosable ?

Theorem 11 (P. Bouyer et al., [5]). Problem 7 is 2EXPTIME-complete.

18

The solution to the previous problem is based on the construction of a two-
player game, the solution of which gives the set of all DTAµ diagnosers (the
most permissive diagnosers) which can diagnose A (or ∅ is there is none).

Let A = (L, l0, X,Στ,f , E, Inv) be a TA, Σo ⊆ Σ. Define A(∆) = (L1 ∪ L2 ∪
L3, l

1
0, X ∪ {z}, Στ,f ,→∆, Inv∆) as follows:

– Li = {ℓi, ℓ ∈ L}, for i ∈ {1, 2, 3}, i.e., Li elements are copies of the locations
in L,

– z is a (new) clock not in X ,
– for ℓ ∈ L, Inv(ℓ1) = Inv(ℓ), Inv(ℓ2) = Inv(ℓ) ∧ z ≤ ∆, and Inv(ℓ3) = true,
– the transition relation is given by:

• for i ∈ {1, 2, 3}, ℓi
(g,a,R)

−−−−−−→∆ ℓ′i if a 6= f and ℓ
(g,a,R)

−−−−−−→ ℓ′,

• for i ∈ {2, 3}, ℓi
(g,f,R)

−−−−−−→∆ ℓ′i if a 6= f and ℓ
(g,f,R)

−−−−−−→ ℓ′,

• ℓ1
(g,f,R∪{z})

−−−−−−−−−→∆ ℓ′2 if a 6= f and ℓ
(g,f,R)

−−−−−−→ ℓ′,

• ℓ2
(z=∆,τ,∅)

−−−−−−−−→∆ ℓ3.

The previous construction creates 3 copies of A: the system starts in copy 1,
when a fault occurs it switches to copy 2, resetting the clock z, and when in
copy 2 (a fault has occurred) it can switch to copy 3 after ∆ time units (copy
3 could be replaced by a special location Bad). We can then define L1 as the
non-faulty locations, and L3 as the ∆-faulty locations.

Given a resource µ = (Y,max, 1
m
) (X ∩ Y = ∅), a minimal guard for µ

is a guard which defines a region of granularity µ. The (symbolic) universal
automaton U = ({0}, {0}, Y,Σ,Eµ, Invµ) is specified by:

– Invµ(0) = true,
– (0, g, a, R, 0) ∈ Eµ for each (g, a, R) s.t. a ∈ Σ, R ⊆ Y , and g is a minimal

guard for µ.

U is finite because Eµ is finite. Nevertheless U is not deterministic because it
can choose to reset different sets of clocks Y for a pair “(guard, letter)” (g, a). To
diagnose A, we have to find when a set of clocks has to be reset. This can provide
enough information to distinguish ∆-faulty words from non-faulty words.
The algorithm of [5] requires the following steps:

1. define the region graph RG(A(∆) × U),
2. compute a projection of this region graph:

– let (g, a, R) be a label of an edge in RG(A(∆)× U),
– let g′ be the unique minimal guard s.t. [[g]] ⊆ [[g′]];
– let pU be the projection defined by pU (g, a, R) = (g′, a, R ∩ Y) if a ∈ Σo

and pU(g, a, R) = τ otherwise.
The projected automaton pU(RG(A(∆)×U)) is the automatonRG(A(∆)×U)
where each label α is replaced by pU (α).

3. determinize pU(RG(A(∆) × U)) (removing τ actions) and obtain HA,∆,µ.
4. build a two-player safety game GA,∆,µ as follows:

– each transition s
(g,a,Y)

−−−−−−→ s′ in HA,∆,µ yields a transition in GA,∆,µ of
the form:

19

s (s, g, a) s′
(g, a) (g, a, Y)

– the round-shaped state are the states of Player 1, whereas the square-
shaped states are Player 0 states (the choice of the clocks to reset).

– the bad states (for Player 0) are the states {(ℓ1, r1), · · · , (ℓk, rk)} with
both a ∆-faulty (in L3) and a non-faulty (in L1) location. We let Bad
denote the set of bad states.

The main results of [5] are:

– there is a TA D ∈ DTAµs.t. A is (∆,D)-diagnosable iff Player 0 can win the
safety game “avoid Bad” GA,∆,µ;

– it follows that Problem 7 can be solved in 2EXPTIME as GA,∆,µ has size
doubly exponential in A, ∆ and µ;

– a witness diagnoser D of size doubly exponential in A, ∆ and µ can be ob-
tained: it is deterministic timed automaton with a set of accepting locations
F . When the projection w of timed word of A onto Σo is accepted by D, D
outputs 1 otherwise it outputs 0;

– the acceptance problem for Alternating Turing machines of exponential space
can be reduced to Problem 7 and thus it is 2EXPTIME-hard.

