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Abstract. This paper presents a simple local medium access control
protocol, called JADE, for multi-hop wireless networks with a single chan-
nel that is provably robust against adaptive adversarial jamming. The
wireless network is modeled as a unit disk graph on a set of nodes dis-
tributed arbitrarily in the plane. In addition to these nodes, there are
adversarial jammers that know the protocol and its entire history and
that are allowed to jam the wireless channel at any node for an arbi-
trary (1 — €)-fraction of the time steps, where 0 < € < 1 is an arbitrary
constant. We assume that the nodes cannot distinguish between jammed
transmissions and collisions of regular messages. Nevertheless, we show
that JADE achieves an asymptotically optimal throughput if there is a
sufficiently dense distribution of nodes.

1 Introduction

The problem of coordinating the access to a shared medium is a central challenge
in wireless networks. In order to solve this problem, a proper medium access
control (MAC) protocol is needed. Ideally, such a protocol should not only be able
to use the wireless medium as effectively as possible, but it should also be robust
against attacks. Unfortunately, most of the MAC protocols today can be easily
attacked. A particularly critical class of attacks are jamming attacks (i.e., denial-
of-service attacks on the broadcast medium). Jamming attacks are typically easy
to implement as the attacker does not need any special hardware. Attacks of
this kind usually aim at the physical layer and are realized by means of a high
transmission power signal that corrupts a communication link or an area, but
they may also occur at the MAC layer, where an adversary may either corrupt
control packets or reserve the channel for the maximum allowable number of
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slots so that other nodes experience low throughput by not being able to access
the channel. In this paper we focus on jamming attacks at the physical layer,
that is, the interference caused by the jammer will not allow the nodes to receive
messages. The fundamental question that we are investigating is: Is there a MAC
protocol such that for any physical-layer jamming strategy, the protocol will still
be able to achieve an asymptotically optimal throughput for the non-jammed time
steps? Such a protocol would force the jammer to jam all the time in order to
prevent any successful message transmissions. Finding such a MAC protocol
is not a trivial problem. In fact, the widely used IEEE 802.11 MAC protocol
already fails to deliver any messages for very simple oblivious jammers that
jam only a small fraction of the time steps [3]. On the positive side, Awerbuch
et al. [2] have demonstrated that there are MAC protocols which are provably
robust against even massive adaptive jamming, but their results only hold for
single-hop wireless networks with a single jammer, that is, all nodes experience
the same jamming sequence.

In this paper, we significantly extend the results in [2]. We present a MAC
protocol called JADE (a short form of “jamming defense”) that can achieve a
constant fraction of the best possible throughput for a large class of jamming
strategies in a large class of multi-hop networks where transmissions and inter-
ference can be modeled using unit-disk graphs. These jamming strategies include
jamming patterns that can be completely different from node to node. It turns
out that while JADE differs only slightly from the MAC protocol of [2], the
proof techniques needed for the multi-hop setting significantly differ from the
techniques in [2].

1.1 Model

We consider the problem of designing a robust MAC protocol for multi-hop
wireless networks with a single wireless channel. The wireless network is modeled
as a unit disk graph (UDG) G = (V, E) where V represents a set of n = |V| honest
and reliable nodes and two nodes u,v € V are within each other’s transmission
range, i.e., {u,v} € E, if and only if their (normalized) distance is at most 1.
We assume that time proceeds in synchronous time steps called rounds. In each
round, a node may either transmit a message or sense the channel, but it cannot
do both. A node which is sensing the channel may either (7) sense an idle channel
(if no other node in its transmission range is transmitting at that round and its
channel is not jammed), (i¢) sense a busy channel (if two or more nodes in its
transmission range transmit at that round or its channel is jammed), or (ii%)
receive a packet (if exactly one node in its transmission range transmits at that
round and its channel is not jammed).

In addition to these nodes there is an adversary (who may control any number
of jamming devices). We allow the adversary to know the protocol and its entire
history and to use this knowledge in order to jam the wireless channel at will
at any round (i.e, the adversary is adaptive). However, like in [2], the adversary
has to make a jamming decision before it knows the actions of the nodes at the
current round. The adversary can jam the nodes individually at will, as long
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as for every node v, at most a (1 — €)-fraction of its rounds is jammed, where
€ > 0 can be an arbitrarily small constant. That is, v has the chance to receive
a message in at least an e-fraction of the rounds. More formally, an adversary is
called (T,1 — €)-bounded for some T' € N and 0 < € < 1, if for any time window
of size w > T and at any node v, the adversary can jam at most (1 — €)w of the
w rounds at v.

Given a node v and a time interval I, we define f,(I) as the number of time
steps in [ that are non-jammed at v and s, (I) as the number of time steps in I in
which v successfully receives a message. A MAC protocol is called c-competitive
against some (7,1 — ¢)-bounded adversary if, for any time interval I with |I| >
K for a sufficiently large K (that may depend on T' and n), > oy su(I) >
c- > pey fo(I). In other words, a c-competitive MAC protocol can achieve at
least a c-fraction of the best possible throughput.

Our goal is to design a symmetric local-control MAC protocol (i.e., there is
no central authority controlling the nodes, and all the nodes are executing the
same protocol) that has a constant-competitive throughput against any (7', 1—¢)-
bounded adversary in any multi-hop network that can be modeled as a UDG. In
order to obtain a more refined picture of the competitiveness of our protocol, we
will also investigate so-called k-uniform adversaries. An adversary is k-uniform
if the node set V' can be partitioned into k subsets so that the jamming sequence
is the same within each subset. In other words, we require that at all times, the
nodes in a subset are either all jammed or all non-jammed. Thus, a 1-uniform
jammer jams either everybody or nobody in a round whereas an m-uniform
jammer can jam the nodes individually at will.

In this paper, we will say that a claim holds with high probability (w.h.p.) iff
it holds with probability at least 1 — 1/n¢ for any constant ¢ > 1; it holds with
moderate probability (w.m.p.) iff it holds with probability at least 1 —1/(logn)©
for any constant ¢ > 1.

1.2 Related Work

Due to the topic’s importance, wireless network jamming has been extensively
studied in the applied research fields [1I51612226/2728303113738/39/40], both
from the attacker’s perspective [6126/27/40] as well as from the defender’s per-
spective [TI56I2728J30138/40]—also in multi-hop settings (e.g. [2T3242/J43]j44]).

Traditionally, jamming defense mechanisms operate on the physical layer
[28/30136]. Mechanisms have been designed to avoid jamming as well as detect
jamming. Spread spectrum technology has been shown to be very effective to
avoid jamming as with widely spread signals, it becomes harder to detect the
start of a packet quickly enough in order to jam it. Unfortunately, protocols
such as IEEE 802.11b use relatively narrow spreading [20], and some other
IEEE 802.11 variants spread signals by even smaller factors [5]. Therefore, a
jammer that simultaneously blocks a small number of frequencies renders spread
spectrum techniques useless in this case. As jamming strategies can come in
many different flavors, detecting jamming activities by simple methods based on
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signal strength, carrier sensing, or packet delivery ratios has turned out to be
quite difficult [27].

Recent work has also studied MAC layer strategies against jamming, including
coding strategies [6], channel surfing and spatial retreat [141], or mechanisms
to hide messages from a jammer, evade its search, and reduce the impact of
corrupted messages [38]. Unfortunately, these methods do not help against an
adaptive jammer with full information about the history of the protocol, like the
one considered in our work.

In the theory community, work on MAC protocols has mostly focused on
efficiency. Many of these protocols are random backoff or tournament-based pro-
tocols [ITIT7IT82534] that do not take jamming activity into account and, in
fact, are not robust against it (see [2] for more details). The same also holds for
many MAC protocols that have been designed in the context of broadcasting [g]
and clustering [24]. Also some work on jamming is known (e.g., [9 for a short
overview). There are two basic approaches in the literature. The first assumes
randomly corrupted messages (e.g. [33]), which is much easier to handle than
adaptive adversarial jamming [3]. The second line of work either bounds the
number of messages that the adversary can transmit or disrupt with a limited
energy budget (e.g. [T6l23]) or bounds the number of channels the adversary can
jam (e.g. [TOMTIT2IT3ITA/1529]).

The protocols in [I6I23] can tackle adversarial jamming at both the MAC
and network layers, where the adversary may not only be jamming the channel
but also introducing malicious (fake) messages (possibly with address spoofing).
However, they depend on the fact that the adversarial jamming budget is finite,
so it is not clear whether the protocols would work under heavy continuous
jamming. (The result in [I6] seems to imply that a jamming rate of 1/2 is the
limit whereas the handshaking mechanisms in [23] seem to require an even lower
jamming rate.)

In the multi-channel version of the problem introduced in the theory com-
munity by Dolev [I3] and also studied in [TOTIIT2IT3IT4T529], a node can only
access one channel at a time, which results in protocols with a fairly large run-
time (which can be exponential for deterministic protocols [11I14] and at least
quadratic in the number of jammed channels for randomized protocols [12/29]
if the adversary can jam almost all channels at a time). Recent work [10] also
focuses on the wireless synchronization problem which requires devices to be
activated at different times on a congested single-hop radio network to synchro-
nize their round numbering while an adversary can disrupt a certain number of
frequencies per round. Gilbert et al. [I5] study robust information exchange in
single-hop networks.

Our work is motivated by the work in [3] and [2]. In [3] it is shown that an
adaptive jammer can dramatically reduce the throughput of the standard MAC
protocol used in IEEE 802.11 with only limited energy cost on the adversary
side. Awerbuch et al. |2] initiated the study of throughput-competitive MAC
protocols under continuously running, adaptive jammers, but they only consider
single-hop wireless networks. We go one step further by considering multi-hop
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networks where different nodes can have different channel states at a time, e.g.,
a transmission may be received only by a fraction of the nodes. It turns out
that while the MAC protocol of [2] can be adopted to the multi-hop setting
with a small modification, the proof techniques cannot. We are not aware of any
other theoretical work on MAC protocols for multi-hop networks with provable
performance against adaptive jamming.

1.3 Owur Contributions

In this paper, we present a robust MAC protocol called JADE. JADE is a fairly
simple protocol: it is based on a very small set of assumptions and rules and has
a minimal storage overhead. In fact, in JADE every node just stores a constant
number of parameters, among them a fixed parameter v that should be chosen
so that the following main theorem holds:

Theorem 1. When running JADE for at least 2((T logn)/e + (logn)t/(ve)?)
time steps, JADE has a constant competitive throughput for any (T, 1—e¢)-bounded
adversary and any UDG w.h.p. as long as v = O(1/(log T + loglogn)) and (a)
the adversary is 1-uniform and the UDG is connected, or (b) there are at least
2/e nodes within the transmission range of every node.

Note that in practice, log T" and loglogn are rather small so that our condition
on vy is not too restrictive. Also, a conservative estimate on logT" and loglogn
would leave room for a superpolynomial change in n and a polynomial change
in T over time.

On the other hand, we can also show the following result demonstrating that
Theorem [ essentially captures all the scenarios (within our notation) under
which JADE can have a constant competitive throughput.

Theorem 2. If (a) the UDG is not connected, or (b) the adversary is allowed
to be 2-uniform and there are nodes with o(1/€) nodes within their transmission
range, then there are cases in which JADE is not constant competitive for any
constant ¢ independent of e.

Certainly, no MAC protocol can guarantee a constant competitive throughput
if the UDG is not connected. However, it is still open whether there are sim-
ple MAC protocols that are constant competitive under non-uniform jamming
strategies even if there are o(1/¢) nodes within the transmission range of a node.

2 Description of JADE

This section first gives a short motivation for our algorithmic approach and then
presents the JADE protocol in detail.

2.1 Intuition

The intuition behind our MAC protocol is simple: in each round, each node
u tries to send a message with probability p, with p, < p for some small
constant 0 < p < 1. Consider the unit disk D(u) around node u consisting of
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w’s neighboring nodes as well as u[] Moreover, let N(u) = D(u) \ {u} and
p= ZUGN(H) Py- Suppose that u is sensing the channel. Let ¢y be the probability
that the channel is idle at u and let ¢; be the probability that exactly one
node in N(u) is sending a message. It holds that qo = J[,en () (1 — pv) and

1= ZvEN(u) Dy HwEN(u)\{v}(l — pw)- Hence,

@ < Z)pv% II (1—pw)=i10f;, an> > o [[ 0-pu)=a0p

vEN (u p weN (u) vEN (u) weN (u)

Thus we have the following lemma, which has also been derived in [2] for the
single-hop case.

Lemma 1. qo-p < q1 < %5 - p.

By Lemmal[ll if a node v observes that the number of rounds in which the channel
is idle is essentially equal to the number of rounds in which exactly one message
is sent, then p = ZveN(v) Dy 18 likely to be around 1 (if p is a sufficiently small
constant), which would be ideal. Otherwise, the nodes know that they need to
adapt their probabilities. Thus, if we had sufficiently many cases in which an idle
channel or exactly one message transmission is observed (which is the case if the
adversary does not heavily jam the channel and p is not too large), then one can
adapt the probabilities p,, just based on these two events and ignore all cases in
which the wireless channel is blocked, either because the adversary is jamming
it or because at least two messages interfere with each other (see also [19] for
a similar conclusion). Unfortunately, p can be very high for some reason, which
requires a more sophisticated strategy for adjusting the access probabilities.

2.2 Protocol Description

In JADE, each node v maintains a probability value p,, a threshold T, and a
counter c¢,. The parameters p,y > 0 in the protocol are fixed and the same for
every node. p may be set to any constant value so that 0 < p < 1/24, and ~
should be small enough so that the condition in Theorem [Iis met.

Initially, every node v sets T, := 1, ¢, := 1 and p, := p. Afterwards, the
JADE protocol works in synchronized rounds. In every round, each node v
decides with probability p, to send a message. If it decides not to send a
message, it checks the following two conditions:

— If v senses an idle channel, then p, := min{(1 + v)p,, p}.
— If v successfully receives a message, then p, := (1 + ) 'p, and T, :=
max{T, —1,1}.

! In this paper, disks (and later sectors) will refer both to 2-dimensional areas in the
plane as well as to the set of nodes in the respective areas. The exact meaning will
become clear in the specific context.
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Afterwards, v sets ¢, := ¢, + 1. If ¢, > T, then it does the following:
v sets ¢, := 1, and if there was no round among the past T, rounds in

which v sensed a successful message transmission or an idle channel, then
py = (1 +7)'p, and T, := min{T, + 1,2Y/4N} .

As we will see in the upcoming section, the concept of using a multiplicative-
increase-multiplicative-decrease mechanism for p, and an additive-increase-
additive-decrease mechanism for T, as well as the slight modifications of the
protocol in [2], marked in italic above, are crucial for JADE to work.

3 Analysis of JADE

In contrast the description of JADE, its stochastic analysis is rather involved as it
requires to shed light onto the complex interplay of the nodes all following their
randomized protocol in a highly dependent manner. We first prove Theorem [
(Sections Bl and B2) and then prove Theorem [2] (Section B3]). In order to show
the theorems, we will frequently use the following variant of the Chernoff bounds
[2135].

Lemma 2. Consider any set of binary random variables X1, ..., X,,. Suppose
that there are values p1, . ..,pn € [0,1] with E[[[;c g Xi] < [[;cgpi for every set
S C{l,...,n}. Then it holds for X =% | X; and p =, p; and any 6 >0

that
§ 2

m
€ 5%
PX>0+0u < —"— < e 2+5/3)
x> ol < () <o
If, on the other hand, it holds that E[[[,cq Xi] > [l;cgpi for every set S C
{1,...,n}, then it holds for any 0 < 6 < 1 that

ed . 2
PX <(1-0)u) < ———] <eoW2
X< -om < (oges) <o
Throughout the section we assume that v = O(1/(log T +loglogn)) is sufficiently
small.

3.1 Proof of Theorem [1]

We first look at a slightly weaker form of adversary. We say a round ¢ is open for
a node v if v and at least one other node in its neighborhood are non-jammed
(which implies that v’s neighborhood is non-empty). An adversary is weakly
(T, 1 — €)-bounded for some T' € N and 0 < € < 1 if the adversary is (T,1 — ¢€)-
bounded and in addition to this, at least a constant fraction of the non-jammed
rounds at each node are open in every time interval of size w > T'.

Theorem 3. When running JADE for Q([T + (log® n)/(v2€)] - (logn)/€) rounds
it holds w.h.p. that JADE is constant competitive for any weakly (T, 1—e¢)-bounded
adversary.
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Proof. First, we focus on a time frame F consisting of alogn/e subframes of
size f = a[T + (log®n)/(v2€)] each, where f is a multiple of 7" and « is a
sufficiently large constant. The proof needs the following three lemmas. The first
one is identical to Claim 2.5 in [2]. It is true because only successful message
transmissions reduce T,.

Lemma 3. If in a time interval I the number of rounds in which a node u
successfully receives a message is at most r, then u increases T, in at most
r 4+ +/2|I| rounds in I.

The second lemma holds for arbitrary (not just weakly) (T, 1 — €)-bounded ad-
versaries and will be shown in Section

Lemma 4. For every node u, 3, p(,) Pv = O(1) for at least a (1—€f)-fraction
of the rounds in time frame F, w.h.p., where the constant 3 > 0 can be made
arbitrarily small.

The third lemma just follows from some simple geometric argument.

Lemma 5. A disk of radius 2 can be cut into at most 20 regions so that the
distance between any two points in a region is at most 1.

Consider some fixed node u. Let J C F be the set of all non-jammed open
rounds at v in time frame F' (which are a constant fraction of the non-jammed
rounds at u because we have a weakly (7,1 — ¢)-bounded adversary). Let p be
a constant satisfying Lemmal (i.e., 3°, ¢ p(y) Pw < p). Define DD(u) to be the
disk of radius 2 around u (i.e., it has twice the radius of D(u)). Cut DD(u)
into 20 regions R, ..., Ry satisfying Lemma[5] and let v; be any node in region
R; (if such a node exists), where v; = u if u € R;. According to Lemma [ it
holds for each 4 that at least a (1 — ¢’/20)-fraction of the rounds in F' satisfy
> weD(w;) Pw < p for any constant § > 0, w.h.p. Thus, at least a (1 —€f")-
fraction of the rounds in F satisfy ) . D(vi) Pw <P for every i for any constant
8" >0, w.h.p. As D(v) € DD(u) for all v € D(u) and u has at least ¢|F| non-
jammed rounds in F', we get the following lemma, which also holds for arbitrary
(T, 1 — €)-bounded adversaries:

Lemma 6. At least a (1—3)-fraction of the rounds in J satisfy ZveD(u) Do < p
and ZweD(v) pw = O(p) for all nodes v € D(u) for any constant 5 > 0, w.h.p.

Let us call these rounds good. Since the probability that u senses the channel is
at least 1—p and the probability that the channel at u is idle for ), D(uy Pw <P
is equal to [T,cnpy (1 = Po) = [enq €27 = €727, u senses an idle channel
for at least (1—p)(1—3)|J|e~ 2P > 23|.J| many rounds in J on expectation if 3 is
sufficiently small. This also holds w.h.p. when using the Chernoff bounds under
the condition that at least (1 — 3)|J| rounds in F' are good (which also holds
w.h.p.). Let k be the number of times u receives a message in F'. We distinguish
between two cases.
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Case 1: k > | J|/6. Then JADE is constant competitive for u and we are done.

Case 2: k < f3|J|/6. Then we know from Lemma [ that p,, is decreased at most
BlJ1/6 + /2| F| times in F' due to ¢, > T,,. In addition to this, p, is decreased
at most 3|J]/6 times in F' due to a received message. On the other hand, p,
is increased at least 23|.J| times in J (if possible) due to an idle channel w.h.p.
Also, we know from the JADE protocol that at the beginning of F, p, = p.
Hence, there must be at least 5(2 —1/6 — 1/6)|J| — +/2|F| > (3/2)8|J| rounds
in J w.h.p. at which p, = p. As there are at least (1 — 3)|J| good rounds in
J (w.h.p.), there are at least 8|J|/2 good rounds in J w.h.p. in which p, = p.
For these good rounds, u has a constant probability to transmit a message and
every node v € D(u) has a constant probability of receiving it, so u successfully
transmits ©(|.J|) messages to at least one of its non-jammed neighbors in F (on
expectation and also w.h.p.).

If we charge 1/2 of each successfully transmitted message to the sender and
1/2 to the receiver, then a constant competitive throughput can be identified for
every node in both cases above, so JADE is constant competitive in F'.

It remains to show that Theorem [3 achieves constant competitiveness for any
time interval exceeding |F|. First, note that all the proofs are valid as long as
v < 1/[c(logT + loglogn)] for a constant ¢ > 2, so we can increase T and
thereby also |F| as long as this inequality holds. So w.l.0.g. we may assume that
v =1/[2(log T 4loglogn)]. In this case, 2'/(*7) < | /]F|, so our rule of increasing
T, in JADE implies that T, < \/m at any time, which is crucial for Lemma [
to hold for a time frame starting at any time. This allows us to extend the
competitive throughput result to any sequence of time frames, which completes
the proof of Theorem [3| a

Now, let us consider the two cases of Theorem [Il Recall that we allow here any
(T,1 — €)-bounded adversary and not just a weakly bounded.

Case 1: the adversary is 1-uniform and the UDG is connected. In this
case, every node has a non-empty neighborhood and therefore all non-jammed
rounds of the nodes are open. Hence, the conditions on a weakly (7,1 — €)-
bounded adversary are satisfied. So Theorem [ applies, which completes the
proof of Theorem [ a).

Case 2: |D(v)| > 2/€ for all v € V. Consider some fixed time interval I
with || being a multiple of T'. For every node v € D(u) let f, be the number
of non-jammed rounds at v in I and o, be the number of open rounds at v in
I. Let J be the set of rounds in I with at most one non-jammed node. Suppose
that |J| > (1 — €/2)|I]. Then every node in D(u) must have more than (e/2)|1]
of its non-jammed rounds in J. As these non-jammed rounds must be serialized
in J to satisfy our requirement on J, it holds that [J| > > cp,)(e/2)[I] =
(2/€)-(e/2)|I| = |I|. Since this is impossible, it must hold that |J| < (1—¢€/2)|I].

Thus, Z’UGD(U) 0y 2 (ZUGD(U) fo) — |J| > (1/2) Z'[}GD(u) Jv because
2vep) fo = (2/€) - €lI| = 2|I|. Let D'(u) be the set of nodes v € D(u)
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with o, > f,/4. That is, for each of these nodes, a constant fraction of the
non-jammed time steps is open. Then }°, 5o\ prwy 00 < (1/4) 2oy pruy fos 50
2venr(uy % = (1/2) 2ovepy 00 = (1/4) Xovepiuy fo-

Consider now a set U C V of nodes so that |J,.; D(u) = V and for every
v € V there are at most 6 nodes u € U with v € D(u) (U is easy to construct
in a greedy fashion for arbitrary UDGs and also known as a dominating set of
constant density). Let V' =, ey D'(u). Since 3, ¢ pr(y) 00 2 (1/4) X e pruy fo
for every node v € U, it follows that > .y, 0, > (1/6) ¢ ZveD,(u) 0y >
(1/24) > cv Xovep) fo = (1/24) 3 ey fo. Using that together with Theo-
rem [3] which implies that JADE is constant competitive w.r.t. the nodes in V’,
completes the proof of Theorem [ b).

3.2 Proof of Lemma [

In order to finish the proof of Theorem[I] it remains to prove Lemmaldl Consider
any fixed node u. We partition w’s unit disk D(u) into six sectors of equal angles
from w, Si,...,S¢. Note that all nodes within a sector S; have distances of at
most 1 from each other, so they can directly communicate with each other (in
D(u), distances can be up to 2). We will first explore properties of an arbitrary
node in one sector, then consider the implications for a whole sector, and finally
bound the cumulative sending probability in the entire unit disk.

Recall the definition of a time frame, a subframe and f in the proof of The-
orem Bl Fix a sector S in D(u) and consider some fixed time frame F. Let us
refer to the sum of the probabilities of the neighboring nodes of a given node
vESbY Dy =D, S\ {o} Puw- The following lemma shows that p, will decrease
dramatically if p, is high throughout a certain time interval. It needs the fact
that maz,T, < v/|F| (not shown here).

Lemma 7. Consider a node v in a unit disk D(u). If p, > 5 — p during all
rounds of a subframe I of F, then p, will be at most 1/n? at the end of I, w.h.p.

We omit the proof here. Given this property of the individual probabilities, we
can derive a bound for the cumulative probability of an entire sector .S. In order
to compute pg = Zvespv’ we introduce three thresholds, a low one, pgreen = 9,
one in the middle, pyeiion = 5e, and a high one, prcq = 5e2. The following three
lemmas provide some important insights about these probabilities. The proof of
the second one is omitted here.

Lemma 8. For any subframe I in F' and any initial value of ps in I there is at
least one round in I with ps < pgreen W.h.p.

Proof. We prove the lemma by contradiction. Suppose that throughout the entire
interval I, ps > pgreen- Then it holds for every node v € S that p, > pgreen — D
throughout 7. In this case, however, we know from Lemmal7l that p, will decrease
to at most 1/n? at the end of I w.h.p. Hence, all nodes v € S would decrease
py to at most 1/n? at the end of I w.h.p., which results in ps < 1/n. This
contradicts our assumption, so w.h.p. there must be a round ¢ in I at which

ps < Pgreen- O



A Jamming-Resistant MAC Protocol for Multi-Hop Wireless Networks 189

Lemma 9. For any time interval I in F of size f and any sector S it holds
that if ps < pgreen at the beginning of I, then ps < pyeiiow throughout I, w.m.p.
Similarly, if ps < pyetiow at the beginning of I, then ps < preq throughout I,
w.m.p.

Lemma 10. For any subframe I in F it holds that if there has been at least one
round during the past subframe where ps < pgreen, then throughout I, ps < preqd
w.m.p.

Proof. Suppose that there has been at least one round during the past subframe
where ps < pgreen. Then we know from Lemma [0 that w.m.p. ps < pyeiiow at
the beginning of I. But if ps < pyeiiow at the beginning of I, we also know from
Lemma [0 that w.m.p. ps < preq throughout I, which proves the lemma. ]

Now, define a subframe I to be good if ps < preq throughout I, and otherwise
I is called bad. With the help of Lemma [} and Lemma we can prove the
following lemma.

Lemma 11. For any sector S, at most €3/6 of the subframes I in F are bad
w.h.p., where the constant 3 > 0 can be made arbitrarily small depending on the
constant o in f.

From Lemma [I] it follows that apart from an eS-fraction of the subframes, all
subframes I in F satisfy ZUGD(U) py € O(1) throughout I, which completes the
proof of Lemma 4]

3.3 Limitations of the JADE Protocol

One may ask whether a stronger throughput result than Theorem [l can be
shown. Ideally, we would like to use the following model. A MAC protocol is
called strongly c-competitive against some (7', 1 —e)-bounded adversary if, for any
sufficiently large time interval and any node v, the number of rounds in which v
successfully receives a message is at least a c-fraction of the total number of non-
jammed rounds at v. In other words, a strongly c-competitive MAC protocol can
achieve at least a c-fraction of the best possible throughput for every individual
node. Unfortunately, such a protocol seems to be difficult to design. In fact, JADE
is not strongly c-competitive for any constant ¢ > 0, even if the node density is
sufficiently high.

Theorem 4. In general, JADE is not strongly c-competitive for a constant ¢ > 0
if the adversary is allowed to be 2-uniform and e <1/3.

Proof. Suppose that (at some corner of the UDG) we have a set U of at least 1/p
nodes located closely to each other that are all within the transmission range
of a node v. Initially, we assume that ) ., p, > 1, p, = p and T, = 1 for
all nodes € U U {v}. The time is partitioned into time intervals of size T'. In
each such time interval, called T-interval, the (T, 1 — ¢)-bounded adversary jams
all but the first €I rounds at U and all but the last €I" rounds at v. It follows
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directly from Section 2.3 of [2] that if T = £2((log® n)/(7?€)), then for every node
ue U, T, <ay/Tlogn/e wh.p. for some sufficiently large constant a. Thus,
Ty <~T/(Blogn) w.h.p. for any constant 3 > 0 if T is sufficiently large. Hence,
between the last non-jammed round at U and the first non-jammed round at v
in a T-interval, the values T,, are increased (and the values p, are decreased) at
least B(logn)/(6) times. Thus, at the first non-jammed round at v, it holds for
every u € U that

pu <P (L4 ) PUosm/(67) < 5. o= (B/6)logn < q /B/6

and, therefore, >, pu = O(1/ n?) if B > 18. This cumulative probability will
stay that low during all of v’s non-jammed rounds as during these rounds the
nodes in U are jammed. Hence, the probability that v receives any message
during its non-jammed rounds of a T-interval is O(1/n?), so JADE is not c-
competitive for v for any constant ¢ > 0. a

Also, in our original model, JADE is not constant competitive if the node density
is too low.

Theorem 5. In general, JADE is not c-competitive for a constant ¢ independent
of € if there are nodes u with |D(u)| = o(1/€) and the adversary is allowed to be
2-uniform.

Proof. Suppose that we have a set U of k = o(1/¢) nodes located closely to
each other that are all within the transmission range of a node v. Let T =
2((log®n)/(~2%€)). In each T-interval, the adversary never jams v but jams all
but the first €T rounds at U. Then Section 2.3 of [2] implies that for every node
uweU, T, <~T/(Blogn) wh.p. for any constant 8 > 0 if T is sufficiently large.
The nodes in U continuously increase their T),-values and thereby reduce their p,,
values during their jammed time steps. Hence, the nodes in U U {v} will receive
at most €T - |U|+ (eT + O(T/logn)) = €T - o(1/€) + (e + o(1))T = (e + o(1))T
messages in each T-interval on expectation whereas the sum of non-jammed
rounds over all nodes is more than 7. a

This implies Theorem [2I Hence, Theorem [I] is essentially the best one can show
for JADE (within our notation).

3.4 Simulations

We briefly report on some simulation results that complement the theoretical
insights. We assume that initially, p, = p = 1/24 for all nodes v. The nodes
are distributed over a square plane of 4 X 4 units, and are connected in a unit
disk graph manner (multi-hop). In each round, a node is jammed independently
with probability (1 — €). We run the simulation for a sufficiently large number
of time steps indicated by the Theorem [T where ¢ = 0.3, T' = 200, and v = 0.1.
Figure [l (left) shows the throughput competitiveness of JADE as a function of
the network size for a scenario with a uniform node distribution and a scenario



A Jamming-Resistant MAC Protocol for Multi-Hop Wireless Networks 191

IS

09 — Uniform distribution
-+-Gauss distribution

«..»
ke

N
o

&

2 veD(v) Pos average over all v

Throughput

PP S S
P e

.

Lyt

°
o

Cumulative Probability

200 400 600 800 1000 1200 1400 1600 1800 200 400 600 800 1000 1200 1400 1600 1800 2000

Network Size Number of Rounds

Fig. 1. Left: Throughput as a function of network size. Right: Convergence behavior
for multi-hop networks (uniform distribution). For the plot, we used n = 500.

with a normal/Gaussian distribution. In both cases, the throughput is larger
when the density is higher (20% to 40%), which corresponds to our formal in-
sight that a constant competitive throughput is possible only if the node density
exceeds a certain threshold. Moreover, we found that a constant throughput and
a constant cumulative sending probability (per unit disk) is reached fast. See
Figure [ (right).

4 Conclusion

This paper has presented the first jamming-resistant MAC protocol with prov-
ably good performance in multi-hop networks exposed to an adaptive adversary.
While we have focused on unit disk graphs, we believe that our stochastic anal-
ysis is also useful for more realistic wireless network models. Moreover, although
our analysis is involved, our protocol is rather simple.
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