Skip to main content

Ab-initio Characterization of Electronic Properties of PbTe Quantum Dots Embedded in a CdTe Matrix

  • Conference paper
  • 1856 Accesses

Abstract

The electronic properties of embedded PbTe nanocrystals (NCs) are investigated using an ab initio pseudopotential method and a repeated supercell approximation. The occurrence of polar dot matrix interfaces lead to the occurrence of an electrostatic field within the NC region. The consequences of this field on the electronic properties of the dot matrix system will be discussed in detail. The resulting spatial separation of electrons and holes inside the nanocrystal region lead to a quantum confined Stark effect.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Groiss, E. Kaufmann, G. Springholz, T. Schwarzl, G. Hesser, F. Schäffler, W. Heiss, K. Koike, T. Itakura, T. Hotei, M. Yano, and T. Wojtowicz, Appl. Phys. Lett. 91, 222106 (2007).

    Article  Google Scholar 

  2. W. Heiss, H. Groiss, E. Kaufmann, H. Hesser, M. Böberl, G. Springholz, F. Schäffler, R. Leitsmann, F. Bechstedt, K. Koike, H. Harada, and M. Yano, J. Appl. Phys. 101, 081723 (2007).

    Article  Google Scholar 

  3. W. Heiss, H. Groiss, E. Kaufmann, M. Böberl, G. Springholz, F. Schäffler, K. Koike, H. Harada, and M. Yano, Appl. Phys. Lett 88, 192109 (2006).

    Article  Google Scholar 

  4. R. Leitsmann and F. Bechstedt, Phys. Rev. B 80, 165402 (2009).

    Article  Google Scholar 

  5. R. Leitsmann and F. Bechstedt, ACS Nano 3, 3505 (2009).

    Article  Google Scholar 

  6. R. Leitsmann and F. Bechstedt, Phys. Rev. B 78, 205324 (2008).

    Article  Google Scholar 

  7. S.-H. Wei and A. Zunger, Phys. Rev. B 37, 8958 (1988).

    Article  Google Scholar 

  8. E.A. Albanesi, C.M.I. Okoye, C.O. Rodriguez, E.L.P. y Blanca, and A.G. Petukhov, Phys. Rev. B 61, 16589 (2000).

    Article  Google Scholar 

  9. R. Leitsmann, L.E. Ramos, and F. Bechstedt, Phys. Rev. B 74, 085309 (2006).

    Article  Google Scholar 

  10. H. Groiss, G. Hesser, W. Heiss, F. Schäffler, R. Leitsmann, F. Bechstedt, K. Koike, and M. Yano, Phys. Rev. B 79, 235331 (2009).

    Article  Google Scholar 

  11. R. Leitsmann, L.E. Ramos, F. Bechstedt, H. Groiss, F. Schäffler, W. Heiss, K. Koike, H. Harada, and M. Yano, New J. Phys. 8, 317 (2006).

    Article  Google Scholar 

  12. R. Leitsmann and F. Bechstedt, Phys. Rev. B 76, 125315 (2007).

    Article  Google Scholar 

  13. W. Heiss, H. Groiss, E. Kaufmann, M. Böberl, G. Springholz, F. Schäffler, K. Koike, H. Harada, and M. Yano, Appl. Phys. Lett. 88, 192109 (2006).

    Article  Google Scholar 

  14. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  MathSciNet  Google Scholar 

  15. D.M. Ceperley and B.J. Adler, Phys. Rev. Lett. 45, 566 (1980).

    Article  Google Scholar 

  16. W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  MathSciNet  Google Scholar 

  17. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  18. P. Pulay, Chem. Phys. Lett. 73, 393 (1980).

    Article  Google Scholar 

  19. G. Kresse and J. Furthmüller, Comp. Mat. Sci. 6, 15 (1996).

    Article  Google Scholar 

  20. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  Google Scholar 

  21. U. von Barth and L. Hedin, J. of Phys. C: Solid State Phys. 5, 1629 (1972).

    Article  Google Scholar 

  22. S. Haberhauer, NEC—High Performance Computing Europr GmbH, SHaberhauer@hpce.nec.com (2006).

    Google Scholar 

  23. M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).

    Article  Google Scholar 

  24. J.P. Perdew and M. Levy, Phys. Rev. Lett. 51, 1884 (1983).

    Article  Google Scholar 

  25. P. Dziawa, B. Taliashvili, W. Domuchowski, L. Kowalczyk, E. Lusakowska, A. Mycielski, V. Osinniy, and T. Story, Phys. Stat. Sol. (c) 2, 1167 (2005).

    Article  Google Scholar 

  26. N.J. Shevchik, J. Tejeda, M. Cardona, and D.W. Langer, Phys. Stat. Sol. (b) 59, 87 (1973).

    Article  Google Scholar 

  27. Y.-H. Kuo, Y.K. Lee, Y. Ge, S. Ren, J.E. Roth, T.I. Kamins, D.A.B. Miller, and J.S. Harris, Nature 437, 1334 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Leitsmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leitsmann, R., Bechstedt, F. (2011). Ab-initio Characterization of Electronic Properties of PbTe Quantum Dots Embedded in a CdTe Matrix. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering '10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15748-6_10

Download citation

Publish with us

Policies and ethics