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Abstract. Resolving inconsistency in knowledge-integration systems is
a major issue, especially when interlinking heterogeneous, autonomous
sources. The latter can be done using a multi-context system, also in
presence of non-monotonicity. Recent work considered diagnosis and ex-
planation of inconsistency in such systems in terms of faulty information
exchange. To discriminate between different solutions, we consider in-
consistency assessment using preference. We present means to a) filter
undesired diagnoses b) select the most preferred ones given an arbitrary
preference order and c) use CP-nets for efficient selection. Furthermore,
we show how to incorporate the assessment into a Multi-Context System
by a transformational approach. In a range of settings, the complexity
does not increase compared to the basic case and key properties like
decentralized information exchange and information hiding are preserved.

Key words: Inconsistency Management, Multi-Context Systems, Hybrid
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1 Introduction

Inconsistencies in heterogeneous, nonmonotonic knowledge-integration systems
often do not have a single cause, but emerge from interaction, i.e., by the exchange
of knowledge between knowledge bases. The nonmonotonic Multi-Context System
(MCS) framework of [4], which extends seminal works by [9, 6], is a logic-based
approach to flexibly model the information exchange between heterogeneous
(nonmonotonic) knowledge bases, which exist a priori and incorporate external
knowledge via so-called bridge rules. Recently, formal notions for explaining
inconsistency in such MCSs in terms of faulty bridge rules have been developed [8],
serving the purpose of inconsistency analysis with the eventual aim of resolving
inconsistency. However, multiple possibilities for this call for a further assessment,
taking application specific criteria into account.

To the best of our knowledge, no general method has been proposed to assess
inconsistencies in MCSs which is flexible enough to adapt to application specific
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criteria. Although, for instance, [2] provides methods based on local trust and
provenance to determine preferred models for a MCS avoiding inconsistency, the
proposal requests to choose one out of four predefined evaluation algorithms.
Our work instead aims at general techniques for assessing inconsistency in MCSs
that can be ‘instantiated’ to encode application-specific properties for preferred
consistency restorations.

For example, consider a health-care decision-support system that interlinks
knowledge sources about patient histories, lab test results, a disease ontology, and
a decision support system for patient treatment. Here, an inconsistency might
easily arise if some scenario of contradicting information has not been anticipated.
E.g., the ontology classifies symptoms as atypical pneumonia, which requires
strong antibiotics, but a patient is allergic to it; the treatment system may then
raise an inconsistency. One possibility to resolve it is to ignore the imported
disease information. While technically fine, this solution might be unacceptable,
as a constraint “No illness of a patient may be ignored” should be fulfilled.

To account for such selection criteria on consistency restorations, we take a
preference-based approach. Two basic elements of preference-based selection can
be found in the literature: filters, which discard unpreferred solutions that fail some
preference condition, and qualitative comparison relations establishing preference
orders to single out the most appealing solutions. Our main contributions enabling
these for inconsistency assessment in MCSs are summarized as follows.
• We formalize both preference approaches above in the setting of MCSs. For

preference orders, we further investigate the application of conditional preference
networks (CP-nets), which exhibit appealing features of locality and privacy.
CP-nets [3] capture a natural class of preference statements like “If my new car
is from Japan, I prefer hybrid over diesel engine, assuming all else is equal”.
• We further show how to realize the preference approaches inside the MCS

framework by using meta-reasoning on consistency restorations. For a given MCS
and a filter, preference order, or CP-net, a rewriting yields a transformed system
such that consistency restorations of the latter directly correspond to preferred
consistency restorations of the original system (wrt. the given filter, preference
order, or CP-net).
• For preference notions that are not inherently centralized, the realization

allows that preferred solutions are found in a decentralized, localized manner,
maintaining privacy and information hiding. Thus we preserve key properties of
MCSs also for inconsistency assessment.

Our results not only refine existing methods for inconsistency handling in
MCSs without complexity increase, but also show the versatility of the basic
framework to couch advanced reasoning tasks, including self-reflective assessment.

2 Preliminaries

This section introduces MCS and diagnoses in general; it is largely based on [8].
A heterogeneous nonmonotonic MCS [4] consists of contexts, which comprise

knowledge bases in underlying logics, and bridge rules to control the information
flow between contexts.



A logic L = (KBL,BSL,ACCL) consists, in an abstract view, of

– a set KBL of knowledge bases of L, each being a set (of “formulas”),
– a set BSL of possible belief sets, whose elements are “beliefs”, and
– a “semantics” function ACCL : KBL → 2BSL which assigns each knowledge

base a set of acceptable belief sets.

This concept of a logic captures many monotonic and nonmonotonic logics, e.g.,
classical logic, description logics, modal logics, default logics, circumscription,
and logic programs under the answer set semantics.

A bridge rule can add information to a context, depending on the belief sets
which are accepted at other contexts. Let L = (L1, . . . , Ln) be a sequence of
logics. An Lk-bridge rule r over L is of the form

(k : s) ← (c1 : p1), . . . , (cj : pj),not (cj+1 : pj+1), . . . ,not (cm : pm). (1)

where 1 ≤ ci ≤ n, pi is an element of some belief set of Lci
, k refers to the context

receiving information s. We denote by hd (r) the formula s in the head of r.
A multi-context system (MCS) is a collection M = (C1, . . . , Cn) of contexts

Ci = (Li, kbi, bri), 1 ≤ i ≤ n, where Li = (KBi,BSi,ACCi) is a logic, kbi ∈
KBi a knowledge base, and bri is a set of Li-bridge rules over (L1, . . . , Ln). In
addition, for each H ⊆ {hd (r) | r ∈ bri} we have kbi ∪H ∈ KBi, i.e., bridge rule
heads are compatible with knowledge bases. By brM =

⋃n
i=1br i we denote the

set of bridge rules of M .
A belief state of an MCS M = (C1, . . . , Cn) is a sequence S = (S1, . . . , Sn)

such that Si ∈ BSi. A bridge rule (1) is applicable in a belief state S iff for
1 ≤ i ≤ j: pi ∈ Sci

and for j < l ≤ m: pl /∈ Scl
.

Example 1. Consider two scientists, Prof. K and Dr. J, planning to write a paper.
We formalize their reasoning in an MCS M using two contexts each employing
answer set semantics. Dr. J will write most of the paper and Prof. K only
participates if either he finds time or if Dr. J thinks the paper needs improvement
(bridge rule r1). Dr. J knows that the participation of Prof. K results in a good
paper (r2 and kbJ) and he will name Prof. K as author if she participates (r3).
The knowledge bases of the contexts are:

kbK ={has time. contribute ← improve. contribute ← has time.}
kbJ ={good ← coauthored .}

The bridge rules are r1 = (K:improve)← not (J :good).,
r2 = (J :coauthored)← (K:contribute)., and r3 = (J :name K )← (K:contribute).

Equilibrium semantics selects certain belief states of an MCS M = (C1, . . . , Cn)
as acceptable. Intuitively, an equilibrium is a belief state S= (S1, . . . , Sn) where
each context Ci respects all bridge rules applicable in S and accepts Si. Formally,
S is an equilibrium of M , iff for 1 ≤ i ≤ n,

Si ∈ ACCi(kbi ∪ {hd (r) | r ∈ bri applicable in S}).



Example 2 (Ex. 1 ctd.). The MCS has just one equilibrium S = ({has time,
contribute}, {coauthored ,name K , good}) where both scientists author a good
paper. Bridge rules r2 and r3 are applicable in S.

Inconsistency in an MCS is the lack of an equilibrium.

Example 3 (Ex. 1 ctd.). Assume Prof. K has no time, so she only contributes,
if Dr. J considers the paper to be not good, i.e, kbK = {contribute ← improve.
contribute ← has time.}. Then there is a loop with an odd number of negations
via bridge rules r1 and r2. This makes the MCS inconsistent.

For any MCS M and set R of bridge rules (fitting M), we denote by M [R] the
MCS obtained from M by replacing brM with R (e.g., M [brM ] = M and M [∅] is
M with no bridge rules); by M |= ⊥ we denote that M has no equilibrium (is
inconsistent). For any set of bridge rules A, heads(A) = {α← > | α←β ∈ A}
are the rules in A in unconditional form.

Diagnoses. As well-known, in nonmonotonic reasoning, adding knowledge can
both cause and prevent inconsistency; the same is true for removing knowledge.
The consistency-based explanation of inconsistency, therefore considers pairs
(D1, D2) of sets of bridge rules, such that if the rules in D1 are deactivated, and
the rules in D2 are added in unconditional form, the MCS becomes consistent
(i.e., it admits an equilibrium). Adding rules unconditionally makes sense due to
non-monotonicity; the idea is related to that of consistency restoring rules [1].

Formally, a diagnosis of an MCS M is a pair D = (D1, D2), D1, D2 ⊆ brM ,
s.t. M [brM \D1 ∪ heads(D2)] 6|= ⊥; by D±(M) we denote the set of all diagnoses.
To obtain a more relevant set of diagnoses, pointwise subset-minimal diagnoses
are preferred; we denote by D±m(M) the set of all such diagnoses of an MCS M .

In our example D±m(M) = {({r1} , ∅) , ({r2} , ∅) (∅, {r2}) , (∅, {r1})}; the first
two diagnoses break the cycle by removing a rule, the last two “stabilize” it.

3 Filtering and Comparing Diagnoses

In this section we introduce ways to assess consistency restorations of inconsistent
MCSs. First, we consider selection-based preference and provide a method to
check whether diagnoses adhere to user-defined criteria. This allows to filter out
undesired diagnoses. Then we turn to comparison-based preference, addressing
the general problem of using arbitrary preference relations on diagnoses, before
we focus on CP-nets, representing (semi-)local preference relations.

3.1 Filtering Diagnoses

Filters allow a designer of an MCSs to apply sanity checks on diagnoses, thus
they can be seen as hard constraints on diagnoses: diagnoses that fail to satisfy
the conditions are filtered out and not considered for consistency restoration.



Definition 1. Let M be an MCS with bridge rules brM . A diagnosis filter for
M is a function f :2brM×2brM → {0, 1} and the set of filtered diagnoses is
D±f (M) = {D ∈ D± (M) | f(D) = 1}. By D±f,m (M) we denote the set of all
subset-minimal such diagnoses.

Example 4 (Ex. 3 ctd.). Consider the diagnoses D = ({r2} , ∅) and D′ = (∅, {r2}),
where the contribution of Prof. K is either enforced or forbidden. For both cases,
the authorship information conveyed by r3 is wrong. Using a filter, we can
declare diagnoses undesired if they modify r2 without modifying r3 accordingly,
in particular f(D) = f(D′) = 0.

As it is a key strength of MCS to integrate different knowledge bases in a
decentralized manner, users of MCS will want to specify their constraints on
diagnoses in a logic of their choice, decentralized, and under the provision that
they do not have to disclose information considered private. In Section 4 we
realize filters within the MCS formalism, such that these properties are retained.

3.2 Comparing Diagnoses

To compare minimal diagnoses, we first consider an arbitrary preference order to
select most preferred diagnoses, and further on focus on CP-nets. A preference
order over diagnoses for an MCSM is a transitive binary relation� on 2brM×2brM ;
we say that D is preferred to D′ iff D � D′.

Definition 2. Let M be an inconsistent MCS. A diagnosis D ∈ D±(M) of M
is called pre-most preferred iff for all D′ ∈ 2brM × 2brM with D′ � D ∧D 6� D′ it
holds that D′ /∈ D±(M). A diagnosis D ∈ D±(M) is called most preferred, iff
D is subset-minimal among all pre-most preferred diagnoses.

Given that MCSs are decentralized systems, users may want to express
preferences on diagnoses solely based on a local set of bridge rules, assuming all
other things equal. Such preferences can be formalized using CP-nets, which are
an extension of ceteris paribus orders (“all else being equal”). They represent local
preference and have successfully been used for preference elicitation (e.g. [7]).

Example 5. Assume an MCS where several corporations make contracts using
bridge rules. Contract details, such as when a contract will start, how long
it is valid, who owns what to whom, etc, are encoded with bridge rules. For
instance, C1 is leasing a car from C2 with the following properties encoded
as bridge rules r1 = (C1 : pay(car , 500)) ← (C2 : price(car , 500)) and r2 =
(C1 : due(car ,monthly))← (C2 : due(car ,monthly)). If r2 is removed to restore
consistency, r1 becomes meaningless and possibly confuses further reasoning.
Removing both rules is then preferred to removing only r2.

A CP-net is a directed graph (V,E) where V is a finite set of variables
(attributes) and E ⊆ V × V is the conditional dependency between variables.
For v ∈ V we denote the set of parents of v by pa(v) = {v′ ∈ V | (v′, v) ∈ E}.



Furthermore, the set of outcomes of a variable v is denoted by dom(v). Preferences
on the outcomes of a variable are specified in terms of total preorders, which
allow indifference. A relation - is a total preorder, iff it is transitive, reflexive,
and for any two elements o, o′ of - it holds that o - o′ ∨ o′ - o.

Each vertex v in a CP-net (V,E) is associated with a conditional preference
table (CPT) pv that maps each combination of outcomes of parents of v, i.e.,
o ∈ dom(p1)× . . .× dom(pn), to a total preorder -v(o) ⊆ dom(v)× dom(v) over
the outcomes of v.