Another result of [5] is that for Event Recording Automata (ERA), Problem 7
is PSPACE-complete.

6.2 Algorithm for Codiagnosability

In this section we include the alphabet Σ a DTA can monitor in the resource µ
and write µ = (Σ,Z,max, 1

m
).

Problem 8 (∆-DTA-Codiagnosability)
Inputs: A TA A = (L, l0, X,Στ,f , E, Inv), ∆ ∈ N, and a family of resources
µi = (Σi, Zi,maxi,

1
mi

), 1 ≤ i ≤ n with Σi ⊆ Σ.

Problem: Is there any codiagnoser D = (D1, D2, · · · , Dn) with Di ∈ DTAµi

s.t. A is (∆,D)-codiagnosable ?

To solve Problem 8, we extend the previous algorithm for DTA-diagnosability.
Let Gi be the game GA,∆,µi

and Badi the set of bad states. Given a strategy
fi, we let fi(G

i) be the outcome5 of Gi when fi is played by Player 0. Given
w ∈ TW ∗(Σ) and a DTA A on Σ, we let last(w,A) be the location reached
when w is read by A.

Lemma 6. A is (∆,D)-codiagnosable iff there is a tuple of strategies f s.t.

(1) ∀1 ≤ i ≤ n, f [i] is state-based on the game Gi, and

(2) ∀w ∈ Tr(A)

{

If Si = last(πΣi
(w), fi(G

i)), 1 ≤ i ≤ n,

then ∃1 ≤ j ≤ n, s.t. Sj 6∈ Badj .

5 fi(G
i) is a timed transition system.

20

Item (2) of Lemma 6 states that there is no word in A for which all the Player 0
in the games Gi are in bad states. The strategies for each Player 0 are not
necessarily winning in each Gi, but there is always one Player 0 who has not
lost the game Gi.

Proof.

If part. Assume there is a tuple of state-based strategies f = (f1, f2, · · · , fn)
on each game Gi, s.t. (2) is satisfied. From (1), each choice of Player 0 in Gi

determines one transition from each square state (see the definition of Gi and
square states in section 6.1). Thus the graph of Gi can be folded into a set

of transitions q
g,a,Y
−−−→ q′ if the choice of Player 0 is g, a, Y in square state

(q, g, a). This gives a DTA Gi,c. We can then build a diagnoser Di defined by
the DTA as follows: (i) for each state q = {(ℓ1, r1), · · · , (ℓk, rk)} in Gi,c, if all
the ℓj are ∆-faulty, q is accepting; (ii) given w ∈ Tr(A), if πΣi

(w) ∈ L(Gi,c),
let Di(πΣi

(w)) = 1 and otherwise 0. D is a ∆-codiagnoser for A. Indeed, let
w ∈ NonFaultytr(A). In each gameGi,c, we cannot reach a∆-faulty state because
of (2). Hence

∑n
i=1 D[i] = 0. Now assume w ∈ Faultytr≥∆(A): In eachGi,c we must

reach a state qi containing a ∆-faulty state. By (2), there is some j s.t. qj 6∈ Badj
and this implies that qj is made only of ∆-faulty states and qj is accepting, thus
D[j](πΣj

(w)) = 1.

Only If part. For this part we first show that a tuple of strategies f exists and
then address the state-based problem. Let D = (D1, D2, · · · , Dn) be the tuple
of DTA that diagnoses A. For each game Gi, define the strategy fi by: let ̺ =
(g1, λ1)(g1, λ1, Y1)(g2, λ2)(g2, λ2, Y2) · · · (gk, λk) be a run in Gi; fi(̺) = (g, a, Y)
if in Di the symbolic sequence (g1, λ1) · · · (gk, λk) reaches a location ℓ and there
is a transition (ℓ, (g, a, Y), ℓ′) in Di. By assumption, as D is a ∆-codiagnoser,
for each w ∈ Faultytr≥∆(A), there is at least one Dj which reaches an accepting
state after reading πΣj

(w).
As a consequence, in the corresponding game, Gj , the state reached is made

only of ∆-faulty states. Indeed, if a non-faulty state is reachable, then the word
w is also the projection of a non faulty run. Hence Dj should announce 0 which
is a contradiction.

