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Abstract. In this paper we present a novel method for adaptation
of a multi-layer perceptron neural network (MLP ANN). Nowadays,
the adaptation of the ANN is usually done as an incremental retrain-
ing either of a subset or the complete set of the ANN parameters. How-
ever, since sometimes the amount of the adaptation data is quite small,
there is a fundamental drawback of such approach – during retraining,
the network parameters can be easily overfitted to the new data. There
certainly are techniques that can help overcome this problem (early-
stopping, cross-validation), however application of such techniques leads
to more complex and possibly more data hungry training procedure.
The proposed method approaches the problem from a different perspec-
tive. We use the fact that in many cases we have an additional knowl-
edge about the problem. Such additional knowledge can be used to limit
the dimensionality of the adaptation problem.
We applied the proposed method on speaker adaptation of a phoneme
recognizer based on traps (Temporal Patterns) parameters. We ex-
ploited the fact that the employed traps parameters are constructed us-
ing log-outputs of mel-filter bank and by virtue of reformulating the first
layer weight matrix adaptation problem as a mel-filter bank output adap-
tation problem, we were able to significantly limit the number of free
variables. Adaptation using the proposed method resulted in a substan-
tial improvement of phoneme recognizer accuracy.

1 Introduction

Nowadays, the MLP ANN are increasingly used in the speech recognition field.
Their uses include applications in speech recognition tasks, discriminative fea-
tures production, language modeling, etc. The main characteristic is that the net-
works have very large number of parameters (hundreds of thousands or millions).

Given the size of the network, the training and retraining phases are com-
putationally demanding and the amount of data needed during these phases is
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significant. This is not necessarily a problem during the training phase. How-
ever, there are situations, where the possibility of fast retraining on fresh data
is beneficial. Moreover, the amount of the fresh data is usually quite small.

The limited volume of available data is an obstacle that renders the speaker
adaptation and speaker adaptive training paradigms common in HMM ASR field
very difficult to implement. The main issue is in the disbalance between the lim-
ited amount of available adaptation data (several hundred feature vectors) and
large number of free variables. The common training algorithms under these
conditions tend to heavily overtrain the network. This problem can be circum-
vented to some extend by employing cross-validation, early stopping and similar
approaches, but it complicates the training process and increases the demands
on amount of data.

In this paper we present a general method that enables adaptation of the weight
matrix of the first layer of the ANN even if only a small amount of data is avail-
able. This is made possible by limiting the number of adaptation parameters. In
many cases we can use an additional knowledge about the structure of feature
vector, nature of the task, etc. to enforce an inner structure of the adaptation
matrix and thus limit the number of free variables. Doing so enables substantial
performance improvements through adaptation even on small data sets.

2 Multi-layer perceptron artificial neural network

Any forward operation of a L-layer MLP ANN can be described as follows

a0a0a0(k) = xxx(k)WWW 0 (1)

yyyi(k) = gi(aaai−1(k))

aaai(k) = yyyi(k)WWW i

i = 1, . . . , L− 1 (2)

zzz(k) = gL(aaaL−1(k)) (3)

where the Di×Di+1 matricesWWW i, i = 0, . . . , L−1, are called weight matrices and
the vector functions gi, i = 1, . . . , L−1, are called transfer functions. The weight
matrices are trained to minimize a loss functionEEE that is usually of the following
form

EEE(ZZZ,TTT ) =
K
∑

k=0

E(zzz(k), ttt(k)) (4)

where K is the total number of training examples, the K × DL matrix ZZZ rep-
resents network outputs and the K ×DL matrix TTT represents the target values
(teacher data). The pair of k-th rows of the matrices ZZZ and TTT represents the k-th
output zzz(k) and the target vector ttt(k).

The most usual choices of function E are EMSE (i.e. mean square error) or
cross-entropy EXENT. See [1] for more info.

For the training there is a wide variety of methods to use. The most common
one is the backpropagation and its modifications.



3 Adaptation of the neural network

The most straightforward approach is just to treat the adaptation data just like
plain training data and the original set of weight matrices Wi, i = 0, . . . , Q as
a “good initialization”. Then adaptation of the old ANN means simply retraining
the old ANN on new data.

We propose another approach, inspired by the weight-sharing approach used
occasionally to improve generalization of ANN. Let’s begin with expressing
the new weight matrix WWW 0 as

WWW 0 = ΓΓΓWWW ′

0 (5)

where WWW ′

0 represents the old weight matrix and ΓΓΓ is an adaptation matrix.
The overtraining phenomena during the adaptation phase can be reduced or
overcomed by virtue of enforcing an inner structure of the adaptation matrix
ΓΓΓ , thus limiting the number of free variables that must be determined.

Suppose the D0 by D0 adaptation matrix ΓΓΓ . Because of its assumed inner
structure, we can express the matrix as a function of a S-dimensional vector
γγγ = [γ1, . . . , γS ].

ΓΓΓ = ΓΓΓ (γγγ) (6)

or, expressed alternatively

ΓΓΓ =











Γ11(γγγ) Γ12(γγγ) . . . Γ1D0
(γγγ)

Γ21(γγγ) Γ22(γγγ) . . . Γ2D0
(γγγ)

...
...

. . .
...

ΓD01(γγγ) ΓD02(γγγ) . . . ΓD0D0
(γγγ)











(7)

Therefore, instead of computation of D0 ×D0 parameters we have to determine
S parameters. Note that this is without any loss of generality, since S may be
even bigger than D0 ×D0.

We want to minimize the criterion (4). Attempt to minimize it directly leads
to application of either gradient-less optimization method (i.e. Powell’s algo-
rithm, Nelder-Mead simplex algorithm), or gradient method where gradient is
replaced by its approximation. Both these approaches are usually a last-resort
solution, because of their slow convergence and computation demands. Luckily,
the expressions of gradient computations are quite easy to obtain.

Applying the matrix derivative chain rule for ∂ΓΓΓ
∂γγγ

we get

∂E

∂γi
= Tr

[

(

∂E

∂ΓΓΓ

)T
∂ΓΓΓ

∂γi

]

for i = 1, . . . , S (8)

where the computation of the expression ∂ΓΓΓ
∂γi

is straightforward, since by defini-

tion the Γkl(γγγ) is known for every element Γkl of the matrix Γ .
The expression ∂E

∂ΓΓΓ
can be determined by a similar approach as used for

backpropagation. Using the equations (5) and (1) – (3) to compute ∂E(k)

∂Γ̃ΓΓ
and



applying the derivation chain rule, we arrive to the following expression

∂E(k)

∂ΓΓΓ
=

∂E

∂zzz

∂zzz

∂aaaL−1

1
∏

i=L−1

(

WWWT
i

∂yyyi

∂aaai−1

)

W ′W ′W ′T
0 xxx(k) (9)

The derivatives ∂yyyi

∂aaai−1

and ∂zzz
∂aL−1aL−1aL−1

are Di ×Di (DL ×DL respectively) matrices
∂yyyi

∂aaai−1

= (σkl), where the element σkl at coordinates (k, l) is given by

σkl = yiδkl − ykyl (10)

in case when gi is a softmax transfer function and

σkl = δklyk(1− yl) (11)

in case when gi is a sigmoidal transfer function.
For the error function expression ∂E

∂zzz
the following expressions holds

∂EXENT

∂zij
= −δij

ti

zj
(12)

∂EMSE

∂zij
= ti − zj (13)

4 Phoneme recognition and traps parametrization

The used traps feature vectors are constructed from the log-output of mel-filter
bank. The process of the construction is described in detail in [2], assume here
for the sake of simplicity the following approach. The process is depicted on
figure (1).
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Fig. 1. A scheme of traps phoneme recognizer

Assume for the given k-th frame of speech, the mean-normalized vector of
log-outputs from the mel-filter bank is ccc(k) = [c1(k), c2(k), . . . , cN (k)], where N

is the number of frequency bins.
The vector of D consecutive outputs of the p-th filter bank cccp(k) = [cp(k −

D + 1), . . . , cp(k)], p = 1, . . . , N is then decorrelated by a D × NΨ , NΨ ≤ D

matrix Ψ

c̃ccp(k) = cccp(k) · Ψ p = 1, . . . , N (14)



Usually, the Ψ matrix is a discrete cosine transform matrix. The vectors
c̃ccp(k), p = 1, . . . , N , are merged together, yielding the traps vector c̃cc(k) of
size M , M = NΨN , c̃cc(k) = [c̃cc1(k), . . . , c̃ccN (k)]. The vector c̃cc(k) is then used as
the input xxx(k) in expression 1. Therefore, obviously, D0 = M .

The traps feature vectors are usually quite long, since they span several
hundreds of milliseconds of the original acoustic track. The features are fed into
the ANN trained to produce phoneme posteriori probabilities. The ANN has two-
layer design, with a sigmoid transfer function in the hidden layer and a softmax
transfer function in the output layer.

5 Speaker adaptation of ANN

There is a significant variability among speakers. Among other reasons, the cause
of variability is a different length of the vocal tract. The different length of
the vocal tract manifests itself in shift of the formant center frequencies. There
is a variety of methods that deal with this problem.

One of the simplest methods is called VTLN (Vocal Tract Length Normal-
ization). VTLN applied on mel filters compensate the pitch shift by warping
of the frequency spectrum. However, it has been shown (see [3] and [4]) that
VTLN can be represented as a linear transform of the original, unnormalized
coefficients. Therefore, the linear transform can be used for speaker normaliza-
tion, even without linking it directly to VTLN. The normalized (“adapted”)
frequency bin ci(k) (using the notation from previous section) is obtained from
the old (“unadapted”) frequency bin c′i(k)

ci(k) =

N
∑

j=1

γijc
′

j(k) i = 1, . . . , N (15)

and the coefficients γij must be determined during the speaker normalization
phase of the training process. As can be seen, the coefficients γij form a N ×N

matrix γγγ

γγγ =







γ11 γ12 . . . γ1N
...

...
. . .

...
γN1 γN2 . . . γNN






(16)

Depending on the amount of adaptation data, we can limit the number of co-
efficients, starting from full matrix, going through various banded matrices and
ending with a diagonal matrix.

From the description of simplified traps construction process we can infer
the structure of adaptation matrix ΓΓΓ = ΓΓΓ (γγγ). The resulting matrix ΓΓΓ will have
a remarkably similar structure

ΓΓΓ =











γγγ11 γγγ12 . . . γγγ1NΨ

γγγ21 γγγ22 . . . γγγ2NΨ

...
...

. . .
...

γγγNΨ1 γγγNΨ2 . . . γγγNΨNΨ











(17)



however the matrix element γγγik represents a N ×N diagonal matrix

γγγik = γikIII (18)

where III is an N ×N identity matrix.
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Fig. 2. A scheme of possible ANN adaptation

The transformation of the vector ccc(k) by matrix γγγ is therefore equivalent
to the transformation of the traps vector c̃cc(k) by a matrix Γ (γγγ)Γ (γγγ)Γ (γγγ). Different
approaches may be suitable in different cases (see fig. 2)

– Mel-filter bank fixed and ANN weights fixed – use matrix ΓΓΓ to transform
the traps features c̃cc(k)

– Mel-filter bank fixed and traps fixed – use matrix ΓΓΓ to transform WWW 0

– traps fixed and ANN weights fixed – use matrix γγγ to transform ccc(k)

6 Experiments

The experiments were done on the telephone speech corpus SpeechDat-East.
The corpus contains utterances from about 1000 speakers. For training of the ANN,
we used only the phonetically balanced sentences (ID S0-S9, X0-1). Note that
some speakers are not represented by a complete set of the 12 phonetically bal-
anced sentences. The ANN topology was 330 × 1500 × 111. The dimension of
output layer reflects the phonetic alphabet consisted of 37 phonemes and each
phoneme was modeled as a three state unit.

R = 0 R = 10 R = 100 R = 500 R = 1000

band all 75.30 75.30 75.54 75.92 75.87
band nosil 76.54 76.45 76.30 76.11 75.63
diag all 74.92 75.06 74.92 76.02 75.73
diag nosil 75.87 76.07 75.92 75.49 75.49
diag vocal 75.87 75.87 75.83 76.26 76.07

Table 1. Recognizer accuracy (Acc), evaluated including non-speech events, the base-
line value is 75.63, R denotes different choices of the regularization constant

Since the speaker independent network was trained on the complete training
part of the corpus, we decided to split the testing set. This was to ensure validity



of our experiments. From the testing data, we selected only 97 speakers that
were represented by all 12 sentences. For each speaker, we divided randomly
the appropriate set to a set of 10 utterances and a set of 2 utterances. The sets
of 10 sentences were used as the adaptation data and the sets of 2 sentences as
the test data.

The audio recordings are about 6–8 seconds long; however the utterances
themselves are just about 2–5 seconds long. Taking only the actual speech into
account, there was approximately 40 seconds of speech data available to adapt
the neural network on. We experimented with different variants of adaptation
matrix structure and with different choices of which phoneme classes the adap-
tation should be performed on.

7 Regularization

We studied the influence of regularization as well. To compute the regularization
cost we used the following expression

Er = |γγγ − III| (19)

Since the optimal ratio between the training error and the regularization is not
known, the Er is combined with the expression (5) in the following way

EEE(ZZZ,TTT ,γγγ) =

K
∑

k=0

E(zzz(k), ttt(k)) +R · Er(γγγ) (20)

where the constantR is called a regularization constant and is usually determined
by choosing its value from a predefined set of weights.

7.1 Training process

Because we wanted to test the potential of the introduced approach, we used
supervised adaptation of the network parameters. As the teacher data, we used
the phone forced alignment of the reference transcript by an HMM alignment
tool. After every update of weights, we performed another alignment run. We
limited the number of update-realignment cycles to 4.

8 Results

The experiment results are shown in tables Table 2 and Table 1. The names
of columns represent the individual combinations of the shape of the matrix γγγ

(“diag” represents diagonal matrix, “band” represents tridiagonal matrix) and
class of phonemes the adaptation has been performed on (“all” represent adap-
tation on all phoneme classes, “nosil” represents adaptation on all phonemes
except silence and non-speech event classes, “vocal” represents adaptation only
on voiced phonemes).



Since the neural network was done on the original traps, we determined
the matrix ΓΓΓ (γγγ) first. The traps are constructed from outputs of 15 mel-
filters. This means that instead of adapting of 330 × 1500 = 500k free param-
eters, we used only 15 free parameters with the diagonal setup, 43 parameters
with the triagonal setup or 225 parameters for the full matrix γγγ setup. For

R = 0 R = 10 R = 100 R = 500 R = 1000

band all 73.20 73.11 73.32 73.66 73.45
band nosil 74.04 73.78 73.87 73.49 73.32
diag all 72.73 72.94 72.90 73.62 73.45
diag nosil 73.32 73.49 73.24 72.99 72.94
diag vocal 73.41 73.28 73.49 73.83 73.57

Table 2. Recognizer accuracy (Acc), evaluated excluding non-speech events, the base-
line value is 73.07, R denotes different choices of the regularization constant

the best combination of regularization constant and adaptation setup, we per-
formed the Wilcoxon signed rank test under the null hypothesis that median
of the difference between the unadapted and adapted networks is zero. The p-
value was p = 0.003, which is sufficient to reject the null hypothesis at the level
α = 0.003.

9 Conclusion

In this paper we devised a novel approach to a MLP ANN adaptation. We ap-
plied the presented method on speaker-based adaptation of a phoneme recognizer
based on MLP ANN. Adaptation of this kind of networks on small amount of
data is generally a difficult task because of quite large number of network param-
eters. Application of the method lead to a significant reduction of the number
of free variables, thus alleviating the overtraining problem. On approximately
40 seconds of speaker data we achieved absolute improvement of approximately
1% (4% relative reduction of phone error rate).
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