Skip to main content

Organic-Metal Interface: Adsorption of Cysteine on Au(110) from First Principles

  • Conference paper
  • 1869 Accesses

Abstract

We present ab initio studies of the adsorption of the amino acid cysteine on the Au(110) surface. We perform density functional theory calculations using the repeated-slab supercell method to investigate the molecule-surface interaction which is driven by two functional groups: the deprotonized thiolate head group and the amino group. The interaction of these functional groups with the surface is studied analyzing bonding site, bonding energy, charge redistribution, and changes in the density of states for single bond molecules registering to the surface via only one of the functional groups. For the Au-amino bond we find that positions close to the top-Au-site are energetically favorable, leading to strong bonds that are largely electrostatic in nature. The covalent Au-thiolate bond is strongest for a bonding position at bridge and off-bridge sites and the bonding energy is found to be very sensitive to changes in the bonding geometry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Nilsson and G.M. Petterson, Surf. Sci. Rep. 55, 49 (2004).

    Article  Google Scholar 

  2. H. Ishii, K. Sugiyama, I. Eisuke, and K. Seki, Adv. Mater. 11, 605 (1999).

    Article  Google Scholar 

  3. G. Heimel, L. Romaner, J.-L. Brédas, and E. Zojer, Phys. Rev. Lett. 96, 196806 (2006).

    Article  Google Scholar 

  4. H. Vásquez, Y.J. Dappe, J. Ortega, and F. Flores, J. Chem. Phys. 126, 144703 (2007).

    Article  Google Scholar 

  5. I.G. Hill, A. Rajagopal, A. Kahn, and Y. Hu, Appl. Phys. Lett. 73, 662 (1998).

    Article  Google Scholar 

  6. W.G. Schmidt, K. Seino, M. Preuss, A. Hermann, F. Ortmann, and F. Bechstedt, Appl. Phys. A 85, 387 (2006).

    Article  Google Scholar 

  7. C. Vericat, M.E. Vela, and R.C. Salvarezza, Phys. Chem. Chem. Phys. 7, 3258 (2005).

    Article  Google Scholar 

  8. V. De Renzi, R. Rousseau, D. Marchetto, R. Biagi, S. Scandolo, and U. del Pennino, Phys. Rev. Lett. 95, 046804 (2005).

    Article  Google Scholar 

  9. E. Rauls, S. Blankenburg, and W.G. Schmidt, Surf. Sci. 602, 2170 (2008).

    Article  Google Scholar 

  10. C. Joachim, J.K. Gimzewski, and A. Aviram, Nature 408, 541 (2000).

    Article  Google Scholar 

  11. H.B. Akkerman, P.W.M. Blom, D.M. de Leeuw, and B. de Boer, Nature 441, 69 (2006).

    Article  Google Scholar 

  12. C.P. Collier, E.W. Wong, M. Belohradsky, F.M. Raymo, J.F. Stoddart, P.J. Kuekes, R.S. Williams, and J.R. Heath, Science 285, 391 (1999).

    Article  Google Scholar 

  13. S.Y. Quek, L. Venkataraman, H.J. Choi, S.G. Louie, M.S. Hybertsen, and J.B. Neaton, Nano Lett. 7, 3477 (2007).

    Article  Google Scholar 

  14. R. LeParc, C.I. Smith, M.C. Cuquerella, R.L. Williams, D.G. Fernig, C. Edwards, D.S. Martin, and P. Weightman, Langmuir 22, 3413 (2006).

    Article  Google Scholar 

  15. A. Kühnle, T.R. Linderoth, B. Hammer, and F. Besenbacher, Nature 415, 891 (2002).

    Article  Google Scholar 

  16. A. Kühnle, L.M. Molina, T.R. Linderoth, B. Hammer, and F. Besenbacher, Phys. Rev. Lett. 93, 086101 (2004).

    Article  Google Scholar 

  17. A. Kühnle, T.R. Linderoth, and F. Besenbacher, J. Am. Chem. Soc. 128, 1076 (2005).

    Article  Google Scholar 

  18. A. Kühnle, T.R. Linderoth, and F. Besenbacher, J. Am. Chem. Soc. 125, 14680 (2003).

    Article  Google Scholar 

  19. R.R. Nazmutdinov, J.D. Zhang, T.T. Zinkicheva, I.R. Manyurov, and J. Ulstrup, Langmuir 22, 7556 (2006).

    Article  Google Scholar 

  20. R. Di Felice, A. Selloni, and E. Molinari, J. Phys. Chem. B 107, 1151 (2003).

    Article  Google Scholar 

  21. R. Di Felice and A. Selloni, J. Chem. Phys. 120, 4906 (2004).

    Article  Google Scholar 

  22. B. Höffling, F. Ortmann, K. Hannewald, and F. Bechstedt, Phys. Rev. B 81, 045407 (2010).

    Article  Google Scholar 

  23. B. Höffling, F. Ortmann, K. Hannewald, and F. Bechstedt, Phys. Stat. Solidi C 7, 149 (2010).

    Article  Google Scholar 

  24. G. Kresse and J. Furthmüller, Comp. Mater. Sci 6, 15 (1996).

    Article  Google Scholar 

  25. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  Google Scholar 

  26. J.P. Perdew, Electronic Structure of Solids ’91, p. 11, Akademie-Verlag, Berlin (1991).

    Google Scholar 

  27. J.P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

    Article  Google Scholar 

  28. R. Maul, M. Preuss, F. Ortmann, K. Hannewald, and F. Bechstedt, J. Phys. Chem. A 111, 4370 (2007).

    Article  Google Scholar 

  29. F. Ortmann, W.G. Schmidt, and F. Bechstedt, Phys. Rev. Lett. 95, 186101 (2005).

    Article  Google Scholar 

  30. F. Ortmann, W.G. Schmidt, and F. Bechstedt, Phys. Rev. B 73, 205101 (2006).

    Article  Google Scholar 

  31. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  Google Scholar 

  32. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  MathSciNet  Google Scholar 

  33. B. Höffling, F. Ortmann, K. Hannewald, and F. Bechstedt, in: W.E. Nagel, D.B. Kröner, and M.M. Resch, eds., High Performance Computing in Science and Engineering ’09, p. 53, Springer, Heidelberg (2009).

    Google Scholar 

  34. S. D’Agostino, L. Chiodo, F. Della Sala, R. Cingolani, and R. Rinaldi, Phys. Rev. B 75, 195444 (2007).

    Article  Google Scholar 

  35. Sargent-Welch, Table of Periodic Properties of the Elements, Sargent-Welch, Skokie (1980).

    Google Scholar 

  36. A. Bilić, J.R. Reimers, and N.S. Hush, J. Chem. Phys. 122, 094708 (2005).

    Article  Google Scholar 

  37. S. Blankenburg and W.G. Schmidt, Phys. Rev. Lett. 99, 196107 (2007).

    Article  Google Scholar 

  38. W.G. Aulbur, L. Jonson, and J.W. Wilkins, Solid State Phys. 54, 1 (2000).

    Article  Google Scholar 

  39. M. Preuss, W.G. Schmidt, and F. Bechstedt, Phys. Rev. Lett. 94, 236102 (2005).

    Article  Google Scholar 

  40. A. Bilić, J.R. Reimer, N.S. Hush, and J. Hafner, J. Chem. Phys. 116, 8981 (2002).

    Article  Google Scholar 

  41. R. Maul, F. Ortmann, M. Preuss, K. Hannewald, and F. Bechstedt, J. Comp. Chem. 28, 1817 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Höffling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Höffling, B., Ortmann, F., Hannewald, K., Bechstedt, F. (2011). Organic-Metal Interface: Adsorption of Cysteine on Au(110) from First Principles. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering '10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15748-6_9

Download citation

Publish with us

Policies and ethics