If w ∈ NonFaultytr(A), all the states reached in each Gi are non faulty.

Now assume we have the strategies fi, 1 ≤ i ≤ n. We can construct state-
based strategies on each game Gi. Given f1, (not necessarily winning) on G1,
let T1 be the set of bad states reachable in f1(G

1). Define the language L1 to be
the set of words w ∈ Tr(A) s.t. a state in T1 is reachable in f1(G

1) when reading
πΣ1

(w). These are the words on which f1 is not winning in G1.
Let Reach(f1(G

1)) be the set of states reachable in G1. There is a strategy
(f1) to avoid B1 = Reach(G1) \ Reach(f1(G

1)). Hence there is a state-based
strategy f ′

1 that avoids B1.
Let 1 ≤ i < n. Consider the game fi+1(G

i+1) restricted to the (projections
of the) words w ∈ Li. The idea is that on Li, a strategy fj, j ≤ i is winning in
Gj . In this restricted game, we define the set Ti+1 of bad states that are still

21

reachable. Let Li+1 be the set of words w ∈ Tr(A) s.t. a state in Ti+1 is reachable
in the restricted timed transition system fi+1(G

i+1).

Notice that we can construct a state-based strategy f ′
i which avoids the same

states as fi does. For each restricted game f ′
i(G

i) we define the diagnoser Di as
before. If for some i, Li = ∅, we can define the diagnosers Dk, k ≥ i to always
announce 0 for each word.

The tuple f ′ is a (∆, E)-codiagnoser for A and all the f ′[i] are state-based
on Gi. ⊓⊔

From the previous Lemma, we can obtain the following result:

Theorem 12. Problem 8 is 2EXPTIME-complete.

Proof. 2EXPTIME-hardness follows from Theorem 11, from [5]. 2EXPTIME
easiness is obtained using the following algorithm:

1. compute the games Gi, 1 ≤ i ≤ n;

2. select a state-based strategy on each game Gi;

3. check condition (2) of Lemma 6.

The sizes of the games Gi are doubly exponential in A, ∆ and the resources
µi (recall that Σi is included in µi). There is a doubly exponential number of
state-based strategies for each game Gi. Once selected we have a DTA Gi,c.

Checking condition (2) of Lemma 6 can be done on the product A(∆) ×
G1,c × · · · × Gn,c. It amounts to deciding whether a location in L3 × Bad1 ×
· · ·Badn is reachable. Reachability can be checked in PSPACE for product of
TA (Theorem 2). As the size of the input is doubly exponentian in the size of
A, this results in a 2EXPSPACE algorithm.

Nevertheless, there is no exponential blow up in the number of clocks of the

product. Actually the size of RG(A(∆)×G1,c × · · · ×Gn,c) is |L| · 22
|A|+|µ1|

· · · · ·

22
|A|+|µn|

· (n · |X |)! · 2n·|X| ·Kn·|X| with K the maximal constant in A, ∆, and
the resources µi. It is doubly exponential in the size of A, ∆ and the resources
µi. Reachability can be checked in linear time on this graph and thus in doubly
exponential time in the size of A, ∆ and the resources. Step 3 above is done at
most a doubly exponential number of times

and the result follows. ⊓⊔

7 Conclusion & Future Work

Table 1 gives an overview of the results described in this paper (bold face) for the
codiagnosis problems in comparison with the results for the diagnosis problems
(second line, normal face).

Our ongoing work is to extend the results on diagnosis using dynamic ob-
servers [9,8] to the codiagnosis framework.

22

∆-Codiagnos. Codiagnosability Optimal Delay
Synthesis

(Bounded Resources)

FA
PSPACE-C.

PTIME [21,13]
PSPACE-C.

PTIME [21,13]
PSPACE

PTIME [21,13]
EXPTIME

EXPTIME [18]

TA
PSPACE-C.

PSPACE-C. [19]
PSPACE-C.

PSPACE-C. [19]
PSPACE

PSPACE [7]
2EXPTIME-C.

2EXPTIME-C. [5]

Table 1. Summary of the Results

References

1. Luca Aceto and François Laroussinie. Is your model checker on time? on the
complexity of model checking for timed modal logics. J. Log. Algebr. Program.,
52-53:7–51, 2002.

2. Rajeev Alur and David Dill. A theory of timed automata. Theoretical Computer
Science, 126:183–235, 1994.

3. João Carlos Basilio and Stéphane Lafortune. Robust codiagnosability of discrete
event systems. In IEEE Computer Society, editor, Proceedings of the American
Control Conference (ACC’09), pages 2202–2209, 2009.

4. Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on uppaal. In
Marco Bernardo and Flavio Corradini, editors, Formal Methods for the Design of
Real-Time Systems: 4th International School on Formal Methods for the Design of
Computer, Communication, and Software Systems, SFM-RT 2004, volume 3185 of
LNCS, pages 200–236. Springer Verlag, September 2004.

5. Patricia Bouyer, Fabrice Chevalier, and Deepak D’Souza. Fault diagnosis using
timed automata. In Vladimiro Sassone, editor, Proceedings of the 8th Interna-
tional Conference on Foundations of Software Science and Computation Structures
(FoSSaCS’05), volume 3441 of LNCS, pages 219–233, Edinburgh, U.K., April 2005.
Springer Verlag.

6. Patricia Bouyer, Deepak D’Souza, P. Madhusudan, and Antoine Petit. Timed con-
trol with partial observability. In Warren A. Hunt, Jr and Fabio Somenzi, editors,
Proceedings of the 15th International Conference on Computer Aided Verification
(CAV’03), volume 2725 of LNCS, pages 180–192, Boulder, Colorado, USA, July
2003. Springer.

7. Franck Cassez. A Note on Fault Diagnosis Algorithms. In 48th IEEE Conference
on Decision and Control and 28th Chinese Control Conference, Shanghai, P.R.
China, December 2009. IEEE Computer Society.

8. Franck Cassez and Stavros Tripakis. Fault diagnosis with static or dynamic diag-
nosers. Fundamenta Informaticae, 88(4):497–540, November 2008.

9. Franck Cassez, Stavros Tripakis, and Karine Altisen. Sensor minimization problems
with static or dynamic observers for fault diagnosis. In 7th Int. Conf. on Applica-
tion of Concurrency to System Design (ACSD’07), pages 90–99. IEEE Computer
Society, 2007.

10. Rami Debouk, Stéphane Lafortune, and Demosthenis Teneketzis. Coordinated
decentralized protocols for failure diagnosis of discrete event systems. Discrete
Event Dynamic Systems, 10(1-2):33–86, 2000.

11. Olivier Finkel. On decision problems for timed automata. Bulletin of the European
Association for Theoretical Computer Science, 87:185–190, 2005.

23

12. Gerard J. Holzmann. Software model checking with spin. Advances in Computers,
65:78–109, 2005.

13. Shengbing Jiang, Zhongdong Huang, Vigyan Chandra, and Ratnesh Kumar. A
polynomial algorithm for testing diagnosability of discrete event systems. IEEE
Transactions on Automatic Control, 46(8), August 2001.

14. Dexter Kozen. Lower bounds for natural proof systems. In FOCS, pages 254–266.
IEEE, 1977.

15. Wenbin Qiu and Ratnesh Kumar. Decentralized failure diagnosis of discrete event
systems. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems
and Humans, 36(2):384–395, 2006.

16. P.J.G. Ramadge and W.M. Wonham. Supervisory control of a class of discrete
event processes. SIAM Journal of Control and Optimization, 25(1):1202–1218,
1987.

17. P.J.G. Ramadge and W.M. Wonham. The control of discrete event systems. Proc.
of the IEEE, 77(1):81–98, 1989.

18. Meera Sampath, Raja Sengupta, Stephane Lafortune, Kasim Sinnamohideen, and
Demosthenis C. Teneketzis. Diagnosability of discrete event systems. IEEE Trans-
actions on Automatic Control, 40(9), September 1995.

19. Stavros Tripakis. Fault diagnosis for timed automata. In Werner Damm and Ernst-
Rüdiger Olderog, editors, Proceedings of the International Conference on Formal
Techniques in Real Time and Fault Tolerant Systems (FTRTFT’02), volume 2469
of LNCS, pages 205–224. Springer Verlag, 2002.

20. Yin Wang, Tae-Sic Yoo, and Stéphane Lafortune. Diagnosis of discrete event
systems using decentralized architectures. Discrete Event Dynamic Systems,
17(2):233–263, 2007.

21. Tae-Sic Yoo and Stéphane Lafortune. Polynomial-time verification of diagnosabil-
ity of partially-observed discrete-event systems. IEEE Transactions on Automatic
Control, 47(9):1491–1495, September 2002.

24

	The Complexity of Codiagnosability for Discrete Event and Timed Systems
	 Franck Cassez

