Skip to main content

Integrated Cyber-Physical Fault Injection for Reliability Analysis of the Smart Grid

  • Conference paper
Computer Safety, Reliability, and Security (SAFECOMP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6351))

Included in the following conference series:

Abstract

The term “Smart Grid” broadly describes emerging power systems whose physical operation is managed by significant intelligence. The cyber infrastructure providing this intelligence is composed of power electronics devices that regulate the flow of power in the physical portion of the grid. Distributed software is used to determine the appropriate settings for these devices. Failures in the operation of the Smart Grid can occur due to malfunctions in physical or cyber (hardware or software) components.

This paper describes the use of fault injection in identifying failure scenarios for the Smart Grid. Software faults are injected to represent failures in the cyber infrastructure. Physical failures are concurrently represented, creating integrated cyber-physical failure scenarios that differentiate this work from related studies. The effect of these failure scenarios is studied in two cases: with and without fault detection in the distributed software. The paper concludes by utilizing the information gained to refine and improve the accuracy of the quantitative reliability model presented in our earlier work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armbruster, A., Gosnell, M., McMillin, B., Crow, M.: Power Transmission Control Using Distributed Max-Flow. In: Proc. of the 29th Annual Int’l Computer Software and Applications Conference (COMPSAC 2005), pp. 256–263 (2005)

    Google Scholar 

  2. Armbruster, A., Gosnell, M., McMillin, B., Crow, M.: The Maximum Flow Algorithm Applied to the Placement and Steady State Control of FACTS Devices. In: Proc. of the 2005 North American Power Symposium, pp. 77–83 (2005)

    Google Scholar 

  3. Chiaradonna, S., Lollini, P., Giandomenico, F.D.: On a Modelling Framework for the Analysis of Interdependencies in Electtric Power Systems. In: Proc. of the 37th Int’l Conf. on Dependable Systems and Networks DSN 2007, pp. 185–195 (2007)

    Google Scholar 

  4. Chowdhury, B.H., Baravc, S.: Creating Cascading Failure Scenarios in Interconnected Power Systems. In: IEEE Power Engineering Society General Meeting (June 2006)

    Google Scholar 

  5. Faza, A., Sedigh, S., McMillin, B.: Reliability Modeling for the Advanced Electric Power Grid. In: Saglietti, F., Oster, N. (eds.) SAFECOMP 2007. LNCS, vol. 4680, pp. 370–383. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Faza, A., Sedigh, S., McMillin, B.: The Advanced Electric Power Grid: Complexity Reduction Techniques for Reliability Modeling. In: Harrison, M.D., Sujan, M.-A. (eds.) SAFECOMP 2008. LNCS, vol. 5219, pp. 429–439. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Faza, A., Sedigh, S., McMillin, B.: Reliability Analysis for the Advanced Electric Power Grid: From Cyber Control and Communication to Physical Manifestations of Failure. In: Buth, B., Rabe, G., Seyfarth, T. (eds.) SAFECOMP 2009. LNCS, vol. 5775, pp. 257–269. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Kalyani, R., Crow, M., Tauritz, D.: Optimal Placement and Control of Unified Power Flow Control Devices using Evolutionary Computing and Sequential Quadratic Programming. In: Power Systems Conference and Exposition PSCE 2006, pp. 959–964. IEEE PES, Los Alamitos (November 2006)

    Chapter  Google Scholar 

  9. Klein, R., Rome, E., Beyel, C., Linnemann, R., Reinhardt, W., Usov, A.: Information Modelling and Simulation in Large Interdependent Critical Infrastructures in IRRIIS. In: Third Int’l Workshop on Critical Information Infrastructure Security, CRITIS, Rome, Italy, pp. 36–47. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Lininger, A., McMillin, B., Crow, M., Chowdhury, B.: Use of Max-Flow on FACTS Devices. In: North American Power Symposium, pp. 288–294 (2007)

    Google Scholar 

  11. Luiijf, E., Nieuwenhuijs, A., Klaver, M., Eeten, M., Cruz, E.: Empirical Findings on Critical Infrastructure Dependencies in Europe. In: Third Int’l Workshop on Critical Information Infrastructure Security, CRITIS, Rome, Italy, pp. 302–310. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. McDaniel, P., McLaughlin, S.: Security and Privacy Challenges in the Smart Grid. IEEE Security and Privacy 7(3), 75–77 (2009)

    Article  Google Scholar 

  13. Olofsson, M.: Power Quality and EMC in Smart Grid. In: Proc. of the 10th International Conference on Electrical Power Quality and Utilization, pp. 1–6 (September 2009)

    Google Scholar 

  14. Prassana, G., Lakshmi, A., Sumanth, S., Simha, V., Bapat, J., Koomullil, G.: Data Communication Over the Smart Grid. In: Proc. of the Int’l Symp. on Power Line Communications and its Applications ISPLC 2009, pp. 273–279 (2009)

    Google Scholar 

  15. Romani, F., Chiaradonna, S., Giandomenico, F.D., Simoncini, L.: Simulation Models and Implementation of a Simulator for the Performability Analysis of Electric Power Systems Considering Interdependencies. In: Proc. of the 10th IEEE High Assurance Systems Engineering Symp (HASE 2007), Washington, DC, USA, pp. 305–312. IEEE Computer Society, Los Alamitos (2007)

    Chapter  Google Scholar 

  16. Rome, E., Bologna, S., Gelenbe, E., Luiijf, E., Masucci, V.: DIESIS - Design of an Interoperable European Federated Simulation Network for Critical Infrastructures. In: Proc. of the 2009 SISO European Simulation Interoperability Workshop (ESIW 2009), pp. 139–146 (2009)

    Google Scholar 

  17. The High-Level Group on Embedded Systems: Building Artemis (retrieved June 2004), https://www.artemisia-association.org/attachments/647/Building_ARTEMIS_final_report_en.pdf

  18. The United States Congress: The Energy Independence and Security Act of 2007 (2007)

    Google Scholar 

  19. Wei, X., Yu-hui, Z., Jie-lin, Z.: Energy-efficient Distribution in Smart Grid. In: Proc. of the Int’l Conf. on Sustainable Power Generation and Supply, SUPERGEN 2009, pp. 1–6 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Faza, A., Sedigh, S., McMillin, B. (2010). Integrated Cyber-Physical Fault Injection for Reliability Analysis of the Smart Grid. In: Schoitsch, E. (eds) Computer Safety, Reliability, and Security. SAFECOMP 2010. Lecture Notes in Computer Science, vol 6351. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15651-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15651-9_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15650-2

  • Online ISBN: 978-3-642-15651-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics