
ALCALC: a Context Description Logic

Szymon Klarman1 and Vı́ctor Gutiérrez-Basulto2

1 Department of Computer Science, Vrije Universiteit Amsterdam
sklarman@few.vu.nl

2 Department of Computer Science, Universität Bremen
victor@informatik.uni-bremen.de

Abstract. We develop a novel description logic (DL) for representing
and reasoning with contextual knowledge. Our approach descends from
McCarthy’s tradition of treating contexts as formal objects over which
one can quantify and express first-order properties. As a foundation we
consider several common product-like combinations of DLs with multi-
modal logics and adopt the prominent (Kn)ALC . We then extend it with
a second sort of vocabulary for describing contexts, i.e., objects of the
second dimension. In this way, we obtain a two-sorted, two-dimensional
combination of a pair of DLs ALC, calledALCALC . As our main technical
result, we show that the satisfiability problem in this logic, as well as in
its proper fragment (Kn)ALC with global TBoxes and local roles, is 2Ex-
pTime-complete. Hence, the surprising conclusion is that the significant
increase in the expressiveness of ALCALC due to adding the vocabulary
comes for no substantial price in terms of its worst-case complexity.

1 Introduction

Over two decades ago John McCarthy introduced the AI community to a new
paradigm of formalizing contexts in logic-based knowledge systems. This idea,
presented in his Turing Award Lecture [1], was quickly picked up by others and
by now has led to a significant body of work studying different implementations
of the approach in a variety of formal frameworks and applications [2,3,4,5,6,7,8].
The great appeal of McCarthy’s paradigm stems from the simplicity and intu-
itiveness of the three major postulates it is based on:

1. Contexts are formal objects. More precisely, a context is anything that
can be denoted by a first-order term and used meaningfully in a statement of
the form ist(c, p), saying that proposition p is true in context c [1,5,6,2], e.g.,
ist(Hamlet , ‘Hamlet is a prince.’). By adopting a strictly formal view on contexts,
one can bypass unproductive debates on what they really are and instead take
them as primitives underlying practical models of contextual reasoning.

2. Contexts are organized in relational structures. In the commonsense
reasoning, contextual assumptions are dynamically and directionally altered
[8,2]. Contexts are entered and then exited, accessed from other contexts or
transcended to broader ones. Formally, we want to allow nestings of the form
ist(c, ist(c′, p)), e.g., ist(France, ist(capital , ‘The city river is Seine.’)).

3. Contexts have properties and can be described. As first-order ob-
jects, contexts can be in a natural way described in a first-order language [4,6].
This allows for addressing them generically through quantified formulas such as
∀x(P (x) → ist(x, p)), expressing that p is true in every context of type P , e.g.,
∀x(barbershop(x)→ ist(x, ‘Main service is a haircut.’)).

The goal of this work is to import McCarthy’s paradigm into the frame-
work of Description Logics (DLs), a popular family of knowledge representation
formalisms, with many successful applications [9]. Although the importance of
contexts in DLs has been generally acknowledged, the framework is still not sup-
ported with a dedicated, generic theory of accommodating contextual knowledge.
The most common perspectives considered in this area are limited to: 1) inte-
gration of local ontologies [10,11], 2) modeling levels of abstraction as subsets
of DL models [12,13], and 3) capturing dynamics of knowledge across a fixed
modal dimension, most typically a temporal one [14,15,16].

The DL ALCALC , which we develop here, is a novel formalism for repre-
senting and reasoning with context-dependent knowledge. On the one hand, we
systematically incorporate the three postulates of McCarthy, and thus, ground
our proposal in a longstanding tradition of formalizing contexts in AI. On the
other, we build on top of two-dimensional DLs [17], which provide ALCALC with
well-understood formal foundations. In this paper we present a thorough study
of the formal properties of ALCALC , including its expressiveness, computational
complexity and relationships to other formalisms. As our main technical result,
we show that the satisfiability problem in ALCALC , as well as in its proper frag-
ment (Kn)ALC with global TBoxes and local roles, is 2ExpTime-complete. This
reveals that the jump in the complexity from ExpTime is essentially caused by
the interaction of multiple K-modalities with global TBoxes.

2 Overview

We start with an outline of the milestones for constructing and studying the
logic ALCALC . Then, we recap the basic notions concerning the DL ALC.

2.1 Roadmap

We introduce ALCALC in a gradual way. First, in Section 3, we elaborate on
some well-studied combinations of the DL ALC with modal logics, known as two-
dimensional or modal DLs [18,17,19]. From our perspective, the two-dimensional
semantics of such logics is very well suited for representing context objects and
the relational structures they form. After some conceptual and computational
evaluation we then adopt (Kn)ALC as the foundation for our context DL. Finally,
we show that the migration from ALC to (Kn)ALC with global TBoxes and local
roles rises the complexity from ExpTime to 2ExpTime.

Next, in Section 4, we extend (Kn)ALC with a second sort of vocabulary,
which serves for describing contexts. Formally, we can see this extension as a
shift from (Kn)ALC to ALCALC , i.e., a two-sorted, two-dimensional combination

of a pair of DLs ALC. Each sort in ALCALC applies to its corresponding di-
mension and the two are allowed to interact in a controlled manner. Since such
an extension is relatively uncommon, we then relate ALCALC to the standard
framework of products of modal logics and show that the departure is not rad-
ical. More interestingly, we also prove that the extension, although offering a
lot of expressive flexibility, is not to be paid for in yet another increase of the
worst-case complexity. Satisfiability in ALCALC remains 2ExpTime-complete.

In Section 5, we present an example application of ALCALC . Finally, in Sec-
tion 6, we conclude the paper and point to directions for future research.

2.2 Preliminaries: DL ALC
A DL language is specified by a vocabulary Σ = (NI , NC , NR), where NI is a
set of individual names, NC a set of concept names, NR a set of role names, and
a number of operators for constructing complex concept descriptions [9]. The
ALC concept language L over Σ is the smallest set of concepts containing >, all
concept names from NC and closed under the constructors:

¬C | C uD | ∃r.C
where C,D ∈ L and r ∈ NR. Conventionally, we abbreviate ¬> with ⊥, ¬(¬C u
¬D) with C t D and ¬∃r.¬C with ∀r.C. The semantics of L is given through
interpretations of the form I = (∆, ·I), where ∆ is a non-empty domain of
individuals, and ·I is an interpretation function. The meaning of the vocabulary
is fixed via mappings: aI ∈ ∆ for every a ∈ NI , AI ⊆ ∆ for every A ∈ NC and
rI ⊆ ∆ × ∆ for every r ∈ NR, and >I = ∆. Then the function is inductively
extended over L according to the fixed semantics of the constructors:

(¬C)I = {x ∈ ∆ | x 6∈ CI},
(C uD)I = {x ∈ ∆ | x ∈ CI ∩DI},

(∃r.C)I = {x ∈ ∆ | ∃y : 〈x, y〉 ∈ rI ∧ y ∈ CI}.
A knowledge base (or an ontology) K = (T ,A) consists of a TBox T and an

ABox A. The TBox contains general concept inclusion axioms (GCIs) C v D,
for arbitrary concepts C,D ∈ L. We write C ≡ D whenever both C v D and
D v C are in T . The ABox consists of concept assertions C(a) and role assertions
r(a, b), where a, b ∈ NI , C ∈ L and r ∈ NR. An interpretation I satisfies an
axiom in either of the following cases:

– I |= C v D iff CI ⊆ DI ,
– I |= C(a) iff aI ∈ CI ,
– I |= r(a, b) iff 〈aI , bI〉 ∈ rI .

Finally, I is a model of a DL knowledge base whenever it satisfies all its axioms.

3 Adding context structures: from ALC to (Kn)ALC

In order to introduce context structures into the DL semantics, and thus ac-
count for the first two postulates of McCarthy, we move from ALC to its two-
dimensional, multi-modal extensions.

3.1 Syntax and semantics

A two-dimensional, multi-modal concept language LALC over vocabulary Σ is
the smallest set of concepts containing >, concept names from NC and closed
under the ALC and the two new constructors:

♦iC | �iC

where C ∈ LALC and 1 ≤ i ≤ n for some fixed n ∈ N. It is assumed that �i

abbreviates ¬♦i¬. In our framework, every i is interpreted as a distinguished
contextualization operation. The modal context operators associated with i en-
able a transition to the state of affairs holding in some (♦i) or all (�i) contexts
accessible from the current one through i. An interpretation of LALC is defined
as a tuple M = (C, {Ri}1≤i≤n, ∆, {·I(c)}c∈C), where:

– C is a non-empty context domain,
– Ri ⊆ C× C is an accessibility relation on C, associated with ♦i and �i,
– ∆ is a non-empty object domain,
– ·I(c) is an interpretation function in context c.

For every c ∈ C, the interpretation function I(c) fixes the meaning of the lan-
guage by extending the basic ALC interpretation rules with the additional:

(♦iC)I(c) = {x ∈ ∆ | ∃d ∈ C : cRid ∧ x ∈ CI(d)},
(�iC)I(c) = {x ∈ ∆ | ∀d ∈ C : cRid→ x ∈ CI(d)}.

In what follows, we loosely refer to C as the context dimension and to ∆
as the object dimension of the combination (see example in Fig. 1). Generally,
the semantic setup for multi-dimensional DLs allows several degrees of freedom
regarding rigidity of names and domain assumptions [17]. Here, we pose the nat-
ural, rigid interpretation of individual names, i.e., aI(c) = aI(d) for every c, d ∈ C,
and local (non-rigid) interpretation of concepts. The interpretation of roles is dis-
cussed in the next paragraphs. We also assume that all contexts share the same
object domain. Even if not suiting all applications, the constant domain assump-
tion is known to be most universal, in the sense that the expanding/varying case
can be always reduced to the constant one.

For a fixed language LALC the knowledge about the object dimension, now
relative to contexts, can be expressed by means of usual axioms. In particular, a
TBox T is a set of GCIs over concepts from LALC . In this section it suffices to
consider only the basic problem of concept satisfiability with respect to a global
T . The satisfaction relation for GCIs is defined with respect to an interpretation
M and a context c ∈ C:

– (M, c) |= C v D iff CI(c) ⊆ DI(c).

We call M a model of a global T whenever it satisfies all axioms in T in every
c ∈ C. A concept C is satisfiable w.r.t. T iff there exists a model of T such that
for some c ∈ C and d ∈ ∆ it is the case that d ∈ CI(c).

It is not hard to see that without further constraints the resulting logic
corresponds to the well-known product of multi-modal Kn with ALC, denoted

left righta

b
r

a a : ¬A

: A

: A, right¬A

: B b b: left A, right B

object
dimension
context
dimension

,

,

Fig. 1. A context structure modeling concept A u�right¬A u ∃r.(♦leftA u ♦rightB).

shortly as (Kn)ALC [18,20,17,19]. As for many other applications, also in the
case of context DLs (Kn)ALC seems to provide the most natural and flexible
foundation. Obviously, it is not difficult to further constrain accessibility relations
in order to obtain context structures with more specific properties. Leaving a
broader study of this subject for future research, let us just consider two such
restrictions, sometimes evoked in the literature on contexts:

(quasi-functionality) ∀c, d, e ∈ C (cRd ∧ cRe→ d = e),
(seriality) ∀c ∈ C ∃d ∈ C (cRd).

Buvač’s propositional logic of contexts [2,3] is a notational variant of Kn, with
�iϕ written as ist(i, ϕ). In Buvač’s setting �i quantifies over possible interpreta-
tions of the context i. In our framework, where contexts are not modality indices
but first-order objects, �i would quantify over possible contexts instead, which
clearly distorts the intended behavior of ist. To avoid this, one might rather use
�i of the logic Altn, characterized by all quasi-functional Kripke frames [19].
In Altn there is at most one context accessible through each contextualization
operation. Thus, ♦iϕ ∧ ♦iψ semantically implies ist(c, ϕ ∧ ψ) for some unique
c. Nossum [8] pursues similar intuitions and advocates even stronger DAltn,
which is Kripke-complete w.r.t. all quasi-functional and serial frames. Such a
semantics ensures that it is always possible to reach exactly one context through
each accessibility relation. Since formally the two frame properties boil down to
the functionality condition, it follows that the two operators ♦i,�i collapse into
a single©i. Finally Dn, characterized by all serial frames, is used by Buvač [2,3]
for verifying consistency of contextual knowledge. Since the seriality condition
enforces existence of all potential contexts, the knowledge attributed to these
contexts cannot be self-contradictory.

3.2 Complexity

As it turns out, the choice between any of the characterizations discussed above
is quite irrelevant from the computational perspective. In most cases the com-
plexity results apply to all logics LALC , for L ∈ {DAltn,Dn,Altn,Kn}. To ease
the transfer of some of the observations we make below, we use the following
reductions:

Proposition 1. Concept satisfiability w.r.t. global TBoxes is polynomially re-
ducible between the following logics (where 7→ means reduces to):

(DAltn)ALC 7→ {(Dn)ALC , (Altn)ALC} 7→ (Kn)ALC.

To see that the reductions hold indeed, it is enough to notice that if (C, T) is a
problem of deciding whether a concept C is satisfiable w.r.t. a global TBox T ,
then by simple transformations of C and T one can enforce only models that
are bisimilar to those characterizing the respective frame conditions:

(quasi-functionality) W.l.o.g. assume that C = NNF(C), where NNF stands
for Negation Normal Form, and T = {> v CT }, for some CT = NNF(CT).
Let C ′ and C ′T be the result of replacing every subconcept ♦iB occurring in
C and CT , respectively, with (♦i>) u (�iB). Then, (C, T) is satisfiable on
a quasi-functional frame iff (C ′, {> v C ′T }) is satisfiable.

(seriality) Let T ′ = T ∪ {> v ♦i> | 1 ≤ i ≤ n}, where n is the number of
all modalities occurring in T and C. Then, (C, T) is satisfiable on a serial
frame iff (C, T ′) is satisfiable.

Our first result is a negative one. It closes the option of using rigid roles,
i.e., such that rI(c) = rI(d) for every c, d ∈ C, or applying context operators to
roles. Unfortunately, adding rigid roles leads to undecidability already for the
strongest of the logics with just a single context operator.

Theorem 1. Concept satisfiability in DAltALC w.r.t. global TBoxes and with
a single rigid role is undecidable.

The full proof, along the others from this paper, is included in the appendix.
We notice that DAltALC corresponds to a fragment of LTLALC with the next-
time operator, which is enough to construct a usual encoding of the undecidable
N×N tiling problem [14]. Together with Proposition 1, the theorem immediately
entails the following:

Theorem 2. For any L ∈ {DAltn,Dn,Altn,Kn}, concept satisfiability in LALC
w.r.t. global TBoxes with a single rigid role is undecidable.

This result reveals an obvious limitation to the formalism, but a limitation
one has to live with, considering that combinations of rigid roles with global
TBoxes are rarely decidable unless the expressive power of the modal or the DL
component is significantly reduced [19,14]. In the rest of this paper, we almost
exclusively address the case of local (non-rigid) roles. To show decidability and
the upper bound of the concept satisfiability problem in this setup,3 we devise
a quasistate elimination algorithm for (Kn)ALC , similar to [19, Theorem 6.61].
As usual, the idea is to abstract from the domains C and ∆ and consider only a
finite, in fact double exponential, number of quasistates which represent possible
contexts inhabited by a finite number of possible types of individuals. Then, we
iteratively eliminate all those that do not satisfy necessary conditions.

Theorem 3. Deciding concept satisfiability in (Kn)ALC w.r.t. global TBoxes
and only with local roles is in 2ExpTime.
3 Mind that the NExpTime-completeness result for concept satisfiability in KALC [19,

Theorem 15.15] applies to ALC with a single pair of K operators, full booleans on
modalized formulas and no global TBoxes.

One could hope that at least some of the considered logics could be less
complex than that. However, as the next theorem shows, this is not the case.

Theorem 4. Deciding concept satisfiability in (DAltn)ALC w.r.t. global TBoxes
and only with local roles is 2ExpTime-hard.

For the proof we use a reduction of the word problem for exponentially bounded
Alternating Turing Machines, which is known to be 2ExpTime-hard [21]. The
increase in the complexity by one exponential, as compared to ALC alone (for
which the problem is ExpTime-complete [9]), is notable and quite surprising.
It could be expected that without rigid roles the satisfiability problem can be
straightforwardly reduced to satisfiability in fusion models. This in turn should
yield ExpTime upper bound by means of the standard techniques. However, as
the following example for (Kn)ALC demonstrates, this strategy fails.

(†) ♦iC u ∃r.�i⊥ (‡) ∃succi.C u ∃r.∀succi.⊥
Although (†) clearly does not have a model, its reduction (‡) to a fusion language,
where context operators are translated to restrictions on fresh ALC roles, is
satisfiable. The reason is that while in the former case the information about
the structure of the K-frame is global for all individuals, in the latter it becomes
local. The r-successor in (‡) is simply not ‘aware’ that it should actually have
a succi-successor.4 This effect, amplified by presence of multiple modalities and
global TBoxes (which can enforce infinite K-trees), makes the reasoning harder.

The two complexity bounds from Theorem 3 and 4, together with the reduc-
tions established in Proposition 1, provide us with the completeness result.

Theorem 5. For any L ∈ {DAltn,Dn,Altn,Kn}, deciding concept satisfiabil-
ity in LALC w.r.t. global TBoxes and only with local roles is 2ExpTime-complete.

The theorem is quite robust under changes of domain assumptions and holds
already in the case of expanding/varying domains in (Altn)ALC . The only ex-
ception applies to (DAltn)ALC and (Dn)ALC with expanding/varying domains,
where reduction to ALC is still possible.

What follows from this analysis, is that by sacrificing the generality of Kn-
frames one does not immediately obtain a better computational behavior as long
as multiple context operators are permitted. For this reason, we adopt (Kn)ALC
as the baseline for ALCALC , leaving for now the option of restricting context
structures as an open problem.

4 Describing contexts: from (Kn)ALC to ALCALC

We are now ready to define the target logic ALCALC , which additionally to
(Kn)ALC offers a second sort of vocabulary for directly describing contexts. This
extension addresses the third postulate of McCarthy.
4 Demonstrating the corresponding phenomenon in (DAltn)ALC is not that straight-

forward due to the seriality condition, as then the global information concerns only
the existence of succi-predecessors. Thus, one needs role inverses in the fusion lan-
guage to observe the loss of such information.

4.1 Syntax and semantics

We start by introducing the context component of the language and then suitably
revise the object component.

The context language LC is an ALC concept language over vocabulary Γ =
(MI ,MC ,MR), where MI is a set of (context) individual names, MC is a set of
(context) concept names, and MR is a set of (context) role names. For disam-
biguation, we use bold font when writing names from the context vocabulary
and we denote the elements of LC as c-concepts. The semantics is defined in
the usual manner (as presented in Section 2.2), in terms of an interpretation
function ·J ranging over the context domain C. The context knowledge base C
consists of TBox and ABox axioms over Γ and LC , also with the usual satis-
faction conditions. Thus, C is in fact a standard ALC ontology with standard
models of the form (C, ·J).

The interpretations of the context language are incorporated in the full
ALCALC interpretations of the form M = (C, ·J , ∆, {·I(c)}c∈C), where:

– C is a non-empty context domain,
– ·J is an interpretation function of the context language,
– ∆ is a non-empty object domain,
– ·I(c) is an interpretation function of the object language in c.

The divergence from the original (Kn)ALC interpretations is minor. Basically,
the accessibility relations over C become now redundant, as their function can
be taken over by context roles. For every contextualization operation i we can
assume an implicit correspondence Ri = rJi , for some r i ∈MR. Note that given
the broadened take on the context dimension, we might be now less strict about
the informal reading of some of the components of the framework. Arguably, not
all context roles have to be necessarily seen as ‘contextualization operations’ and
not all elements of C as genuine ‘contexts’. Sometimes they can be just entities
needed for describing contexts. Nevertheless, we keep using the context-object
nomenclature to avoid potential confusions.

Although one can already express rich knowledge about contexts, such knowl-
edge remains ‘invisible’ from the object level. In order to render it more accessi-
ble, and so gain better control over the interaction between the dimensions, we
need to suitably internalize context descriptions in the object language.

Let Σ = (NI , NC , NR) be the object vocabulary disjoint from Γ . The object
language LO over Σ and the context language LC is the smallest set of concepts,
called o-concepts, containing >, concept names from NC and closed under the
ALC and the following two constructors:

〈C 〉rD | [C]rD

where C ∈ LC and r ∈ MR. Again, [·]r abbreviates ¬〈·〉r¬. Intuitively, 〈C 〉rD
denotes all objects which are D in some context which is C and is accessible
through r . Similarly, [C]rD denotes all objects which are D in every context
which is C and is accessible through r . Overall, the syntax of the object language
diverges from the one of (Kn)ALC only in that the indices appearing by ♦i,�i

are now replaced with context roles, while both operators embrace a single c-
concept, which additionally qualifies the accessed contexts. Consequently, the
changes in the semantics affect only the contextualized concepts:

(〈C 〉rD)I(c) = {x ∈ ∆ | ∃d ∈ C : 〈c, d〉 ∈ rJ ∧ d ∈ CJ ∧ x ∈ DI(d)},
([C]rD)I(c) = {x ∈ ∆ | ∀d ∈ C : 〈c, d〉 ∈ rJ ∧ d ∈ CJ → x ∈ DI(d)}.

To grant maximum flexibility in expressing the knowledge about the object
dimension we first define the set of possible object formulas, i.e., formulas which
can meaningfully hold in individual contexts:

B v D | a : D | s(a, b) | ¬ϕ | ϕ ∧ ψ | 〈C 〉rϕ | [C]rϕ

where B,D are o-concepts, a, b ∈ NI , s ∈ NR, C is a c-concept and r ∈ MR.
Object formulas are satisfied by M in context c ∈ C in the following cases:

– (M, c) |= B v D iff BI(c) ⊆ DI(c),
– (M, c) |= a : D iff aI(c) ∈ DI(c),
– (M, c) |= s(a, b) iff 〈aI(c), bI(c)〉 ∈ sI(c),
– (M, c) |= ¬ϕ iff (M, c) 6|= ϕ,
– (M, c) |= ϕ ∧ ψ iff (M, c) |= ϕ and (M, c) |= ψ,
– (M, c) |= 〈C 〉rϕ iff (M, d) |= ϕ for some d ∈ C s.t. 〈c, d〉 ∈ rJ and d ∈ CJ ,
– (M, c) |= [C]rϕ iff (M, d) |= ϕ for every d ∈ C s.t. 〈c, d〉 ∈ rJ and d ∈ CJ .

Then we define an object knowledge base O as a set of axioms of two forms:

a : ϕ | C : ϕ

where a ∈ MI , C is a c-concept and ϕ is an object formula. Such axioms have
a straightforward reading: ϕ is true in context a ; and ϕ is true in every context
which is C . Formally, we specify those conditions as follows:

– M |= a : ϕ iff (M, c) |= ϕ for c = aJ ,
– M |= C : ϕ iff (M, c) |= ϕ for every c ∈ CJ .

A pair K = (C,O) is called an ALCALC knowledge base. An interpretation
M is a model of K whenever all axioms in K are satisfied. A small example of
an ALCALC knowledge base is presented in Section 5.

4.2 Complexity and expressiveness

Obviously, the expressiveness of ALCALC properly subsumes that of (Kn)ALC .
In particular, the following relationship holds:

Proposition 2. Concept satisfiability problem in (Kn)ALC w.r.t. global TBoxes
is polynomially reducible to knowledge base satisfiability in ALCALC.

To see this is indeed the case suppose (C, T) is the problem of deciding whether
concept C is satisfiable w.r.t. global TBox T . Let C ′ and T ′ be the results of
replacing every ♦i with 〈>〉ri and every �i with [>]ri in C and T , respectively,
where for i 6= j we have r i 6= r j . Further define C = ∅ and O = {c : a :
C ′} ∪ {> : C v D | C v D ∈ T ′}. It clearly follows that C is satisfiable w.r.t. T
in (Kn)ALC iff the knowledge base K = (C,O) is satisfiable in ALCALC . Note,
that the reduction holds even when object roles are interpreted rigidly.

This naturally means that the 2ExpTime lower bound established in The-
orem 5 transfers immediately to ALCALC . But can it get even higher? Quite
surprisingly, the answer is negative. Despite the increase of expressiveness, sat-
isfiability problem in ALCALC remains in 2ExpTime.

Theorem 6. Deciding satisfiability of an ALCALC knowledge base in which ob-
ject roles are interpreted locally is 2ExpTime-complete.

The proof of the upper bound is based on quasimodel elimination technique,
which extends the one used for Theorem 3. In particular, every quasistate has to
carry now also the type of the context which it represents and the set of object
formulas which are satisfied in it.

To give a final insight into the expressiveness of the formalism, in more tradi-
tional terms of products of modal logics, we show that ALCALC (with rigid roles)
is equally expressive to the full ALC language over the union of two vocabularies
interpreted in product models.

Let L1 and L2 be two ALC concept languages over disjoint vocabularies
Γ = (MC ,MR, ∅) and Σ = (NC , NR, ∅), respectively. Now, let L1×2 be the ALC
concept language over vocabulary Θ = (MC∪NC ,MR∪NR, ∅). The semantics for
L1×2 is given through product interpretations P = (C×∆, ·P), which align every
r ∈ NR along the ‘vertical’ dimension and every p ∈ MR along the ‘horizontal’
one. Thus, rP ,pP ⊆ (C×∆)× (C×∆) and for every u, v, w ∈ C and x, y, z ∈ ∆:

〈(u, x), (v, y)〉 ∈ rP → u = v & 〈(w, x), (w, y)〉 ∈ rP ,
〈(u, x), (v, y)〉 ∈ pP → x = y & 〈(u, z), (v, z)〉 ∈ pP .

All concepts are interpreted as subsets of C × ∆. Additionally, we force every
A ∈ MC to be interpreted rigidly across the ‘vertical’ dimension, i.e., for every
v ∈ C and x, y ∈ ∆ we assume:

(∗) (v, x) ∈ AI → (v, y) ∈ AI

Finally, ·P is extended inductively as usual. A concept C ∈ L1×2 is satisfiable
iff for some product model P = (C × ∆, ·P) it is the case that CP 6= ∅. On
the contrary to the others, the condition (∗) is rather uncommon in the realm
of products of modal logics. Nevertheless, it captures precisely the difference
between the semantics of the two sorts of concepts. Without it the sorts collapse
into one, while the whole logic turns into a notational variant of (Kn)ALC . It
turns out that the following claim holds:

Theorem 7. The language L1×2 interpreted in product models is exactly as
expressive as the concept language of ALCALC interpreted in models with rigid
interpretations of object roles.

What follows from Theorem 7 is that the syntactic constraints of ALCALC ,
which make the logic more intuitive and well-behaved, by no means lead to
loss of expressiveness. Moreover, it shows that ALCALC (at least in its concept
component) does not seriously deviate from the usual products of modal logics.
In principle, the only feature distinguishing it from (Kn)ALC (both with and
without rigid roles) is the condition (*) imposed on the interpretations of selected
concepts, which in ALCALC we simply happen to call context concepts.

5 Contextual ontologies — example

One of the designated applications of ALCALC is construction of contextual on-
tologies. The distinguishing feature of such ontologies is that they allow for vary-
ing the characterization of concepts according to contexts. Hence, ALCALC can
provide a good formal support for exchanging and integrating information in DL.
Moreover, as the context knowledge base can be created independently from the
object component, the framework encourages reuse of existing ontologies.

As an example of a contextual ontology, we present a simple representation
of knowledge about the food domain contextualized with respect to geographic
locations. Consider the (context) geographic knowledge base C = (T ,A), where
T is a TBox and A an ABox.
T = { (1) Country v ∃location.Europe t ∃location.America ,

(2) Region v ∃part of .Country,
(3) City v ∃has part.Neighborhood }

A = { (4) US : Country,
(5) SanFrancisco : City,
(6) California : Region,
(7) part of(California,US),
(8) France : Country u ∃location.Europe }

Now, we define an (object) food ontology O, contextualized with C.

O = { (a)> : Food ≡ Meat t Beverages t Sea Food t Grains
(b)> : Wine ≡WhiteWine t RedWine
(c)> : (SauvignonBlanc : WhiteWine)
(d) Country : [Europe]location(WhiteWine v Popular Beverage)
(e) California : WhiteWine v [Country]part ofPopular Wine
(f) US : Popular Wine v ¬Popular Beverage
(g) SanFrancisco : [>]has part(WhiteWine v ¬Popular Wine) }

Let us shortly highlight the intuition behind O by explaining some of the
axiom definitions and the inferences they sanction. First, axioms (a)-(c) present
geographic-independent terminology of the food domain. For example, by (c),
SauvignonBlanc is a WhiteWine in any part of the world. Then, (d)-(g) char-
acterize WhiteWine as Popular Wine or Popular Beverage according to different
territories. We explain (d)-(g) in terms of SauvignonBlanc. By (d), in any
Country that has as a location Europe (e.g., France) SauvignonBlanc is a

Popular Beverage. However, by (e)-(f), SauvignonBlanc is not a Popular Beverage
in US . This, is explained as follows: (e) establishes that SauvignonBlanc is
a Popular Wine in any Country of which California is part of, namely US .
Then, by (f), in the US any Popular Wine is not a Popular Beverage. Hence,
SauvignonBlanc is not a Popular Beverage in US . Although SauvignonBlanc
is a Popular Wine in US , this is does not necessarily transfer to more specific
contexts. For instance, by (g), in every part of SanFrancisco, SauvignonBlanc
is not in fact a Popular Wine. In particular, by (3), there is at least one such
Neighborhood in which this happens.

6 Conclusions and future work

We have presented a novel DL ALCALC for representing and reasoning with
contextual knowledge. Our approach is derived from McCarthy’s conception of
contexts as first-order objects which are describable in a first-order language.
Formally, the logic extends the well-known (Kn)ALC with another sort of ‘con-
text’ vocabulary interpreted over the K-dimension. The surprising conclusion is
that the increase of the expressiveness of the logic due to this addition comes for
no substantial price in terms of the worst-case complexity. The jump to 2Exp-
Time-completeness stems from the interaction of multiple modalities with global
TBoxes and is inherent already to the underlying two-dimensional DLs.

We believe that with this work we have set the stage for a promising future
research on similar combinations of DLs. Clearly, there are three major determi-
nants of such formalisms which deserve a careful study: 1) the expressiveness of
the context language, 2) the expressiveness of the object language, 3) the level of
interaction between the two. Finding a proper balance between them is the key
to identifying well-behaved and potentially useful fragments. One of the first
directions, which we want to investigate, is to reduce the interaction between
the languages by employing only S5-like operators. Such operators, e.g., 〈C 〉ϕ,
would state that there exists a context of type C in which ϕ holds, without in-
volving context roles. This modification should result in a better computational
behavior and a somewhat simpler conceptual design of the language.

On the applied side, it could be interesting to consider a restricted fragment
of the framework (a finite number of named contexts) for the task of ontology
integration on the Semantic Web. Arguably, such fragment is sufficient to pro-
vide a logical underpinning for the ongoing endeavor of describing and linking
OWL/RDFS knowledge sources in a context-sensitive manner.

Acknowledgements We want to thank Carsten Lutz and Stefan Schlobach for
many helpful discussions and suggestions on the ideas presented in this paper.

References

1. McCarthy, J.: Generality in artificial intelligence. Communications of the ACM
30 (1987) 1030–1035

2. Buvač, S., Mason, I.A.: Propositional logic of context. In: In Proceedings of the
Eleventh National Conference on Artificial Intelligence. (1993) 412–419

3. Buvač, S., Buvac, V., Mason, I.A.: Metamathematics of contexts. Fundamenta
Informaticae 23 412–419

4. Buvač, S.: Quantificational logic of context. In: In Proceedings of the Eleventh
National Conference on Artificial Intelligence. (1996) 412–419

5. McCarthy, J.: Notes on formalizing context. In: Proc. of International Joint Con-
ference on Artificial Intelligence IJCAI93, Morgan Kaufmann (1993) 555–560

6. Guha, R.: Contexts: a formalization and some applications. PhD thesis, Stanford
University (1991)

7. Guha, R., Mccool, R., Fikes, R.: Contexts for the semantic web. In: Proc. of the
International Semantic Web Conference, Springer (2004) 32–46

8. Nossum, R.: A decidable multi-modal logic of context. Journal of Applied Logic
1(1-2) (2003) 119 – 133

9. Baader, F., Calvanese, D., Mcguinness, D.L., Nardi, D., Patel-Schneider, P.F.: The
description logic handbook: theory, implementation, and applications. Cambridge
University Press (2003)

10. Borgida, A., Serafini, L.: Distributed description logics: Assimilating information
from peer sources. Journal of Data Semantics 1 (2003) 2003

11. Cuenca Grau, B., Kutz, O.: Modular ontology languages revisited. In: Proc. of
the Workshop on Semantic Web for Collaborative Knowledge Acquisition. (2007)

12. Goczyla, K., Waloszek, W., Waloszek, A.: Contextualization of a DL knowledge
base. In: The Proceedings of the International Workshop on Description Logics
(DL-2007). (2007)

13. Grossi, D.: Desigining Invisible Handcuffs. Formal Investigations in Institutions
and Organizations for Multi-Agent Systems. PhD thesis, Utrecht University (2007)

14. Lutz, C., Wolter, F., Zakharyaschev, M.: Temporal description logics: A survey.
In: Proceedings of the Fourteenth International Symposium on Temporal Repre-
sentation and Reasoning, IEEE Computer Society Press (2008)

15. Artale, A., Lutz, C., Toman, D.: A description logic of change. In Veloso, M., ed.:
Proceedings of IJCAI’07. (2007) 218–223

16. Artale, A., Kontchakov, R., Lutz, C., Wolter, F., Zakharyaschev, M.: Temporal-
ising tractable description logics. In: Proceedings of the Fourteenth International
Symposium on Temporal Representation and Reasoning. (2007)

17. Wolter, F., Zakharyaschev, M.: Multi-dimensional description logics. In: IJCAI
’99: Proceedings of the Sixteenth International Joint Conference on Artificial In-
telligence, San Francisco, CA, USA (1999) 104–109

18. Baader, F., Laux, A.: Terminological logics with modal operators. In Mellish, C.,
ed.: Proceedings of the 14th International Joint Conference on Artificial Intelli-
gence, Montréal, Canada, Morgan Kaufmann (1995) 808–814

19. Kurucz, A., Wolter, F., Zakharyaschev, M., Gabbay, D.M.: Many-Dimensional
Modal Logics: Theory and Applications. Number 148 in Studies in Logic and the
Foundations of Mathematics. Elsevier (2003)

20. Wolter, F., Zakharyaschev, M.: Satisfiability problem in description logics with
modal operators. In: In Proceedings of the Sixth Conference on Principles of
Knowledge Representation and Reasoning, Morgan Kaufman (1998) 512–523

21. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1) (1981)
114–133

Appendix

Theorem 1. Concept satisfiability in DAltALC w.r.t. global TBoxes and with
a single rigid role is undecidable.

First, we observe the following correspondence:

Proposition 3. A concept C is satisfiable w.r.t. a global TBox T in DAltALC
iff it is satisfied w.r.t. T in some model M = (N, <,∆, {·I(i)}i∈N), where 〈N, <〉
is a linear order over natural numbers and < is the accessibility relation of ©.

Consequently, we can consider only such linear DAltALC-models. This shows
that DAltALC can be in fact seen as the subset of LTLALC consisting of the ALC
component and the next-time operator. This turns out to be enough to encode
the undecidable N × N tiling problem, in the same way as in [14, Theorem
4]. An instance of the problem is defined as follows: given a finite set S =
{t0, . . . , tn} of tile types, where each ti is a 4-tuple of colors 〈left(ti), right(ti),
up(ti), down(ti)〉, decide whether it is possible to cover N×N-grid with tiles of
these types. Moreover, it has to be ensured that only types of matching colors
can be horizontal (vertical) neighbors in the tiling, i.e., ones for which right(ti) =
left(tj) (up(ti) = down(tj)). Let A0, . . . , An be concept names representing the
tile types from S and r be a rigid role. The following TBox T encodes the
constraints of the tiling problem:

> v (
⊔
i≤n

Ai) u (
l

i 6=j≤n

¬(Ai uAj)) (1)

> v ∃r.> (2)

Ai v ∀r.
⊔

up(ti)=down(tj)

Aj , for every i ≤ n (3)

Ai v ©
⊔

right(ti)=left(tj)

Aj , for every i ≤ n (4)

Now we can prove the target claim:

Lemma 1. The concept > is satisfiable w.r.t. T iff there exists a tiling τ :
N×N 7→ S.

Proof. (⇒) Let M = (N, <,∆, {·I(i)}i∈N) be a model of T . For an arbitrary
individual d ∈ ∆ we first fix the vertical axis ρ of the N×N-grid:

– ρ(0) = d;
– ρ(n+ 1) = e, for any e such that 〈ρ(n), e〉 ∈ rI(0).

By the axiom (2) of T , every individual in the domain has an r-successor,
hence, it is easy to see that the infinite chain ρ can be extracted from the
model. Moreover by (1) it follows that every individual satisfy exactly one of the
concepts representing tile types.

– τ(n,m) = ti iff ρ(m) ∈ AI(n)
i

Finally, since r is rigid the conditions (3) and (4) of the encoding sufficiently
guarantee proper coloring of the neighbors.

(⇐) For tiling τ define an interpretation M = (N, <,∆, {·I(i)}i∈N), where ∆ =
{di | i ∈ N}, and:

– dm ∈ AI(n)
i iff τ(n,m);

– 〈dn, dn+1〉 ∈ rI(m), for n,m ∈ N.

Clearly > and all axioms from T are satisfied by I so we obtain a desired
DAltALC model. q

Theorem 3. Deciding concept satisfiability in (Kn)ALC w.r.t. global TBoxes
and only with local roles is in 2ExpTime.

Let (C, T) be a problem of deciding whether a concept C is satisfiable w.r.t.
the global TBox T in (Kn)ALC . We devise a quasistate elimination algorithm
which provides a correct answer in at most double exponential time w.r.t. the
size of (C, T). W.l.o.g. we assume that T is given as a single axiom > v CT ,
where CT =

d
CvD∈T ¬C t D and that all occurrences of �i in both C and

CT are replaced with ¬♦i¬, while all occurrences of ∀r. with ¬∃r.¬. We write
con(C, T) to denote the set of all subconcepts of C and CT , closed under nega-
tion. Similarly, by rol(C, T) we denote the set of all role names occurring in C
and CT .

A type for C and T is a subset t ⊆ con(C, T) satisfying the following condi-
tions:

– A ∈ t iff ¬A 6∈ t, for all A ∈ con(C, T),
– C uD ∈ t iff {C,D} ⊆ t, for all C uD ∈ con(C, T),
– CT ∈ t.

Let
∏

(C, T) be the set of all types for C and T . We say that t, t′ ∈
∏

(C, T)
are k-compatible, for k ∈ (1, n), iff {¬C | ¬♦kC ∈ t} ⊆ t′. A quasistate for
(C, T) is a subset of types q ⊆

∏
(C, T), such that for every t ∈ q and every

∃r.D ∈ con(C, T):

(QS:) if ∃r.D ∈ t then there is a type t′ ∈ q s.t. {D} ∪ {¬C | ¬∃r.C ∈ t} ⊆ t′.

Two quasistates q and q′ are k-compatible, for k ∈ (1, n), iff there exists a pair
of functions f : q 7→ q′ and g : q′ 7→ q such that:

– for every t ∈ q, t and f(t) are k-compatible,
– for every t ∈ q′, g(t) and t are k-compatible.

Let q be a quasistate with ♦kC ∈ t for some t ∈ q. A quasistate q′ is a witness
for the triple (♦kC, t, q) iff q and q′ are k-compatible and there is t′ ∈ q′ such
that t and t′ are k-compatible and C ∈ t′.

The algorithm starts with the set M0 of all quasistates for (C, T) and gener-
ates a sequence of sets M0 ⊇M1 ⊇M2 In each step the set Mj+1 is obtained
from Mj by eliminating a quasistate q which violates the following condition.
For every t ∈ q and every ♦kD ∈ con(C, T):

(EL:) if ♦kD ∈ t then there is a witness for (♦kD, t, q) in Mj .

The algorithm stops when Mj+1 = Mj , yielding Mj the final set computed by
the algorithm, and returns ‘C is satisfiable w.r.t. T ’ iff there exists a quasistate
q ∈ Mj and a type t ∈ q such that C ∈ t. In the next lemma we demonstrate
the correctness of the algorithm:

Lemma 2. The algorithm returns ‘C is satisfiable w.r.t. T ’ iff there exists a
(Kn)ALC-model of T satisfying C.

Proof. (⇒) Suppose Mj is the final set computed by the algorithm. We construct
a (Kn)ALC-model M = (C, {Rk}1≤k≤n, ∆, {·I(c)}c∈C) inductively. First define
the K-frame (C, {Rk}1≤k≤n) by iteratively creating and relating elements of C
as follows:

– pick a quasistate q ∈Mj , such that C ∈ t for some t ∈ q and create its copy
q∗ in C;

– for every 1 ≤ k ≤ n, every q ∈ C, if ♦kC ∈ t for some t ∈ q, then pick a
witness for (♦kC, t, q) from Mj , create its new copy q∗ in C and set qRkq∗.

A run ρ through C is a choice function which for every q ∈ C selects a type
ρ(q) ∈ q. A set of runs R is coherent iff the following conditions are satisfied:

– for every q ∈ C and every t ∈ q there is a run ρ ∈ R, such that ρ(q) = t,
– for every ρ ∈ R, 1 ≤ k ≤ n and q, q′ ∈ C such that qRkq′ it holds that ρ(q)

and ρ(q′) are k-compatible,
– for every ρ ∈ R, ♦kD ∈ con(C, T) and q ∈ C, if ♦kD ∈ ρ(q) then there exists
q′ ∈ C such that qRkq′ and D ∈ ρ(q′).

We let ∆ = R, for a coherent set of runs R through C, and associate with every
q ∈ C an interpretation function:

– for every concept name A ∈ con(C, T):
AI(q) = {ρ ∈ R | A ∈ ρ(q)};

– for every role name r ∈ rol(C, T):
for every ρ ∈ R and ∃r.D ∈ ρ(q) pick ρ′ ∈ R such that {D}∪{¬C | ¬∃r.C ∈
ρ(q)} ⊆ ρ′(q) and set 〈ρ, ρ′〉 ∈ rI(q).

By structural induction on (C, T) it follows that M is indeed a model for T
satisfying C.

(⇐) Let M = (C, {Rk}1≤k≤n, ∆, {·I(c)}c∈C) be a (Kn)ALC-model of T satisfying
C. We show that there is a subset M of the initial set of all quasistates M0

such that none of its elements can be eliminated by the algorithm and for some

q ∈ M there is a t ∈ q such that C ∈ t, so that the algorithm has to return ‘C
is satisfiable w.r.t. T ’.

Let t be a function mapping every pair from ∆×C to the concept type from∏
(C, T) determined by the interpretation M, i.e., for every d ∈ ∆ and c ∈ C we

pose:

– C ∈ t(d, c) iff d ∈ CI(c), for every C ∈ con(C, T),

With every world c ∈ C we can then associate the set of concept types
ct = {t(d, c) | d ∈ ∆} that are represented by the domain individuals in it.
Every such set is thus simply a quasistate. Finally we fix M = {ct | c ∈ C}, so
that M is a collection of quasistates represented in the original model. Clearly
one of the elements of M contains a type t, such that C ∈ t, since M was
satisfying C at the first place. Also, all types in all quasistates contain the TBox
concept CT . Moreover, it follows naturally, that the conditions (QS) and (EL)
must be satisfied by all types and all quasistates, hence none of them can be
eliminated. q

Since the number of types for (C, T) equals 2|con(C,T)| and |con(C, T)| ≤
2`(C, T), where `(C, T) denotes the length (number of symbols) of (C, T), then
the number of all quasistates is bounded by 222`(C,T)

. In the worst case, in order
to verify whether the elimination criterion applies to a quasistate at a given
stage of the run of the algorithm, it is necessary to compare each of its types
against all types from the remaining quasistates, where each comparison can be
performed in the polynomial time. Thus the whole algorithm cannot take more
than ((222`(C,T) ·2|con(C,T)|) ·2|con(C,T)|) ·222`(C,T)

steps in total to terminate, and
thus remains clearly in O(22`(C,T)

).

Theorem 4. Deciding concept satisfiability in (DAltn)ALC w.r.t. global TBoxes
and only with local roles is 2ExpTime-hard.

The proof is based on reduction of the word problem of an exponentially
bounded Alternating Turing Machine (ATM), which is known to be 2ExpTime-
hard [21]. One initial observation that will be useful in the reduction is that
(DAltn)ALC is Kripke-complete w.r.t. the class of infinite intransitive trees with
a constant branching factor, determined by the number of context modalities.

Proposition 4. A concept C is satisfiable w.r.t. a global TBox T in (DAltn)ALC
iff it is satisfied w.r.t. T in some model M = (C, {<i}1≤i≤n, ∆, {·I(c)}c∈C), such
that 〈C,

⋃
{<i}1≤i≤n〉 is a tree, every world in C has exactly one <i-successor,

for each i ∈ (1, n), and for i 6= j, <i- and <j-successors are different.

Models based on such trees can be easily obtained from the ones we have dis-
cussed so far by using the standard unraveling technique. Thus, in what follows,
we can safely focus only on (DAltn)ALC-tree-models.

Alternating Turing Machines. An ATM is a tuple M = (Q,Σ, Γ, q0, δ),
where:

– Q is a set of states containing pairwise disjoint sets of existential states Q∃,
universal states Q∀, and halting states {qa, qr}, where qa is an accepting and
qr a rejecting state;

– Σ is an input alphabet and Γ a working alphabet, containing the blank symbol
∅, such that Σ ⊆ Γ ;

– q0 ∈ Q∃ ∪Q∀ is the initial state;
– δ is a transition relation, which to every pair (q, a) ∈ (Q∃ ∪Q∀)×Γ , assigns

at least one triple (q′, b,m) ∈ Q × Γ × {l, n, r}. The triple describes the
transition to state q′, involving overwriting of symbol a with b and a shift of
the head to the left (m = l), to the right (m = r) or no shift (m = n). If q
is a halting state then the set of possible transitions δ(q, a) for every a ∈ Γ
is empty.

A configuration of an ATM is given as a sequence wqw′, where w,w′ ∈
(Γ \{∅})∗ and q ∈ Q, which says that the tape contains the word ww′ (possibly
followed by blank symbols), the machine is in state q and the head of the ma-
chine is on the leftmost symbol of w′. A succeeding configuration is defined by
transitions δ, where the head of the machine reads and writes the symbols on the
tape. A configuration wqw′ is a halting one if q = qa (accepting configuration)
or if q = qr (rejecting configuration).

Without loss of generality we adopt a somewhat simplified and more conve-
nient setup for ATMs presented in [15]. An ATM computation tree of M is a
finite tree whose nodes are labeled with configurations and such that the follow-
ing conditions are satisfied:

– the root contains the initial configuration q0w, where w is of length n,
– every configuration wqw′ on the tree, where ww′ is of length at most 2n, is

succeed by:
• at least one successor configuration, whenever q ∈ Q∃,
• all successor configurations, whenever q ∈ Q∀,

– all leaves are labeled with halting configurations.

A tree is accepting iff all the leaves are labeled with accepting configurations
and rejecting otherwise. An ATM accepts an input w iff there exists an accepting
ATM tree with q0w as its initial configuration. The set of all words accepted by
an ATM M is denoted as the language L(M). According to [21, Theorem 3.4],
the problem of deciding whether w ∈ L(M), for w and M complying to the
requirements described above, is 2ExpTime-hard.

Reduction. Technically the reduction is quite involved but its conceptual core
is straightforward. We use separate DAlt modalities for representing symbols of
the alphabet and possible transitions. By isolating specific fragments of
(DAltn)ALC-tree-models we can thus embed the syntactic structure of an ATM

computation tree (see Figure 2). At the same time, using special counting con-
cepts, which enable traversing this structure downwards and upwards, we align
the succeeding configurations semantically, ensuring they satisfy the constraints
of the respective ATM transitions (see Figure 3).

Let M = (Q,Σ, Γ, q0, δ) be an ATM and w the word for which we want
to decide whether w ∈ L(M). In the following we will construct a TBox TM
and a concept CM,w, of a total polynomial size in the size of the input, such
that w ∈ L(M) iff CM,w is satisfiable w.r.t. global TM in (DAltn)ALC . The
encoding is constructed incrementally and provided with extensive explanations
on the way.

First we define the set of DAlt modal operators:

alphabet modalities: ©a, for every a ∈ Γ ,
transition modalities: ©q,a,m, for every (q, a,m) ∈ Θ, where Θ = {(q, a,m) |

(q′, b, q, a,m) ∈ δ for any b ∈ Γ and q′ ∈ Q},

and introduce the following abbreviations (for any concept B):

�B =
d

a∈Γ
©aB,

♦B =
⊔
a∈Γ
©aB,

�B =
d

(q,a,m)∈Θ
©q,a,mB,

�B =
⊔

(q,a,m)∈Θ
©q,a,mB.

In the encoding we use several counters, consisting of a number of inclusions
of a total polynomial size, which allow to identify distances on the branches of
the same fixed length 2n. Constraints (5)-(9) implement an exemplary downward
counter, based on atomic concepts Xi, for 1 ≤ i ≤ n, which simulate bits in
a binary number. The counting is initiated on d ∈ ∆ whenever d instantiates
concept Countd. In every successor DAlt-world along the alphabet modalities, d
becomes then an instance of a concept description, representing the consecutive
number, which uniquely determines the distance from the world in which the
counting was initiated. The counter turns the full loop, back to Countd, in
periods of 2n.

Countd ≡
nl

j=1

¬Xj , (5)

¬Xi u ¬Xj v �¬Xi, for every 1 ≤ j < i ≤ n, (6)

Xi u ¬Xj v �Xi, for every 1 ≤ j < i ≤ n, (7)

¬Xj uXj−1 u . . . uX1 v �Xj , for every 1 ≤ j ≤ n, (8)

Xj uXj−1 u . . . uX1 v �¬Xj , for every 1 ≤ j ≤ n. (9)

An alternative upward counter, initiated with Countu and implemented via tem-
plate (10)-(14), behaves exactly the same way, with the only difference that the

counting proceeds along the alphabet modalities up the branch of the model.

Countu ≡
nl

j=1

Xj , (10)

♦(Xi uXj) v Xi, for every 1 ≤ j < i ≤ n, (11)

♦(¬Xi uXj) v ¬Xi, for every 1 ≤ j < i ≤ n, (12)

♦(Xj u ¬Xj−1 u . . . u ¬X1) v ¬Xj , for every 1 ≤ j ≤ n, (13)

♦(¬Xj u ¬Xj−1 u . . . u ¬X1) v Xj , for every 1 ≤ j ≤ n. (14)

a

a b ∅

DAlt-world with d∈Tape

DAlt-world with d∉Tape

2n

tape cell containing “a”

b

...

a
a accessibility relation of a

a b ∅

a b ∅

a b ∅

a b ∅

a b ∅

a

b

∅

∅

ATM transitions along DAlt transition modalities

 ATM tapes along DAlt alphabet modalities

2n

Fig. 2. Embedding of ATM computation trees (left) and ATM tapes (right) in
(DAltn)ALC-tree-models.

We can now introduce a fresh downward counter Count taped :

Count taped ≡
nl

j=1

¬Rj , (15)

and define constraints which encode a single tape on a branch of a model. In
(16) we define the beginning of such a tape, in (17) its end, while with (18)-(20)
we ensure that there is a unique path connecting the two. Note that whenever
an individual d instantiates concept StartTape, it becomes an instance of Tape
for exactly 2n succeeding worlds along a unique path of alphabet modalities. We
will consider such a path as determining the content of the tape, as presented in
Figure 2. In fact, in our models we will need only one such individual which will
single out the whole structure of the ATM tree. Constraint (20) ensures that the
blank symbol is followed only by blank symbols on the tape.

StartTape ≡ Tape u Count taped , (16)

EndTape ≡ Tape u ♦Count taped , (17)

Tape u ¬EndTape v ♦Tape, (18)

♦(Tape u ¬StartTape) v Tape, (19)

©a Tape u©bTape v ⊥, for every a 6= b ∈ Γ, (20)

©∅ (Tape u©aTape) v ⊥, for every a 6= ∅ ∈ Γ. (21)

Further, we implement the transitions by transferring the necessary infor-
mation downwards or upwards the branches of a (DAltn)ALC-tree-model, as
depicted in Figure 3.

For the downward part, we introduce new concept names Qq for every q ∈
Q and Mq,a,m for every (q, a,m) ∈ Θ, as well as a fresh downward counter
Countheadd (22) for measuring the distance from the original position of the head.
The Qq concepts denote the current state and the position of the head, while
the others serve for carrying the information about the following transitions.
Information about the transitions is generated depending on whether the state
is universal (23) or existential (24) and then carried to the end of the tape. There
the transitions take place (25)-(26) and new tapes are initiated.

Countheadd ≡
nl

j=1

¬Sj , (22)

©a(Qq u Tape) v ©a(
l

(q′b′m)∈δ(q,a)

Mq′,b,m u Countheadd), (23)

for every a ∈ Γ, q ∈ Q∀,

©a(Qq u Tape) v ©a(
⊔

(q′b′m)∈δ(q,a)

Mq′,b,m u Countheadd), (24)

for every a ∈ Γ, q ∈ Q∃,

Mq,a,m v �Mq,a,m, (25)

a “fresh”
representative

2n

q',c,l accessibility relation of q',c,l

r

r

r

q',c,l

head, state q

r role r

transition infromation

cell content information

translation of information-
carrying concepts

Information flow:

2n

right

left

a

c

a

a

b

a

b

b

c

a

b

b

a

b

a

a

“transition”-world

a accessibility relation of a

d∈Tape d∈Q
q

d∈Q
q'

head, state q'

a tape cell containing “a”

q',c,l

transition

“cell”-world

ALC:

ATM:

DAlt:

Fig. 3. A transition between succeeding configurations in (DAltn)ALC-tree-models for
n = 2 and (q′, c, l) ∈ δ(q, b).

Mq,a,m u EndTape v ©q,a,m♦StartTape, for every (q, a,m) ∈ Θ. (26)

Note that, once we move along a transition modality, starting a new offspring
of the computation, the concepts Mq,a,m as well as the counters are not carried
along. This is intended, as we want to avoid potential clashes with the informa-
tion generated on the succeeding tapes. However, we still need to inform the new
offsprings about their configurations. To this end we create copies Nq,a,m for all
concepts Mq,a,m, which continue to carry their information over the new tape
(25)-(26). Further we introduce a fresh downward counter Count∗headd , which
proceeds with the counting exactly from the point where the previous head
counter terminated (29)-(31). Finally, the constraints (32)-(33) introduce some
handy abbreviations which will be used for imposing the new configuration.

Mq,a,m v ©q,a,mNq,a,m, (27)

Nq,a,m v �Nq,a,m, (28)

Count∗headd ≡
nl

j=1

¬Tj , (29)

Si v �Ti, for every 1 ≤ i ≤ n, (30)

¬Si v �¬Ti, for every 1 ≤ i ≤ n, (31)

Count∗headd − 1 ≡ Head l, (32)

Count∗headd ≡ Headn, (33)

Count∗headd + 1 ≡ Headr. (34)

The necessary changes in the configuration are imposed through constraints
(35)-(36), which place the head in the appropriate position, marking it with the
new state concept, and force the old position to be overwritten with the new
symbol. The inclusions (37)-(38) ensure that the transition does not push the
head beyond the tape.

Nq,a,m u Tape uHeadm v Qq, for every (q, a,m) ∈ Θ, (35)

©b (Nq,a,m uTape uHeadn) v ⊥, for every (q, a,m) ∈ Θ and b 6= a ∈ Γ, (36)

Headn u StartTape v ¬Nq,a,l, for every q ∈ Q, a ∈ Γ, (37)

Headn u EndTape v ¬Nq,a,r, for every q ∈ Q, a ∈ Γ. (38)

In the opposite direction we will transfer the information about the content
of the cells which are not meant to change during the transition. This informa-
tion is carried by newly generated ‘representatives’, i.e., new r-successors of the
individual instantiating Tape. Observe that since our models are tree-shaped, it
follows that whenever the representative reaches the 2n-th ancestor world (up-
wards the alphabet modalities and one transition modality), it is exactly the
world which holds the previous version of the represented cell. This enables us
to align the content of the two versions. In a similar way as before, we introduce
two fresh upward counters which are synchronized at the point of transition
(39)-(42).

Countcellu ≡
nl

j=1

Uj , (39)

Count∗cellu ≡
nl

j=1

Vj , (40)

�Ui v Vi, for every 1 ≤ i ≤ n, (41)

�¬Ui v ¬Vi, for every 1 ≤ i ≤ n. (42)

At the same time, for each a ∈ Γ we introduce two concept names Wa, Sa,
whose interpretation is propagated upwards the alphabet modalities (43)-(44)
and aligned at the transition point (45). Constraint (46) generates a represen-
tative of each cell (except for the one that has been changed, marked with the
concept Headn), and equips it with the concept W describing the cell’s content.

Once this information arrives to the previous version of that cell we prevent the
cells from having different content (47).

♦Wa vWa, for every a ∈ Γ, (43)

♦Sa v Sa, for every a ∈ Γ, (44)

�Wa v Sa, for every a ∈ Γ, (45)

©a (Tape u ¬Headn) v ©a∃r.(Countcellu uWa), for every a ∈ Γ, (46)

©a (Sb u Count∗cellu) v ⊥, for every b 6= a ∈ Γ. (47)

Finally, it suffices to ensure that nowhere in the model is the rejecting state
satisfied.

> v ¬Qqr
(48)

This completes the construction of the TBox TM. The initial configuration q0w
is encoded as concept CM,w. Let w = a1 . . . an. For 2 ≤ i ≤ n define recursively:

Ai = ©ai(Tape uAi+1)
An+1 = ©∅Tape

Then CM,w =©a1(StartTapeuQq0uA2). We conclude by demonstrating validity
of the target claim:

Lemma 3. w ∈ L(M) iff CM,w is satisfiable w.r.t. global TM in (DAltn)ALC

Proof. (⇒) Suppose w ∈ L(M) and T is an ATM computation tree accepting w.
We roughly sketch the construction of a model M = (C, {<x}x∈Γ∪Θ, ∆, {·I(c)}c∈C)
of TM satisfying CM,w.

We assume that each tape associated with a configuration in T is of length
exactly 2n. Let t(i, wqw′) be a function returning the i-th symbol from the tape
containing ww′, and h(wqw′) a function returning the position of the head over
that tape. Let q0w be the initial configuration and c ∈ C the root of M. Then
for some d ∈ ∆ set d ∈ C

I(c)
M,w. Then encode the tape of q0w starting from c,

according to the following inductive procedure. Given a tape of wqw′ and the
world c ∈ C in which the encoding starts, set i := 1 and x := c and proceed
recursively until i = 2n + 1:

1. pick c ∈ C such that x <t(i,wqw′) c;
2. set d ∈ TapeI(c);
3. if i = 1 then set d ∈ StartTapeI(c) and d ∈ (Count taped)I(c);
4. if i = h(wqw′) then set d ∈ QI(c)q , d ∈ (Countheadd)I(c) and for all transitions

(q, a,m) from wqw′ performed on T , d ∈MI(c)q,a,m;
5. if i = 2n then set d ∈ EndTapeI(c);
6. set 〈d, e〉 ∈ rI(c) for some fresh e ∈ ∆, e ∈W I(c)t(i,wqw′) and e ∈ (Countcellu)I(c)

7. set i := i+ 1 and x := c;

Then for every transition (q, a,m) from wqw′ in T , resulting in the succeeding
configuration vq′v′, pick the world c ∈ C such that x <q,a,m c and repeat the
procedure above for the tape of vq′v′ starting from the world c. Once the halting
configurations are encoded, fix the interpretations of the bit concepts associ-
ated with the respective counters and propagate the interpretations of selected
concepts as follows:

– Mq,a,m and Nq,a,m for every (q, a,m) ∈ Θ: downwards along relations <x for
all x ∈ Γ ;

– Wa and Sa for every a ∈ Γ : upwards along relations the <x for all x ∈ Γ ;

In the worlds representing the transition points, ensure the proper alignment
of the interpretations of the concept pairs Mq,a,m – Nq,a,m and Wa – Sa, as
well as the bit concepts of the counters Countheadd – Count∗headd and Countcelld

– Count∗celld .

(⇐) This direction of the claim follows straightforwardly from the reduction. In
order to retrieve an ATM tree accepting w from a (DAltn)ALC-tree-model we
only need to pick an individual d, such that d ∈ CI(c0)M,w and follow the paths of
worlds c ∈ C for which d ∈ TapeI(c), just as presented in Figure 2. On the way
we collect information about the entire configuration. Two important comments
are in order. First, note that the reduction is somewhat underconstrained in the
sense that the models might represent also some surplus states or transitions.
However, the proper computation tree, i.e., the one directly enforced by the
encoding, has to appear within this structure. Secondly, we recall that the ATM
trees we consider are all finite. Since the transitions in the reduction properly
simulate those of an ATM, therefore the trees embedded in (DAltn)ALC-tree-
models have to be also finite, even though the models themselves are always
infinite. q

Theorem 6. Deciding satisfiability of an ALCALC knowledge base in which ob-
ject roles are interpreted locally is 2ExpTime-complete.

In the following we prove only the upper bound. Let K = (C,O) be an
ALCALC knowledge base. We devise a quasimodel elimination algorithm which
decides satisfiability of K in at most double exponential time in the size of K.
W.l.o.g. we assume that all occurrences of [·]p in K are replaced with ¬〈·〉p¬, and
all occurrences of ∀r. (∀r .) with ¬∃r.¬ (¬∃r .¬). By subo(K) we denote the set of
all object (sub)formulas occurring in K, closed under negation, by conc(K) and
cono(K) the sets of all c-concepts and o-concepts occurring in K, respectively,
closed under negation; similarly by rolc(K) and rolo(K) the sets of context and
object role names, and by objc(K) and objo(K) the sets of context and object
individual names.

A context type for K is a pair 〈c, f〉, such that c ⊆ conc(K) and f ⊆ subo(K),
where:

– A ∈ c iff ¬A 6∈ c, for all A ∈ conc(K),
– C uD ∈ c iff {C,D} ⊆ c, for all C uD ∈ conc(K),

– ϕ ∈ f iff ¬ϕ 6∈ f , for all ϕ ∈ subo(K),
– ϕ ∧ ψ ∈ f iff {ϕ,ψ} ⊆ f , for all ϕ ∧ ψ ∈ subo(K).

An object type for K is a subset t ⊆ cono(K), where:

– A ∈ t iff ¬A 6∈ t, for all A ∈ cono(K),
– C uD ∈ t iff {C,D} ⊆ t, for all C uD ∈ cono(K).

A quasistate for K is a tuple q = 〈cq, fq, Oq, πq〉, where 〈cq, fq〉 is a context
type, Oq is a non-empty set of object types for K, and πq is a function associating
with every name from objo(K) an object type from Oq. We say that q is saturated
iff for every t ∈ Oq:

(qS) if ∃r.D ∈ t then there is a type t′ ∈ Oq s.t. {D} ∪ {¬C | ¬∃r.C ∈ t} ⊆ t′.

We call q coherent iff the following conditions hold:

(qC1) for every a : C ∈ subo(K), a : C ∈ fq iff C ∈ πq(a),
(qC2) for every r(a, b) ∈ subo(K), if r(a, b) ∈ fq then {¬C | ¬∃r.C ∈ πq(a)} ⊆

πq(b),
(qC3) for every C v D ∈ subo(K), C v D ∈ fq iff for every t ∈ Oq, if C ∈ t

then D ∈ t.

Two quasistates q = 〈cq, fq, Oq, πq〉 and q′ = 〈c′q, f ′q, O′q, π′q〉 are said to be
p-compatible, for some p ∈ rolc(K), iff

– {¬C | ¬∃p.C ∈ cq} ⊆ c′q,
– {¬ϕ | ¬〈C 〉pϕ ∈ fq} ⊆ f ′q, for all C ∈ c′q,
– there exists a relation g ⊆ Oq ×O′q, called a p-linkage, such that:
• for every t ∈ Oq there exists a t′ ∈ O′q such that 〈t, t′〉 ∈ g,
• for every t′ ∈ O′q there exists a t ∈ Oq such that 〈t, t′〉 ∈ g,
• for every a ∈ objo(K) it holds that 〈πq(a), π′q(a)〉 ∈ g,
• for every t ∈ Oq and t′ ∈ O′q such that 〈t, t′〉 ∈ g, if ¬〈C 〉pD ∈ t and

C ∈ c′q then ¬D ∈ t′.

A set of quasistates Q is saturated iff for every quasistate q ∈ Q:

(QS1) for every ∃p.C ∈ cq there is a quasistate q′ ∈ Q such that C ∈ c′q and
q is p-compatible with q′;

(QS2) for every 〈C 〉pϕ ∈ fq there is a quasistate q′ ∈ Q such that C ∈ c′q,
ϕ ∈ f ′q and q is p-compatible with q′;

(QS3) for every t ∈ Oq and 〈C 〉pD ∈ t there is a quasistate q′ ∈ Q such
that C ∈ c′q and q is p-compatible with q′ via some p-linkage g such that
D ∈ g(t).

A quasimodel for K is a pair N = 〈Q, γ〉, such that Q is a non-empty, satu-
rated set of saturated and coherent quasistates for K, γ is a function associating
with every name from objc(K) a quasistate from Q, and the following conditions
are satisfied:

(M1) if a : C ∈ C then C ∈ cq for q ∈ Q such that γ(a) = q,
(M2) if the set Ra,b = {p | p(a , b) ∈ C} is non-empty then γ(a) is p-

compatible with γ(b) for all p ∈ Ra,b and there exists a common p-linkage
between γ(a) and γ(b) for all such p,

(M3) if C v D ∈ C then for every q ∈ Q, if C ∈ cq then D ∈ cq,
(M4) if a : ϕ ∈ O then ϕ ∈ fq, for q ∈ Q such that γ(a) = q,
(M5) if C : ϕ ∈ O then ϕ ∈ fq, for every q ∈ Q such that C ∈ cq.

We can now prove the quasimodel lemma.

Lemma 4. There is a quasimodel for K iff there is an ALCALC-model of K.

Proof. An important observation which we exploit in this proof is that the con-
straints imposed on quasimodels ensure existence of certain specific quasistates
which represent role successors in the context dimension. This is the case in con-
ditions (QS1)-(QS3), which enforce existence of a p-compatible quasistate for
each existential restriction (or diamond operator) over a context role occurring
in the knowledge base. Similarly in (M2), which ensures that a pair of quasis-
tates representing named contexts is compatible via the same linkage for all roles
relating these contexts. To ease reference to these specific elements we amend
the corresponding conditions with the following definitions:

(QS1*) in such case call q′ a witness for (∃p.C , q) and a p-linkage g, enforced
by the condition, a witnessing linkage;

(QS2*) in such case call q′ a witness for (〈C 〉pϕ, q) and a p-linkage g, enforced
by the condition, a witnessing linkage;

(QS3*) in such case call q′ a witness for (〈C 〉pD, t, q) and a p-linkage g, en-
forced by the condition, a witnessing linkage;

(M2*) in such case call a common linkage g, enforced by the condition, a wit-
nessing linkage.

(⇒) Suppose N = 〈Q, γ〉 is a quasimodel for K = (C,O). We will sketch the
construction of an ALCALC-model M = (C, ·J , ∆, {·I(c)}c∈C) of K. We start by
constructing an interpretation of the context dimension (C, ·J). First, for every
a ∈ objc(K) add a copy q′ of the quasistate q = γ(a) to C and set aJ = q′. In
case objc(K) = ∅ set C = {q} for any q ∈ Q. Then fix an interpretation of roles,
while iteratively extending C. For every p ∈ rolc(K):

– for every p(a , b) ∈ C set 〈aJ , bJ 〉 ∈ pJ ;
– for every q ∈ C:
• for every ∃p.D ∈ cq pick a witness for (∃p.D , q) from Q, add its copy
q′ to C and set 〈q, q′〉 ∈ pJ ;

• for every 〈C 〉pϕ ∈ fq pick a witness for (〈C 〉pϕ, q) from Q, add its copy
q′ to C and set 〈q, q′〉 ∈ pJ ;

• for every t ∈ Oq and 〈C 〉pD ∈ t pick a witness for (〈C 〉pD, t, q) from Q,
add its copy q′ to C and set 〈q, q′〉 ∈ pJ .

Finally for every A ∈ conc(K) set AJ = {q ∈ C | A ∈ cq}. It follows by structural
induction that all complex c-concepts are satisfied by M in the expected contexts,
and therefore, since N satisfies conditions (M1)-(M3), all axioms from the context
knowledge base C must be satisfied. Now let us turn to the object dimension.

A run ρ through C is a choice function which for every q ∈ C selects an
object type ρ(q) ∈ Oq. Runs are used for representing the behavior of object
individuals across contexts. The easiest way to properly constrain this behavior
is by employing the witnessing linkages introduced above. Note that the way the
interpretation (C, ·J) has been constructed ensures that for every two contexts
related by some role there exists a witnessing linkage we can refer to in order to
align the interpretations of object individuals inhabiting these contexts. A set of
runs R is coherent iff the following conditions are satisfied:

– for every q ∈ C and every t ∈ Oq there is a run ρ ∈ R, such that ρ(q) = t,
– for every a ∈ objo(K), there is exactly one run ρa ∈ R such that ρa(q) = πq(a)

for all q ∈ C,
– for every q, q′ ∈ C such that 〈q, q′〉 ∈ pJ , for some p ∈ rolc(K), relation
{〈ρ(q), ρ(q′)〉 | ρ ∈ R} coincides with the witnessing linkage between q and
q′;

We let ∆ = R, for a coherent set of runs R through C, and associate with
every q ∈ C an interpretation function:

– for every individual name a ∈ objo(K) set aI(q) = ρa(q)
– for every concept name A ∈ cono(K):
AI(q) = {ρ ∈ R | A ∈ ρ(q)};

– for every role name r ∈ rolo(K):
for every ρ ∈ R and ∃r.D ∈ ρ(q) pick ρ′ ∈ R such that {D}∪{¬C | ¬∃r.C ∈
ρ(q)} ⊆ ρ′(q) and set 〈ρ, ρ′〉 ∈ rI(q).

Note that by aligning runs with the witnessing linkages we automatically ensure
that an object obtains compatible interpretations in every two related contexts.
In particular whenever d ∈ (〈C 〉pD)I(c) for some d ∈ ∆ and c ∈ C, there has to
exist a context c′ ∈ CJ accessible from c through p in which d ∈ DI(c′). By the
same token, whenever d ∈ ([C]pD)I(c) then d ∈ DI(c′) in all contexts c′ ∈ CJ

accessible through p from c. By structural induction it is not difficult to see
that all complex o-concepts are satisfied by M as expected — by the designated
objects in the designated contexts — and thus, since N satisfies conditions (M4)-
(M5) and (qC1)-(qC3), all axioms from the object knowledge base O must be
also satisfied.

(⇐) This direction is straightforward. Let M = (C, ·J , ∆, {·I(c)}c∈C) be an
ALCALC-model of K. We construct a quasimodel N = (Q, γ) for K as follows.
Let t be a function mapping every context from C to its type determined by the
interpretation M, i.e., for every c ∈ C, set t(c) = 〈tc, fc〉 where tc and fc have to
satisfy the constraints:

– C ∈ tc iff c ∈ CJ , for every C ∈ conc(K),

– ϕ ∈ fc iff I, c |= ϕ, for every ϕ ∈ subo(K).

In the same way we use t to denote object types for objects. For every object-
context pair 〈d, c〉 ∈ ∆× C we define t(d, c) as:

– C ∈ t(d, c) iff d ∈ CI(c), for every C ∈ cono(K),

Further, for every c ∈ C let Oc = {t(d, c) | d ∈ ∆} be the set of object types
represented in the context c, and let πc be a function mapping every a ∈ objo(K)
to its type in that context, i.e., πc(a) = t(aI(c), c). We can then define a qua-
sistate for every c ∈ C as qc = 〈tc, fc, Oc, πc〉, where t(c) = 〈tc, fc〉. Finally,
let Q = {qc | c ∈ C} and γ be a function mapping every a ∈ objc(K) to its
corresponding quasistate from Q, i.e., γ(a) = qc whenever aJ = c. Clearly
M = (Q, γ) is a quasimodel for K. In particular, it is guaranteed that for all
existential restrictions (and diamond expressions) occurring in the context and
object types from the quasistates, there must exist suitable witnesses and wit-
nessing linkages, and thus that all conditions constituting quasimodels have to
be satisfied. q

The basic, brute-force algorithm deciding whether a quasimodel for K exists
is again a straightforward extension of the type elimination method, similar to
the one used in the proof of Theorem 3. We start by enumerating all quasimodel
candidates N1, . . . ,NN , such that every candidate Ni = (Q, γ) consists of the set
of all possible quasistates Q and a unique mapping associating quasistates with
context names. It is easy to see that N = |Q||objc(K)|. Recall that a quasistate is
defined as q = (cq, fq, Oq, πq), hence the number of all possible quasistates |Q|
for K is:

|Q| = (2|conc(K)| · 2|subo(K)| · 22|cono(K)|
)|objo(K)|.

Observe also that for `(K), denoting the length (number of symbols) of K, we
have:

|cono(K)|+ |conc(K)| ≤ 2`(K),
|objo(K)|+ |objc(K)| ≤ `(K),

|subo(K)| ≤ 2`(K).

The total number of quasimodel candidates is hence bounded by:

N ≤ (222`(K)·`(K)+4`(K)2)`(K) ≤ 222`(K)·`(K)2+4`(K)3 ,

and so N ∈ O(22`(K)
). Given a candidate the algorithm eliminates it whenever

any of the conditions (M1)-(M5) is violated, or iteratively eliminates the quasis-
tates and object types from the quasistates which violate any of the conditions
(qS), (qC1)-(qC3), (QC1)-(QC3). It succeeds iff the following conditions are
met:

– no more object types nor quasistates can be eliminated,
– there is at least one quasistate left and every quasistate contains at least one

object type,

– for every a ∈ objc(K) the quasistate γ(a) is not eliminated,
– for every quasistate q and a ∈ objo(K) the object type πq(a) is not elimi-

nated.

In such case the result of elimination is clearly a quasimodel and the search
is finished. Else the algorithm processes the consecutive quasimodel candidate,
and so on until no more candidates are left. If all candidates are eliminated with
no success then there obviously exists no quasimodel. Note, that similarly to
the algorithm from Theorem 3, the number of steps necessary for completing
elimination in one candidate quasimodel is at most double exponential in `(K).
Hence the whole algorithm runs also in double exponential time.

Theorem 7. The language L1×2 interpreted in product models is exactly as
expressive as the concept language of ALCALC interpreted in models with rigid
interpretations of object roles.

Proof. To prove the claim we will show that (1) for every ALCALC concept D
there is a concept C ∈ L1×2 and, conversely, (2) for every concept C ∈ L1×2

there is an ALCALC concept D, such that C is satisfied in some product model
iff D is satisfied in some ALCALC model in which object roles are interpreted
rigidly. Note that we consider C and D to be arbitrary syntactically well-formed
concepts. In case of ALCALC this includes both c- and o-concepts.

We start by defining a mapping between two kinds of interpretations w.r.t.
the vocabulary in C and D. We say that a product interpretation P and an
ALCALC interpretation M in which object roles are interpreted rigidly are match-
ing iff P = (C × ∆, ·P), M = (C, ·J , ∆, {·I(c)}c∈C}), and the functions ·P , ·J
and ·I are related as follows:

– for every p: 〈v, w〉 ∈ pJ iff 〈(v, x), (w, y)〉 ∈ pP , for any x, y ∈ ∆,
– for every A: v ∈ AJ iff (v, x) ∈ AP , for any x ∈ ∆,
– for every r and c ∈ C: 〈x, y〉 ∈ rI(c) iff 〈(c, x), (c, y)〉 ∈ rP ,
– for every A and c ∈ C: x ∈ AI(c) iff (c, x) ∈ AP .

Obviously every product interpretation has a matching ALCALC interpretation
and vice versa.

Case (1) is straightforward. Let D be an ALCALC concept. Apply the follow-
ing rules to all subconcepts D′ of D:

– if D′ = 〈B〉pC then replace it with ∃p.(B u C),
– if D′ = [B]pC then replace it with ∀p.(¬B t C).

Let C be the result of the transformation. Clearly, C is a well-formed L1×2. By
structural induction on the concepts it is easy to see that if D is satisfied in
some M then C is satisfied in the matching product interpretation, and if C is
satisfied in some P then D is satisfied in the matching ALCALC interpretation.
In particular, if x ∈ (〈B〉pC)I(c) then for some c′ we have: c′ ∈ BJ , 〈c, c′〉 ∈ pJ

and x ∈ C)I(c
′). This to the matching product model, where (c′, y) ∈ BP ,

〈(c, y), (c′, y)〉 ∈ pP , for all y ∈ ∆, and (c′, x) ∈ CP . Similarly in the opposite
direction.

Case (2) is a bit more tedious. Basically, we need to first transform an L1×2

concept into a form in which concepts of MC occur right after the restrictions
on roles MR. Then we can smoothly translate them into ALCALC following the
opposite transformation to the one used in case (1). Let C ∈ L1×2. W.l.o.g. we
can assume that C = ∃s.C ′ for some role name s ∈MR and C ′ in NNF. We say
that a concept B is:

1. in Conjunctive Normal Form (CNF) iff B =
d
i

⊔
j Bij ,

2. in Disjunctive Normal Form (DNF) iff B =
⊔
i

d
j Bij ,

3. in clausal form iff B =
⊔
iB i t

⊔
j Bj ,

4. in conjunctive form iff B =
d
iB i u

d
j Bj ,

where every Bij is a role restriction or a literal, i.e., a concept name, its negation,
⊥ or >; every Bj is a Σ-literal (including ⊥ and >), or a role restriction (on
any role from NR ∪MR); every B i is a Γ -literal (excluding ⊥ and >). First, we
perform a number of equivalence preserving transformations on C. We follow the
structure of nestings of role restrictions, starting from the innermost restrictions
and proceeding inside-out. On the way we exhaustively apply the π rule:

1. for ∃r.B:
(a) if B is in conjunctive form and B =

d
iB i u

d
j Bj , then:

π(∃r.B) =
d
iB i u ∃r.

d
j Bj ,

(b) if B is in DNF and B =
⊔
i

d
j Bij then: π(∃r.B) =

⊔
i ∃r.

d
j Bij ,

(c) else transform B to DNF and repeat.
2. for ∀r.B:

(a) if B is in clausal form and B =
⊔
iB i t

⊔
j Bj , then:

π(∀r.B) =
⊔
iB i t ∃r.

⊔
j Bj ,

(b) if B is in CNF and B =
d
i

⊔
j Bij then: π(∀r.B) =

d
i ∀r.

⊔
j Bij ,

(c) else transform B to CNF and repeat.
3. for ∃p.B:

(a) if B is in DNF and B =
⊔
i

d
j Bij then: π(∃p.B) =

⊔
i ∃p.

d
j Bij ,

(b) else transform B to DNF and repeat.
4. for ∀p.B:

(a) if B is in CNF and B =
d
i

⊔
j Bij then: π(∀p.B) =

d
i ∀p.

⊔
j Bij ,

(b) else transform B to CNF and repeat.

Note, that given the difference in the semantics of concept names from NC
and MC , steps 1a and 2a also preserve equivalence. As a result we obtain a
concept in which all concept names of MC occur only on the first depth inside
restrictions on roles MR. Moreover, in all concepts of the form ∃p.B, B is in
conjunctive form and in all concepts of the form ∀p.B, B is in clausal form.
Using these observations we can translate the outcome of the transformation
into the syntax of ALCALC by applying the following rules:

1. for ∃p.B where B =
d
iB i u

d
j Bj :

(a) if i 6= 0 and j 6= 0 then π(∃p.B) = 〈
d
iB i〉p

d
j Bj ,

(b) if i = 0 then π(∃p.B) = 〈>〉p
d
j Bj ,

(c) if j = 0 then π(∃p.B) = 〈
d
iB i〉p>.

2. for ∀p.B where B =
⊔
iB i u

⊔
j Bj :

(a) if i 6= 0 and j 6= 0 then π(∀p.B) = [¬(
⊔
iB i)]p

⊔
j Bj ,

(b) if i = 0 then π(∀p.B) = [>]p
⊔
j Bj ,

(c) if j = 0 then π(∃p.B) = [¬(
⊔
iB i)]p⊥.

Let D be the result of the translation. Clearly, D is an ALCALC concept.
Again it is not difficult to find out by structural induction on the concepts
that if D is satisfied in some M then C is satisfied in the matching product
interpretation, and if C is satisfied in some P then D is satisfied in the matching
ALCALC interpretation. q

	ALCALC: a Context Description Logic

