Skip to main content

Finding the Diameter in Real-World Graphs

Experimentally Turning a Lower Bound into an Upper Bound

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6346))

Abstract

The diameter of an unweighted graph is the maximum pairwise distance among its connected vertices. It is one of the main measures in real-world graphs and complex networks. The double sweep is a simple method to find a lower bound for the diameter. It chooses a random vertex and performs two breadth-first searches (BFSes), returning the maximum length among the shortest paths thus found. We propose an algorithm called fringe, which uses few BFSes to find a matching upper bound for almost all the graphs in our dataset of 44 real-world graphs. In the few graphs it cannot, we perform an exhaustive search of the diameter using a cluster of machines for a total of 40 cores. In all cases, the diameter is surprisingly equal to the lower bound found after very few executions of the double sweep method. The lesson learned is that the latter can be used to find the diameter of real-world graphs in many more cases than expected, and our fringe algorithm can quickly validate this finding for most of them.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alegre, I., Fiol, M., Yebra, J.: Some large graphs with given degree and diameter. J. Graph Theory 10, 219–224 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  2. Boldi, P., Vigna, S.: Webgraph (2001), http://webgraph.dsi.unimi.it/

  3. Boldi, P., Vigna, S.: The WebGraph framework I: Compression techniques. In: Proc. of the 13th International World Wide Web Conference, pp. 595–601 (2004)

    Google Scholar 

  4. Brandes, U., Erlebach, T.: Network Analysis: Methodological Foundations. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  5. Complexnetworks Team: Complex networks and real-world graphs (2008), http://complexnetworks.fr/

  6. Corneil, D.G., Dragan, F.E., Habib, M., Paul, C.: Diameter determination on restricted graph families. Discrete Appl. Math. 113(2-3), 143–166 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Faloutsos, C.: Graph mining: Patterns, generators and tools. In: Combinatorial Pattern Matching, p. 274 (2009)

    Google Scholar 

  8. Handler, G.: Minimax location of a facility in an undirected tree graph. Transportation Science 7(287–293) (1973)

    Google Scholar 

  9. IMDB: The internet movie database (1990), http://www.imdb.com/

  10. Leskovec, J.: Stanford Network Analysis Package (SNAP) Website (2009), http://snap.stanford.edu

  11. Library, S.L.D.: Citeseer Website (1997), http://citeseer.ist.psu.edu/citeseer.html

  12. Magnien, C., Latapy, M., Habib, M.: Fast computation of empirically tight bounds for the diameter of massive graphs. J. Exp. Algorithmics 13 (2009)

    Google Scholar 

  13. Massa, P., Souren, K.: Trustlet Website (2007), http://www.trustlet.org

  14. Mehlhorn, K., Meyer, U.: External-memory breadth-first search with sublinear i/o. In: Proceedings of the 10th Annual European Symposium on Algorithms, pp. 723–735 (2002)

    Google Scholar 

  15. Sommer, C.: Christian sommer’s homepage (2009), http://www.sommer.jp/graphs/

  16. Zwick, U.: Exact and approximate distances in graphs - a survey. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 33–48. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Crescenzi, P., Grossi, R., Imbrenda, C., Lanzi, L., Marino, A. (2010). Finding the Diameter in Real-World Graphs. In: de Berg, M., Meyer, U. (eds) Algorithms – ESA 2010. ESA 2010. Lecture Notes in Computer Science, vol 6346. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15775-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15775-2_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15774-5

  • Online ISBN: 978-3-642-15775-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics