Skip to main content

Conductance and Noise Correlations of Correlated Nanostructures

  • Conference paper
High Performance Computing in Science and Engineering '10

Abstract

Transport properties of strongly interacting quantum systems are a major challenge in todays condensed matter theory. In our project we apply the density matrix renormalization group (DMRG) method (White 1992, 1993; Peschel et al. 1999; Noack and Manmana 2005; Hallberg 2006; Schollwöck 2005) to study transport properties (Schmitteckert 2004; Schmitteckert and Schneider 2006; Schmitteckert 2007; Ulbricht and Schmitteckert 2008; Branschädel 2009) of quantum devices attached to metallic leads. To this end we have developed two complementary approaches to obtain conductance of a structure coupled to left and right leads. First we use the Kubo approach (Bohr et al. 2006) to obtain linear conductance. Combined with leads described in momentum space (Bohr and Schmitteckert 2007; Schmitteckert 2010) we have obtained high resolution in energy. In this report we extend the results based on the Kubo approach to systems with degenerate orbitals. The second approach is based on simulating the time evolution (Ulbricht and Schmitteckert 2009, 2010; Ulbricht et al. 2010) of an initial state with a charge imbalance (Branschädel 2010). In a cooperation with Edouard Boulat and Hubert Saleur we have been able to show that our approach is in excellent agreement with analytical calculations in the framework of the Bethe ansatz (Boulat et al. 2009). This agreement is remarkable as the numerics is carried out in a lattice model, while the analytical result is based on field theoretical methods in the continuum. Therefore we have to introduce a scale T B to compare the field theoretical result to our numerics. Remarkably, at the so called self-dual point the complete regularization can be expressed by a single number, even for arbitrary contact hybridization t′. Most strikingly we proved the existence of a negative differential conductance (NDC) regime even in this simplistic model of a single resonant level with interaction on the contact link. In an extension of this approach we present results for current-current correlations, including shot noise, based on our real time simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.R. White. Phys. Rev. Lett., 69:2863, 1992.

    Article  Google Scholar 

  2. S.R. White. Phys. Rev. B, 48:10345, 1993.

    Article  Google Scholar 

  3. I. Peschel, X. Wang, M. Kaulke, and K. Hallberg, editors. Density Matrix Renormalization, 1999.

    Google Scholar 

  4. Reinhard M. Noack and Salvatore R. Manmana. Diagonalization- and numerical renormalization-group-based methods for interacting quantum systems. In Adolfo Avella and Ferdinando Mancini, editors, Lectures on the Physics of Highly Correlated Electron Systems IX: Ninth Training Course in the Physics of Correlated Electron Systems and High-Tc Superconductors, volume 789, pages 93–163, Salerno, Italy, 2005. AIP.

    Google Scholar 

  5. Karen A. Hallberg. New trends in density matrix renormalization. Adv. Phys., 55(5):477–526, 2006.

    Article  Google Scholar 

  6. U. Schollwöck. The density-matrix renormalization group. Rev. Mod. Phys., 77(1), 2005.

    Google Scholar 

  7. Peter Schmitteckert. Nonequilibrium electron transport using the density matrix renormalization group. Phys. Rev. B, 70:121302(R), 2004.

    Article  Google Scholar 

  8. P. Schmitteckert and G. Schneider. Signal transport and finite bias conductance in and through correlated nanostructures. In Wolfgang E. Nagel, Willi Jäger, and Michael Resch, editors, High Performance Computing in Science and Engineering ’06, pages 113–126. Springer, Berlin, 2006.

    Google Scholar 

  9. P. Schmitteckert. Signal transport in and conductance of correlated nanostructures. In Wolfgang E. Nagel, Dietmar B. Kröner, and Michael Resch, editors, High Performance Computing in Science and Engineering ’07, pages 99–106. Springer, Berlin, 2007.

    Google Scholar 

  10. Tobias Ulbricht and Peter Schmitteckert. Signal transport in and conductance of correlated nanostructures. In Wolfgang E. Nagel, Dietmar B. Kröner, and Michael Resch, editors, High Performance Computing in Science and Engineering ’08, pages 71–82. Springer, Berlin, 2008.

    Google Scholar 

  11. Alexander Branschädel, Tobias Ulbricht, and Peter Schmitteckert. Conductance of correlated nanostructures. In Wolfgang E. Nagel, Dietmar B. Kröner, and Michael Resch, editors, High Performance Computing in Science and Engineering ’09, pages 123–137. Springer, Berlin, 2009.

    Google Scholar 

  12. D. Bohr, P. Schmitteckert, and P. Wölfle. DMRG evaluation of the Kubo formula – conductance of strongly interacting quantum systems. Europhys. Lett., 73:246, 2006.

    Article  Google Scholar 

  13. Dan Bohr and Peter Schmitteckert. Strong enhancement of transport by interaction on contact links. Phys. Rev. B, 75(24):241103(R), 2007.

    Article  Google Scholar 

  14. Peter Schmitteckert. Calculating green functions from finite systems. J. Phys.: Conf. Ser., 220:012022, 2010.

    Article  Google Scholar 

  15. Tobias Ulbricht and P. Schmitteckert. Is spin-charge separation observable in a transport experiment? EPL, 86(5):57006+, 2009.

    Article  Google Scholar 

  16. Tobias Ulbricht and Peter Schmitteckert. Tracking spin and charge with spectroscopy in spin-polarised 1d systems. EPL, 89:47001, 2010.

    Article  Google Scholar 

  17. Tobias Ulbricht, Rafael A. Molina, Ronny Thomale, and Peter Schmitteckert. Color-charge separation in trapped su(3) fermionic atoms. Phys. Rev. A, 82(1):011603, Jul 2010.

    Article  Google Scholar 

  18. A. Branschädel, Guenter Schneider, and P. Schmitteckert. Conductance of inhomogeneous systems: Real-time dynamics. Ann. Phys. (Berlin), 522:657, 2010.

    Google Scholar 

  19. E. Boulat, H. Saleur, and P. Schmitteckert. Twofold advance in the theoretical understanding of far-from-equilibrium properties of interacting nanostructures. Physical Review Letters, 101(14):140601, 2008.

    Article  MathSciNet  Google Scholar 

  20. R. de Picciotto, M. Heiblum, H. Shtrikman, and D. Mahalu. Phys. Rev. Lett., 75:3340, 1995.

    Article  Google Scholar 

  21. A. Kumar, L. Saminadayar, D.C. Glattli, Y. Jin, and B. Etienne. Phys. Rev. Lett., 76:2778, 1996.

    Article  Google Scholar 

  22. M. Esposito, U. Harbola, and S. Mukamel. Rev. Mod. Phys., 81:1665, 2009.

    Article  MathSciNet  Google Scholar 

  23. I. Klich and L. Levitov. Phys. Rev. Lett., 102:100502, 2009.

    Article  Google Scholar 

  24. B. Reulet, J. Senzier, and D.E. Prober. Phys. Rev. Lett., 91:196601, 2003.

    Article  Google Scholar 

  25. Y. Bomze, G. Gershon, D. Shovkun, L.S. Levitov, and M. Reznikov. Phys. Rev. Lett., 95:176601, 2005.

    Article  Google Scholar 

  26. D. Djukic and J.M. van Ruitenbeek. Shot noise measurements on a single molecule. Nano Letters, 6(4):789, 2006.

    Article  Google Scholar 

  27. S. Gustavsson, R. Leturcq, B. Simovic, R. Schleser, T. Ihn, P. Studerus, and K. Ensslin. Phys. Rev. Lett., 96:076605, 2006.

    Article  Google Scholar 

  28. A. Branschädel, E. Boulat, H. Saleur, and P. Schmitteckert. Numerical evaluation of shot noise using real time simulations. arXiv:1004.4784.

  29. A. Branschädel, E. Boulat, H. Saleur, and P. Schmitteckert. Shot noise in the self-dual interacting resonant level model. Phys. Rev. Lett., page n./a. (accepted for publication).

    Google Scholar 

  30. Dan Bohr and Peter Schmitteckert. The dark side of benzene: interference vs. interaction. (unpublished).

    Google Scholar 

  31. M. Büttiker, Y. Imry, and M.Ya. Azbel. Quantum oscillations in one-dimensional normal-metal rings. Phys. Rev. A, 30(4):1982, 2007.

    Article  Google Scholar 

  32. Y. Gefen, Y. Imry, and M.Ya. Azbel. Quantum oscillations and the Aharonov-Bohm effect for parallel resistors. Phys. Rev. Letters, 52(2):129, 2007.

    Article  Google Scholar 

  33. A.P. Dmitriev, I.V. Gornyi, V.Yu. Kachorovskii, and D.G. Polyakov. Aharonov-Bohm conductance through a single-channel quantum ring: Persistent-current blockade and zero-mode dephasing. Phys. Rev. Lett., 105:036402, 2010.

    Article  Google Scholar 

  34. Moshe Goldstein, Richard Berkovits, Yuval Gefen, and Hans A. Weidenmueller. Transmission phase of a quantum dot: Testing the role of population switching. Phys. Rev. B, 79(12):125309, 2009.

    Article  Google Scholar 

  35. Peter Schmitteckert and Ferdinand Evers. Exact ground state density-functional theory for impurity models coupled to external reservoirs and transport calculations. Phys. Rev. Lett., 100(8):086401, Feb 2008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Branschädel, A., Schmitteckert, P. (2011). Conductance and Noise Correlations of Correlated Nanostructures. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering '10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15748-6_13

Download citation

Publish with us

Policies and ethics