We associate a CP-net (V,E) with an MCS M , if every variable v ∈ V is
assigned a set of bridge rules rules(v) ⊆ brM , such that the assignment of rules is
disjoint, i.e., ∀v, v′ ∈ V : rules(v) ∩ rules(v′) = ∅. Moreover, dom(v) for every v
is given by dom(v) = {unchangedr , removedr , unconditionalr | r ∈ rules(v)}. In
the following we confine here to CP-nets that are acyclic, i.e, the directed graph
(V,E) contains no cycles, and whose preference graph over outcomes is acyclic.

Example 6 (Ex. 5 ctd.). Recall r1 and r2 encoding properties of a leasing contract.
If r2 is removed, r1 is preferred to be removed, too. Consider an associated

CP-net N = ({v1, v2} , {(v2, v1)}), i.e. pa(v1) = {v2} and pa(v2) = ∅, where
rules(v1) = {r1}, rules(v2) = {r2}. Assuming that adding rules unconditionally
is always considered to be the worst option, v1’s conditional preference table is:

pv1(unchangedr2
) = unchangedr1

≺v1 removedr1 ≺v1 unconditionalr1 (2)
pv1(removedr2) = removedr1 ≺v1 unchangedr1

≺v1 unconditionalr1 (3)
pv1(unconditionalr2) = unchangedr1

≺v1 removedr1 ≺v1 unconditionalr1 (4)

For v2 the table pv2 is unchangedr2
≺v2 removedr2 ≺v2 unconditionalr2 .

A CP-net N induces a preference graph GN over outcomes, where each global
outcome is a node in the preference graph. An arc from outcome oi to oj indicates
that a preference for oj over oi can be determined directly from one conditional
preference table of the CP-net (cf. [3]). The transitive closure G+

N of a preference
graph induces a partial order on global outcomes. Furthermore, for a CP-net
associated with an MCS, every global outcome represents a potential diagnosis.

Proposition 1. Let M be an inconsistent MCS, and let N be a CP-net associated
with M . Then G+

N induces a preference order ≺ over diagnoses of M .

By D±opt(M,N) we denote the subset-minimal among the most preferred
diagnoses according to G+

N , i.e., for which no other diagnosis is more preferred.
The semantics of CP-nets may also be defined in terms of flips : Let |V | = m,

and let a = (a1, . . . , ai, . . . , am) and b = (a1, . . . , ai−1, bi, ai+1, . . . , am) be two
global outcomes with aj , bj ∈ dom(vj), that differ only in the outcome of one
variable. The flipping of vi from ai to bi is improving, iff in the CPT of vi outcome
bi is preferred over ai, given all other parent variables set as in a and b. The
converse notion of an improving flip is called a worsening flip. A global outcome
is optimal, if no improving flips are possible. Notably, for CP-nets an optimal
outcome is reachable from any outcome by a finite sequence of improving flips.



In terms of flips, the most preferred diagnoses D±opt(M,N) of an MCS are:
D±opt(M,N) = min⊆{D ∈ D±(M) | ∀D′ ∈ D±(M) : iflips(D,D′) = ∅}, where
iflips(D,D′) denotes the set of sequences of improving flips from D to D′.

4 MCS-Realization

We now present ways to realize filters, preference orders, and CP-nets. All
realizations use a rewriting technique transforming an MCS M into an extended
MCS M ′, where certain new contexts can do meta-reasoning on diagnoses of
the original M . This is achieved in a way, such that a diagnosis of M ′ directly
corresponds to a diagnosis of M , and subset-minimal diagnoses of M ′ coincide
with the preferred diagnoses of M .

Meta-reasoning as described below allows certain contexts to observe whether
a bridge rule of M is part of a diagnosis. For this, the context observes the body
and head beliefs of a bridge rule. For a diagnosis (D1, D2) and a bridge rule r, if
the body of r is satisfied, but its head is not believed, then r ∈ D1; if the body
is not satisfied, but the head is believed, then r ∈ D2. The observation of body
and head beliefs is accomplished by additional bridge rules in M ′, that are not
subject to diagnosis. We thus adapt the notion of diagnosis such that certain
bridge rules, tagged as protected, are never part of it.

Definition 3. Let M be an MCS with protected rules brP ⊆ brM . A diagnosis
excluding protected rules brP is a diagnosis (D1, D2) ∈ D±(M), where D1, D2 ⊆
brM \ brP . We denote the set of all minimal such diagnoses by D±m(M, brP ).

A direct consequence is the following:

Proposition 2. Let M be an inconsistent MCS with protected rules brP . Then
D±(m)(M, brP ) ⊆ D±(m)(M), i.e., every (minimal) diagnosis excluding protected
rules is a (minimal) diagnosis.

Furthermore one can show that the duality between diagnoses and inconsis-
tency explanations (cf. [8]) also holds for diagnoses and inconsistency explanations
excluding protected rules, and that computing such diagnoses has the same com-
plexity as computing ordinary diagnoses.

Meta-Reasoning Transformation: Using additional protected bridge rules in order
to observe a bridge rule r with head (k : s), we aim at monitoring the import of
belief s into context k. Accessing k directly however, will in general not serve this
purpose, since s could be in an accepted belief set of k also without import. In
order to observe r properly, we therefore introduce a relay context for k, which
can then be accessed by an observer.

Given an MCS M and a set of bridge rules bro to be observed, an observation
context ob for bro is a context with bridge rules brob = brob

b ∪ brob
h with brob

b =
{robb | r ∈ bro} and brob

h = {robh | r ∈ bro}, where robb and robh are of the form

(ob : bodyr)← (c1 : p1), . . . , (cj : pj),not (cj+1 : pj+1), . . . ,not (cm : pm). (5)
(ob : headr)← (relayk : s). (6)



for a bridge rule (1), respectively. Here, relayk is the relay context for context k (cf.
below). Context ob is conservative iff ACCob(S) 6= ∅ for every S ⊆ {hd (brob)}.

Now, let Bk = {s | (k : s)← > ∈ heads(bro)}. We say that relayk is a relay
context for context Ck wrt. bro iff KBrelayk

= BSrelayk
= 2Bk , ACCrelayk

(S) =
{S}, kbrelayk

= ∅, and br relayk
= {rrelay | r ∈ bro}, where rrelay is of the form

(relayk : s)← (c1 : p1), . . . , (cj : pj),not (cj+1 : pj+1), . . . ,not (cm : pm). (7)

for a bridge rule of the form (1). Furthermore, we associate with context Ck =
(Lk, kbk, brk) its relayed context Crel

k = (Lk, kbk, (brk \ brob) ∪ br rel
k ) wrt. bro,

where br rel
k = {rrel | r ∈ bro}, and rrel is for a bridge rule (1) of the form

(k : s)← (relayk : s). (8)

Based on this, the meta-reasoning transformation of an MCS is as follows.

Definition 4. Given an MCS M = (C1, . . . , Cn), let B = {(ob1, bro1), . . . ,
(obm, brom)} be an association of observation contexts obi 6∈M to disjoint sets
of bridge rules broi ⊆ brM . The meta-reasoning transformation MB of M wrt.
B is the MCS MB = (Crel

1 , . . . , Crel
n , relay1, . . . , relayn, ob1, . . . obm), where Crel

i

and relay i are relayed contexts and relay contexts wrt.
⋃m

k=1 brok
, respectively,

and brB
P =

⋃n
i=1 br rel

i ∪
⋃m

k=1 brobk
are protected rules.

In cases where contexts are known to not interfere with the beliefs they are
importing, a simpler transformation can be obtained where observation contexts
directly import from the original contexts and relay contexts are omitted.

Suppose that ob is an ASP context for the observation of a set of rules bro of
an MCS M. Then the following ASP rules allow ob to check whether r is part of
a subset-minimal diagnosis:

rremoved ← bodyr, not headr. (9)
runconditional ← not bodyr, headr. (10)
runchanged ← not rremoved , not runconditional . (11)

Note that this is correct for diagnoses D = (D1, D2) with D1 ∩D2 = ∅ as
otherwise for r ∈ D1 ∩ D2, ob will not observe rremoved . We call a diagnosis
D = (D1, D2) safe iff D1 ∩D2 = ∅ holds and for any equilibrium S of M [brM \
D1 ∪ heads(D2)] holds that r ∈ D1 only if r is applicable in S and r ∈ D2 only if
r is not applicable in S. Note that all minimal diagnoses are safe. In the following
theorem we consider only safe diagnoses.

Theorem 1. Let MB be the meta-reasoning transformation of an MCS M
wrt. B = {(ob1, bro1), . . . , (obn, bron)}, let ob1, . . . , obn be conservative, and let
bro =

⋃n
k=1 brok

. Then,
(i) (D1, D2) ∈ D±(m)(M

B , brB
p ) implies (D′1, D

′
2) ∈ D±(m)(M), where D′i = (Di ∩

brM ) ∪ {r ∈ brM | rrelay ∈ Di} for 1 ≤ i ≤ 2, and
(ii) (D1, D2) ∈ D±(m)(M) implies (D′1, D

′
2) ∈ D±(m)(M

B , brB
p ), where D′i = (Di \

bro) ∪ {rrelay | r ∈ Di ∩ bro} for 1 ≤ i ≤ 2.



This theorem effectively states that the meta-reasoning transformation enables
observation contexts to correctly observe the effects of diagnosis. This is the basis
of the following realizations, which use non-conservative observation contexts for
assessing and pruning diagnoses.

4.1 Filters

Using the above transformation, users of MCSs can analyze diagnoses inside
observation contexts a way they see fit. If a diagnosis is considered inappropriate,
the observer just needs to become inconsistent which prevents a corresponding
diagnosis of the transformed system. This holds because the assessment uses
protected bridge rules only. We next present a transformation realizing a general
filter. For generality, it uses a central context mf for analysis.

Definition 5. Let M be an MCS and f a filter for M . A filter-transformation
of M wrt. f is a meta-reasoning transformation MB with B = {(mf , brM )} and
the logic Lf of mf is such that for any diagnosis D = (D1, D2) :

ACCmf

(
kbmf

∪ {rbody |r ∈ D1} ∪ {rhead |r ∈ D2}
)

= ∅1 iff f(D) = 0.

Example 7 (Ex. 4 ctd.). For our scientists, we want to filter diagnoses that modify
r2 and r3 differently, e.g., D = ({r2} , ∅). The filter-transformation yields a system
with five contexts, K, relayK , J, relayJ , and mf . The rewritten rules for r2 are
(analogous for r1 and r3):

(relayJ : coauthored)← (K : contribute).
(J : coauthored)← (relayJ : coauthored).

(m : bodyr2
)← (K : contribute).

(m : headr2)← (relayJ : coauthored).

We use answer-set semantics for the assessment context mf . To realize the filter
function, mf contains rules (9) - (11) for r1 and r2 and:

⊥ ← not same change.
same change ← r1unconditional , r2unconditional .

same change ← r1unchanged , r2unchanged .

same change ← r1removed , r2removed .

One can show that the transformation indeed realizes any given filter:

Theorem 2. Given an inconsistent MCS M , let f be a filter on diagnoses and
let Mf be a filter-transformation for f of M with protected rules brP . Then
D ∈ D±m(Mf , brP ) iff D ∈ D±f,m(M).

If f is not given abstractly as a function, but as a family of constraints, each
set of constraints is realizable using a separate assessment context, observing just
the bridge rules it needs to assess. Realizing such a filter is decentralized, adheres
to information hiding, and each observer’s logic can be chosen as desired.
1 For logics having always an acceptable belief set, inconsistency can still be created

using a new bridge rule (mf : inc)← (mf : cause inc),not (mf : inc).



4.2 Preference Orders and CP-nets

The general idea for realizing best outcomes of a CP-net is to create an order-
preserving mapping from the CP-net preference to the subset-order of diagnoses.
We add a new context mv for each variable v of the CP-net which “observes”
the bridge rules with outcomes represented by v. It searches for improving flips
on a path to a more preferred diagnosis. If the combined local guesses succeed,
some bridge rules can be removed; ensuring that the zero-length path allows no
removal, the most preferred diagnoses are those without removal. To accomplish
this, we use prioritized bridge rules whose minimization has precedence.

Definition 6. Let M be an MCS with bridge rules brM , protected rules brP , and
prioritized rules brH ⊆ brM . The set of minimal prioritized diagnoses is

D±m(M, brP , brH) = { D ∈ D±m(M, brP ) | ∀D′ ∈ D±m(M, brP ) :
D′ ∩ brH ⊆ D ∩ brH ⇒ D′ ∩ brH = D ∩ brH } .

where (D1, D2) ∩ S := (D1 ∩ S,D2 ∩ S).

Note that given D, D±m(M, brP ), and brH , deciding D∈D±m(M, brP , brH) is easy.
Let M be an MCS and consider an associated CP-net N = (V,E). We assume

that the CPT of any v ∈ V is given by vn = 2|dom(pv)| × 2× |dom(v)| “binarized”
preferences (two successive outcomes); let m =

∑
v∈V vn be their total number.

Given any total and strict preference order <r on the set Vr ⊆ V of root nodes
in N , we call E′ = E ∪ {(v, v′) | v <r v

′} a root extension of E.
Let 2M be the mirrored M , i.e., add a copy C ′i of each of context Ci in M

with disjoint beliefs (alphabetic variants). An observer associated with v ∈ V
sees rules(v) and crules(v) = {cr | r ∈ rules(v)}, where cr is the rule copy of r.

We say a set Q encodes o iff (a) headr ∈ Q⇔ bodyr ∈ Q for o = unchangedr,
(b) headr 6∈ Q and bodyr ∈ Q for o = removedr, (c) headr ∈ Q and bodyr 6∈ Q
for o = unconditionalr; that Q encodes co is analog. Eventually, let

Lv = {vfi,k, vgi,k, vng i,k, v
′usedk, v

′diff , o, co, io, ok, cok, eq , false},

where 1 ≤ i ≤ vn, 1 ≤ k ≤ m, v′ ∈ V , and o ∈ dom(v). A set S ⊆ 2Lv is
compatible with Q, iff

– vdiff ∈ S iff (a) v′diff ∈ Q for some v′ 6= v, or (b) o′ ∈ Q, and co′ ∈ Q, such
that o corresponds to r, co′ corresponds to cr, and o 6= o′;

– vusedk ∈ S iff vgi,k ∈ Q for some 1 ≤ i ≤ vn and 1 ≤ k ≤ m;
– eq ∈ S iff eq ∈ Q or v is <r-maximal in Vr and v′diff 6∈ S ∪Q for any v′ ∈ V ;
– o1 ∈ S iff o ∈ Q;
– ok+1 ∈ S for o ∈ dom(v) iff (a) o is most preferred according to v’s i-th CPT

entry and vgi,k ∈ Q, or (b) o is the outcome of ok ∈ S and vgi,k 6∈ Q;
– false ∈ S iff for some 1 ≤ i ≤ vn, 1 ≤ k ≤ m: (a) io ∈ Q and o ∈ Q,

(b) eq ∈ S and vfi,k ∈ Q, (c) vgi,k, vng i,k ∈ Q, (d) vng i,k, vfi,k ∈ Q, (e)
v′usedk, vfi,k ∈ Q, where v′ 6= v, (f) v′usedk, v

′′usedk ∈ Q, where v′ 6= v′′,
(g) vgi,k ∈ Q and either v’s i-th CPT entry is not applicable wrt. {o | ok ∈
Q∧ o ∈

⋃
v′∈pa(v) dom(v′)}, or it is not improving wrt. o ∈ dom(v) such that

ok ∈ Q; (h) o 6= o′ for o and o′ from dom(v), such that om ∈ S, and co′ ∈ Q.



Definition 7. Let N = (V,E), V = {v1, . . . , vn}, be a CP-net associated with
an MCS M , and let E′ be a root extension of E. The CP-net transformation of
M wrt. N is the meta-reasoning transformation 2MB of 2M wrt. B = {(mvi ,
rules(vi) ∪ crules(vi)) | 1 ≤ i ≤ n}, putting in observation contexts

– for every v ∈ V , 1 ≤ i ≤ vn, and 1 ≤ k ≤ m: protected bridge rules
(mv : vgi,k) ← not (mv : vng i,k) and (mv : vng i,k) ← not (mv : vgi,k), and
prioritized bridge rules (mv : vfi,k)← > and (mv : io)← > for o ∈ dom(v);

– for every (v′, v) ∈ E′, a protected bridge rule (mv : eq)← (mv′ : eq);
– for every (v, v′) ∈ E′, and 1 ≤ k ≤ m, protected bridge rules (mv : v′usedk)←

(mv′ : v′usedk) and (mv : v′diff )← (mv′ : v′diff );
– for every (v′, v) ∈ E, o ∈ dom(v′), and 1 ≤ k ≤ m: protected bridge rules

(mv : ok)← (mv′ : ok).

Furthermore, the logic of every mv (v ∈ V ) has BSmv
= 2Lv , and ACCmv

(kbmv
∪

Q) = S for any set S in BSmv compatible with Q and false 6∈ S.

Let br i
H denote the set of all prioritized bridge rules of the form (mv :

vfi,k)← > in 2MB . Intuitively, this transformation ensures the following for any
observations o and co′. If o = o′ (the outcomes correspond to the same diagnosis
of the original system), then bridge rules br i

H need to be removed to obtain
a diagnosis of 2MB. If o 6= o′ (different diagnoses), then there are two cases:
either o′ is reachable from o via a sequence of improving flips (thus a diagnosis
of 2MB exists removing only some of br i

H), otherwise there is no diagnosis of
2MB for this observation (an inconsistency by the protected rules, which cannot
be resolved by removing prioritized rules).

Example 8 (Ex. 6 ctd.). Recall the contracts example, and assume that the
resulting MCS M is inconsistent having only two diagnoses D = ({r1, r2} , ∅)
and D′ = ({r2} , ∅). Note that D is preferred over D′ wrt. N . Consider the case
where o = D and co′ = D′ are observed in 2MB : Flipping r1 from unchanged to
removed (using the 3rd rule of v2’s CPT) improves the outcome, hence prioritized
rules br i

H \ {mv1 : v1f3,1} have to be removed to restore consistency. Since this
is a subset of br i

H , D is not most preferred (see also the following theorem).

Theorem 3. Let MN be the CP-net transformation of an inconsistent MCS M
wrt. an associated CP-net N with protected rules brP and prioritized rules brH .
Then, D ∈ D±opt(N,M) iff D′ ∈ D±m(MN , brP , brH) such that D′ ∩ br i

H = br i
H

and D′ ∩ brM = D.

The techniques of meta-reasoning and prioritized diagnoses can be used to
realize arbitrary preference orders on diagnoses. This is achieved by introducing
a global assessment context, i.e., an observation context for all bridge rules of the
original system, and (exponentially many) new prioritized bridge rules, to which
the preference order is mapped. For space reasons, however, we omit details.



5 Discussion

Computational complexity: The generalized notions of diagnoses can be realized
by transformations to diagnoses of an MCS, using assessment contexts. The
respective bridge rules can be set up efficiently for filters and preference orders.
The number of bridge rules for filters increases by at most a factor of 4 per bridge
rule while for a CP-net (V,E) it is quadratic in the size of the CPTs. Then,
the complexity of preferred diagnoses does not increase over that of ordinary
diagnoses, if the preference assessment in the analysis contexts has not higher
complexity than regular contexts.

In particular, deciding whether a given pair (D1, D2) of bridge rules is a
prioritized diagnosis (excluding protected bridge rules) is of the same complexity
as recognizing ordinary diagnoses; from the results in [8], the complexity ranges,
depending on the computational complexity of contexts, from coNP (for P and
NP contexts) to DP

2 (for ΣP
2 contexts, e.g. disjunctive ASP contexts). Detecting

subset-minimal diagnosis is DP-complete (for P, NP, and coNPcontexts).
From the requirement that preferred diagnoses also be minimal follows that

this complexity can not be improved, even for easily evaluable preference orders.

Decentralization: A key property of MCSs is decentralized information exchange.
Filters and preference orders can be realized in such a way. If a filter or preference
order is composed of local tests, then the realization can be broken down to these
local, decentral tests. An example of this is the realization of CP-nets, where
information is only exchanged as much as necessary to realize the CP-net.

Quantitative Assessment: As system knowledge to rank diagnoses is not always
available, one may consider a quantitative inconsistency measure. Following the
approach of [10], which is based on the cardinalities of the minimal inconsistent
sets a certain formula belongs to, a measure on minimal inconsistent sets of
bridge rules may be established. A notion of such sets is given in [8], termed
inconsistency explanation, which is a pair of bridge rules (E1, E2) where E1 is a
minimal inconsistent set of bridge rules causing inconsistency and E2 contains
rules which could resolve the inconsistency if some were applicable.

Based on this we may define an inconsistency measure as follows. Let M be
an MCS and r ∈ brM , and let Ai

r(M) = {(E1, E2) ∈ E±m(M) | r ∈ Ei}, i = 1, 2
where E±m(M) is the set of subset-minimal inconsistency explanations of M :

m(M, r)=
“ X

(E1,E2)∈A1
r(M)

1

|E1|
,

X
(E1,E2)∈A2

r(M)

1

|E2|

”
.

Thus, m(M, r) measures the inconsistency of r in M by counting the relative
contribution of r to the minimal inconsistent sets in M , respectively, its contri-
bution to resolving inconsistency. A key property of a measure is monotonicity
(in the form of sub-additivity), which m is lacking in general. Finding such an
inconsistency measure for MCSs faces the problem of providing a monotonic
measure for a non-monotonic system. It remains to explore whether restrictions
on inconsistency explanations can serve this purpose.



6 Related Work and Conclusion

Although inconsistency handling and preferences are widely used in knowledge-
based systems, their application to systems interlinking different knowledge bases
is still rare. In [5] argumentation context systems which equip special MCS with
mediators are introduced. Mediators realize two tasks: First, they guard a context
by controlling its import information. Second, they restore consistency using
local information. In our approach, the first task is done by import relays of the
meta-reasoning transformation, and the second task is achieved by the analyzing
contexts which may be local or global as needed. This allows us not only to
establish global filters and preferences, but also the implementation is local and
decentralized as possible.

Bikakis et al. [2] propose a certain way of inconsistency removal which is
based on local trust orders. They propose several trust-based algorithms using
such orders combined with provenance; their provenance-free algorithm can be
realized with our approach. In our view, information hiding is an important
aspect of MCSs, which however is in conflict with provenance. Thus the goals
behind the works are different.

Future work includes the development and implementation of particular filter
and CP-net transformations as well as further analysis of our and other possible
measures of inconsistency in MCS.
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